organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 1-(6-chloro-3-pyridylmeth­yl)-5-eth­oxy­methyl­ene­amino-1H-1,2,3-triazole-4-carboxyl­ate

aDepartment of Medicinal Chemistry, Yunyang Medical College, Shiyan 442000, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, Henan, People's Republic of China
*Correspondence e-mail: chenxiaobao@yahoo.com.cn

(Received 9 November 2008; accepted 10 November 2008; online 13 November 2008)

In the title compound, C14H16ClN5O3, there is evidence for significant electron delocalization in the triazolyl system. Intra­molecular C—H⋯O and inter­molecular C—H⋯O and C—H⋯N hydrogen bonds stabilize the structure.

Related literature

Many derivatives of triazole have been prepared, and their biological activities have been studied, see: Ogura et al. (2000a[Ogura, T., Numata, A., Ueno, H. & Masuzawa, Y. (2000a). World Patent 0 039 106.],b[Ogura, T., Numata, A., Ueno, H. & Masuzawa, Y. (2000b). Chem. Abstr. 133, 74023.]); Najim et al. (2004[Najim, A. A., Yaseen, A. A. & Asmehan, A. (2004). Heteroatom. Chem. 15, 380-387.]); Banks & Chubb (1999a[Banks, B. J. & Chubb, N. A. L. (1999a). Eur. Patent 957 094.],b[Banks, B. J. & Chubb, N. A. L. (1999b). Chem. Abstr. 131, 337025.]); Shuto et al. (1995a[Shuto, A., Kisida, H., Tsuchiya, T., Takada, Y. & Fujimoto, H. (1995a). World Patent 9 529 175.],b[Shuto, A., Kisida, H., Tsuchiya, T., Takada, Y. & Fujimoto, H. (1995b). Chem. Abstr. 124, 176136.]); Yuan et al. (2006[Yuan, J. Z., Fu, B. Q., Ding, M. W. & Yang, G.-F. (2006). Eur. J. Org. Chem. 18, 4170-4176.]); Chen et al. (2005[Chen, W., Chen, Q., Wu, Q. Y. & Yang, G. F. (2005). Chin. J. Org. Chem. 25, 1477-1481.]); Liu et al. (2001[Liu, Z. M., Yang, G. F. & Qing, X. H. (2001). J. Chem. Technol. Biotechnol. 76, 1154-1158.]). For the synthesis, see: Chen & Shi (2008[Chen, X. B. & Shi, D. Q. (2008). J. Heterocycl. Chem. 45, 1493-1497.]). For bond-length data, see: Sasada (1984[Sasada, Y. (1984). Molecular and Crystal Structures in Chemistry Handbook, 3rd ed. Tokyo: The Chemical Society of Japan, Maruzen.]); Wang et al. (1998[Wang, Z., Jian, F., Duan, C., Bai, Z. & You, X. (1998). Acta Cryst. C54, 1927-1929.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16ClN5O3

  • Mr = 337.77

  • Monoclinic, P 21 /c

  • a = 16.8823 (17) Å

  • b = 6.3134 (6) Å

  • c = 15.3065 (15) Å

  • β = 90.980 (1)°

  • V = 1631.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 291 (2) K

  • 0.50 × 0.47 × 0.36 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: none

  • 10092 measured reflections

  • 2980 independent reflections

  • 2551 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.098

  • S = 1.04

  • 2980 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N3i 0.93 2.57 3.488 (2) 167
C9—H9A⋯O2ii 0.97 2.53 3.246 (3) 131
C12—H12⋯O2 0.93 2.44 2.924 (3) 112
Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x+2, -y+1, -z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

It is well known that many triazole-related molecules play an important role in the development of agrochemicals such as insecticides, nematocides, acaricide and plant growth regulators (Ogura et al., 2000a,b; Najim et al., 2004; Banks & Chubb, 1999a,b); Shuto et al., 1995a,b; Yuan et al., 2006; Chen et al., 2005 and Liu et al., 2001). Since the structure-activity relationship is very useful in the rational design of pharmaceuticals and agrochemicals. We report here the crystal structure of the title compound, (I) (Fig. 1), which was synthesized by introducing pyridine rings into a 1,2,3-triazole molecular framework.

In the title compound (I), the C7—N4 and C11—N2 bonds [1.366 (2) and 1.348 (2) Å] are significantly shorter than that of the single bond of C—N (1.47 Å; Sasada, 1984) and close to the value of the double bond of C—N (1.28 Å; Wang et al., 1998). This indicates significant electron delocalization in the triazolyl system. Intramolecular C—H···O and intermolecular C—H···O and C—H···N hydrogen bonds contribute strongly to the stability of the molecular configuration (Fig.2, Table 1).

Related literature top

Many derivatives of triazole have been prepared, and their biological activities have been studied, see: Ogura et al. (2000a,b); Najim et al. (2004); Banks & Chubb (1999a,b); Shuto et al. (1995a,b); Yuan et al. (2006); Chen et al. (2005); Liu et al. (2001). For the synthesis, see: Chen & Shi (2008). For bond-length data, see: Sasada (1984); Wang et al. (1998).

Experimental top

A solution of compound 1-((6-chloropyridin-3-yl)methyl)-4-ethoxycarbonyl-5-amine-1H-1,2,3- triazole (2 mmol) in triethyl ortho formate (10 ml) was refluxed for 4 h, cooled briefly and evaporated. The residue was purified by chromatography on a silica gel column by eluting with petroleum ether/acetone (2:1, v/v) to give the title compound (yield 75%). Colourless crystals of (I) suitable for X-ray structure analysis were grown from acetone and petroleum ether (1:3, v/v).

Refinement top

H atoms bonded to C were placed at calculated positions, with C—H = 0.93–0.97 Å and refined using a riding model, with Uiso(H) = 1.2Ueq(C), or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I), showing the atom labelling scheme and with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial view of the crystal packing of (I), showing the formation of C—H···O and C—H···N hydrogen-bonding interactions (dashed lines).
Ethyl 1-(6-chloro-3-pyridylmethyl)-5-ethoxymethyleneamino-1H- 1,2,3-triazole-4-carboxylate top
Crystal data top
C14H16ClN5O3F(000) = 704
Mr = 337.77Dx = 1.375 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4752 reflections
a = 16.8823 (17) Åθ = 2.7–27.8°
b = 6.3134 (6) ŵ = 0.26 mm1
c = 15.3065 (15) ÅT = 291 K
β = 90.980 (1)°Block, colourless
V = 1631.2 (3) Å30.50 × 0.47 × 0.36 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2551 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.014
Graphite monochromatorθmax = 25.5°, θmin = 2.7°
ϕ and ω scansh = 2020
10092 measured reflectionsk = 77
2980 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0449P)2 + 0.5005P]
where P = (Fo2 + 2Fc2)/3
2980 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C14H16ClN5O3V = 1631.2 (3) Å3
Mr = 337.77Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.8823 (17) ŵ = 0.26 mm1
b = 6.3134 (6) ÅT = 291 K
c = 15.3065 (15) Å0.50 × 0.47 × 0.36 mm
β = 90.980 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2551 reflections with I > 2σ(I)
10092 measured reflectionsRint = 0.014
2980 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.04Δρmax = 0.25 e Å3
2980 reflectionsΔρmin = 0.40 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.36873 (3)0.34616 (9)0.06142 (3)0.07336 (19)
O10.89923 (7)0.8586 (2)0.04595 (8)0.0571 (3)
O20.91635 (9)0.6353 (3)0.06636 (11)0.0821 (5)
O30.80412 (9)0.27638 (19)0.22225 (8)0.0633 (4)
N10.50169 (9)0.4258 (2)0.14254 (10)0.0559 (4)
N20.69532 (8)0.9067 (2)0.13235 (8)0.0440 (3)
N30.69871 (8)1.0541 (2)0.06795 (9)0.0499 (3)
N40.76295 (8)1.0162 (2)0.02373 (9)0.0494 (3)
N50.76407 (8)0.6142 (2)0.19200 (8)0.0470 (3)
C10.44375 (10)0.5167 (3)0.09780 (10)0.0480 (4)
C20.43841 (11)0.7289 (3)0.07976 (12)0.0582 (5)
H20.39590.78420.04770.070*
C30.49856 (10)0.8571 (3)0.11104 (12)0.0545 (4)
H30.49721.00210.10040.065*
C40.56076 (9)0.7699 (3)0.15809 (10)0.0422 (4)
C50.55899 (10)0.5546 (3)0.17194 (12)0.0535 (4)
H50.60060.49460.20400.064*
C60.62874 (10)0.9037 (3)0.19223 (11)0.0504 (4)
H6A0.61031.04750.20120.061*
H6B0.64660.84850.24830.061*
C70.80079 (9)0.8443 (2)0.05900 (10)0.0443 (4)
C80.87732 (10)0.7667 (3)0.02805 (12)0.0515 (4)
C90.97474 (11)0.7873 (3)0.08109 (14)0.0676 (5)
H9A0.97440.63480.08850.081*
H9B1.01790.82460.04140.081*
C100.98505 (15)0.8939 (5)0.16692 (17)0.0994 (9)
H10A0.94330.85090.20650.149*
H10B1.03530.85470.19050.149*
H10C0.98321.04460.15910.149*
C110.75714 (9)0.7719 (2)0.12926 (10)0.0424 (4)
C120.79167 (12)0.4373 (3)0.16850 (11)0.0580 (5)
H120.80390.41940.11000.070*
C130.78506 (12)0.3050 (3)0.31347 (11)0.0584 (5)
H13A0.72810.31090.32050.070*
H13B0.80800.43560.33570.070*
C140.81906 (16)0.1190 (4)0.36122 (14)0.0812 (7)
H14A0.79930.00940.33530.122*
H14B0.80400.12480.42140.122*
H14C0.87580.12190.35780.122*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0601 (3)0.0926 (4)0.0674 (3)0.0200 (3)0.0024 (2)0.0204 (3)
O10.0478 (7)0.0593 (7)0.0647 (7)0.0024 (5)0.0108 (6)0.0029 (6)
O20.0658 (9)0.0824 (10)0.0985 (11)0.0239 (8)0.0096 (8)0.0267 (9)
O30.0954 (10)0.0428 (7)0.0519 (7)0.0049 (6)0.0048 (7)0.0053 (5)
N10.0510 (8)0.0480 (8)0.0687 (9)0.0032 (7)0.0003 (7)0.0059 (7)
N20.0445 (7)0.0411 (7)0.0464 (7)0.0041 (6)0.0016 (6)0.0019 (6)
N30.0495 (8)0.0455 (8)0.0546 (8)0.0002 (6)0.0009 (6)0.0080 (6)
N40.0477 (8)0.0475 (8)0.0529 (8)0.0023 (6)0.0001 (6)0.0067 (6)
N50.0504 (8)0.0442 (8)0.0461 (7)0.0011 (6)0.0046 (6)0.0045 (6)
C10.0440 (9)0.0595 (10)0.0409 (8)0.0040 (7)0.0085 (7)0.0054 (7)
C20.0475 (10)0.0673 (12)0.0596 (10)0.0089 (8)0.0050 (8)0.0090 (9)
C30.0537 (10)0.0448 (9)0.0652 (11)0.0078 (8)0.0022 (8)0.0091 (8)
C40.0437 (8)0.0440 (8)0.0391 (8)0.0033 (7)0.0078 (6)0.0001 (7)
C50.0482 (9)0.0501 (10)0.0620 (10)0.0016 (8)0.0058 (8)0.0132 (8)
C60.0540 (10)0.0485 (9)0.0490 (9)0.0009 (8)0.0061 (7)0.0045 (7)
C70.0437 (9)0.0413 (8)0.0476 (9)0.0043 (7)0.0045 (7)0.0016 (7)
C80.0461 (9)0.0477 (9)0.0607 (10)0.0032 (7)0.0022 (8)0.0003 (8)
C90.0483 (10)0.0690 (12)0.0859 (14)0.0012 (9)0.0135 (10)0.0138 (11)
C100.0811 (16)0.127 (2)0.0917 (17)0.0149 (16)0.0392 (14)0.0044 (16)
C110.0437 (8)0.0391 (8)0.0441 (8)0.0044 (7)0.0070 (7)0.0013 (7)
C120.0857 (13)0.0450 (10)0.0434 (9)0.0065 (9)0.0000 (9)0.0018 (8)
C130.0672 (12)0.0585 (11)0.0494 (9)0.0055 (9)0.0033 (8)0.0074 (8)
C140.1104 (18)0.0668 (13)0.0665 (13)0.0154 (12)0.0013 (12)0.0190 (11)
Geometric parameters (Å, º) top
Cl1—C11.7462 (17)C4—C51.376 (2)
O1—C81.331 (2)C4—C61.511 (2)
O1—C91.463 (2)C5—H50.9300
O2—C81.205 (2)C6—H6A0.9700
O3—C121.322 (2)C6—H6B0.9700
O3—C131.450 (2)C7—C111.391 (2)
N1—C11.316 (2)C7—C81.468 (2)
N1—C51.336 (2)C9—C101.489 (3)
N2—C111.348 (2)C9—H9A0.9700
N2—N31.3579 (18)C9—H9B0.9700
N2—C61.463 (2)C10—H10A0.9600
N3—N41.3103 (19)C10—H10B0.9600
N4—C71.366 (2)C10—H10C0.9600
N5—C121.264 (2)C12—H120.9300
N5—C111.387 (2)C13—C141.493 (3)
C1—C21.371 (3)C13—H13A0.9700
C2—C31.378 (3)C13—H13B0.9700
C2—H20.9300C14—H14A0.9600
C3—C41.378 (2)C14—H14B0.9600
C3—H30.9300C14—H14C0.9600
C8—O1—C9115.82 (15)O2—C8—O1123.82 (16)
C12—O3—C13117.92 (14)O2—C8—C7123.34 (17)
C1—N1—C5115.93 (15)O1—C8—C7112.83 (15)
C11—N2—N3111.41 (13)O1—C9—C10107.54 (18)
C11—N2—C6128.15 (13)O1—C9—H9A110.2
N3—N2—C6120.40 (13)C10—C9—H9A110.2
N4—N3—N2107.16 (13)O1—C9—H9B110.2
N3—N4—C7109.08 (13)C10—C9—H9B110.2
C12—N5—C11117.65 (14)H9A—C9—H9B108.5
N1—C1—C2125.22 (16)C9—C10—H10A109.5
N1—C1—Cl1115.20 (13)C9—C10—H10B109.5
C2—C1—Cl1119.57 (14)H10A—C10—H10B109.5
C1—C2—C3117.28 (16)C9—C10—H10C109.5
C1—C2—H2121.4H10A—C10—H10C109.5
C3—C2—H2121.4H10B—C10—H10C109.5
C4—C3—C2119.84 (16)N2—C11—N5119.02 (14)
C4—C3—H3120.1N2—C11—C7103.90 (13)
C2—C3—H3120.1N5—C11—C7137.02 (15)
C5—C4—C3117.18 (16)N5—C12—O3123.85 (16)
C5—C4—C6121.16 (15)N5—C12—H12118.1
C3—C4—C6121.65 (15)O3—C12—H12118.1
N1—C5—C4124.54 (16)O3—C13—C14106.49 (16)
N1—C5—H5117.7O3—C13—H13A110.4
C4—C5—H5117.7C14—C13—H13A110.4
N2—C6—C4112.19 (13)O3—C13—H13B110.4
N2—C6—H6A109.2C14—C13—H13B110.4
C4—C6—H6A109.2H13A—C13—H13B108.6
N2—C6—H6B109.2C13—C14—H14A109.5
C4—C6—H6B109.2C13—C14—H14B109.5
H6A—C6—H6B107.9H14A—C14—H14B109.5
N4—C7—C11108.44 (14)C13—C14—H14C109.5
N4—C7—C8123.09 (14)H14A—C14—H14C109.5
C11—C7—C8128.35 (15)H14B—C14—H14C109.5
C11—N2—N3—N40.55 (17)C9—O1—C8—C7179.47 (14)
C6—N2—N3—N4178.53 (13)N4—C7—C8—O2169.02 (17)
N2—N3—N4—C70.30 (17)C11—C7—C8—O26.6 (3)
C5—N1—C1—C20.0 (3)N4—C7—C8—O110.2 (2)
C5—N1—C1—Cl1179.06 (13)C11—C7—C8—O1174.16 (15)
N1—C1—C2—C30.0 (3)C8—O1—C9—C10175.16 (19)
Cl1—C1—C2—C3179.07 (13)N3—N2—C11—N5178.28 (13)
C1—C2—C3—C40.2 (3)C6—N2—C11—N53.9 (2)
C2—C3—C4—C50.4 (2)N3—N2—C11—C70.55 (17)
C2—C3—C4—C6178.87 (15)C6—N2—C11—C7178.34 (14)
C1—N1—C5—C40.3 (3)C12—N5—C11—N2144.61 (16)
C3—C4—C5—N10.4 (3)C12—N5—C11—C738.6 (3)
C6—C4—C5—N1178.81 (16)N4—C7—C11—N20.36 (17)
C11—N2—C6—C488.86 (19)C8—C7—C11—N2175.79 (15)
N3—N2—C6—C488.75 (17)N4—C7—C11—N5177.45 (17)
C5—C4—C6—N285.12 (19)C8—C7—C11—N51.3 (3)
C3—C4—C6—N294.08 (18)C11—N5—C12—O3177.40 (16)
N3—N4—C7—C110.04 (18)C13—O3—C12—N50.1 (3)
N3—N4—C7—C8176.36 (15)C12—O3—C13—C14169.17 (18)
C9—O1—C8—O21.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N3i0.932.573.488 (2)167
C9—H9A···O2ii0.972.533.246 (3)131
C12—H12···O20.932.442.924 (3)112
Symmetry codes: (i) x+1, y+2, z; (ii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H16ClN5O3
Mr337.77
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)16.8823 (17), 6.3134 (6), 15.3065 (15)
β (°) 90.980 (1)
V3)1631.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.50 × 0.47 × 0.36
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10092, 2980, 2551
Rint0.014
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.098, 1.04
No. of reflections2980
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.40

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N3i0.932.573.488 (2)167.00
C9—H9A···O2ii0.972.533.246 (3)131.00
C12—H12···O20.932.442.924 (3)112.00
Symmetry codes: (i) x+1, y+2, z; (ii) x+2, y+1, z.
 

Acknowledgements

The authors gratefully acknowledge financial support of this work by Yunyang Medical College (grant No. 2007ZQB24).

References

First citationBanks, B. J. & Chubb, N. A. L. (1999a). Eur. Patent 957 094.  Google Scholar
First citationBanks, B. J. & Chubb, N. A. L. (1999b). Chem. Abstr. 131, 337025.  Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, W., Chen, Q., Wu, Q. Y. & Yang, G. F. (2005). Chin. J. Org. Chem. 25, 1477–1481.  CAS Google Scholar
First citationChen, X. B. & Shi, D. Q. (2008). J. Heterocycl. Chem. 45, 1493–1497.  CrossRef CAS Google Scholar
First citationLiu, Z. M., Yang, G. F. & Qing, X. H. (2001). J. Chem. Technol. Biotechnol. 76, 1154–1158.  CrossRef CAS Google Scholar
First citationNajim, A. A., Yaseen, A. A. & Asmehan, A. (2004). Heteroatom. Chem. 15, 380–387.  Google Scholar
First citationOgura, T., Numata, A., Ueno, H. & Masuzawa, Y. (2000a). World Patent 0 039 106.  Google Scholar
First citationOgura, T., Numata, A., Ueno, H. & Masuzawa, Y. (2000b). Chem. Abstr. 133, 74023.  Google Scholar
First citationSasada, Y. (1984). Molecular and Crystal Structures in Chemistry Handbook, 3rd ed. Tokyo: The Chemical Society of Japan, Maruzen.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShuto, A., Kisida, H., Tsuchiya, T., Takada, Y. & Fujimoto, H. (1995a). World Patent 9 529 175.  Google Scholar
First citationShuto, A., Kisida, H., Tsuchiya, T., Takada, Y. & Fujimoto, H. (1995b). Chem. Abstr. 124, 176136.  Google Scholar
First citationWang, Z., Jian, F., Duan, C., Bai, Z. & You, X. (1998). Acta Cryst. C54, 1927–1929.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYuan, J. Z., Fu, B. Q., Ding, M. W. & Yang, G.-F. (2006). Eur. J. Org. Chem. 18, 4170–4176.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds