organic compounds
(5-Bromo-2-hydroxyphenyl)(phenyl)methanone
aCollege of Environmental and Chemical Engineering, Xi'an Polytechnic University, 710048 Xi'an, Shaanxi, People's Republic of China, and bDepartment of Materials Science and Chemical Engineering, Sichuan University of Science and Engineering , 643000 Zigong, Sichuan, People's Republic of China
*Correspondence e-mail: jichangyou789456@126.com
In the title compound, C13H9BrO2, the dihedral angle between the aromatic ring planes is 53.6 (1)°. The is stabilized by intramolecular O—H⋯O and intermolecular C—H⋯O hydrogen bonding and C—H⋯π interactions.
Related literature
For the ability of aroylhydrazones to coordinate to metal ions and their biological activity, see: Singh et al. (1982); Salem (1998); Carcelli et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Siemens, 1996); cell SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S160053680803969X/at2684sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680803969X/at2684Isup2.hkl
The benzoyl chloride (0.01 mol, 1.4057 g) and the 4-bromophenol, heated up in the oil bath, the reaction mixture was refluxed for 6 h with stirring. Then anhydrous aluminium trichloride (3 mol, 1:3) was added, the backflow agitation responds for 4 h (yield 80%). The compound (2.0 mmol, 0.67 g) was dissolved in dimethylformamide (30 ml) and kept at room temperature for 30 d to obtain brown single crystals suitable for X-ray diffraction.
All H atoms were positioned geometrically and treated as riding on their parent atoms,with C—H(aromatic) = 0.93 Å, O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).
Data collection: SMART (Siemens, 1996); cell
SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C13H9BrO2 | F(000) = 552 |
Mr = 277.11 | Dx = 1.681 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2043 reflections |
a = 15.9510 (18) Å | θ = 2.7–23.4° |
b = 5.8956 (6) Å | µ = 3.73 mm−1 |
c = 12.1260 (14) Å | T = 298 K |
β = 106.166 (2)° | Block, yellow |
V = 1095.2 (2) Å3 | 0.15 × 0.10 × 0.06 mm |
Z = 4 |
Siemens SMART CCD area-detector diffractometer | 1933 independent reflections |
Radiation source: fine-focus sealed tube | 1578 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
ϕ and ω scans | θmax = 25.1°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −18→19 |
Tmin = 0.604, Tmax = 0.807 | k = −4→7 |
5479 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.073 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0296P)2 + 0.7566P] where P = (Fo2 + 2Fc2)/3 |
1933 reflections | (Δ/σ)max < 0.001 |
146 parameters | Δρmax = 0.33 e Å−3 |
0 restraints | Δρmin = −0.52 e Å−3 |
C13H9BrO2 | V = 1095.2 (2) Å3 |
Mr = 277.11 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 15.9510 (18) Å | µ = 3.73 mm−1 |
b = 5.8956 (6) Å | T = 298 K |
c = 12.1260 (14) Å | 0.15 × 0.10 × 0.06 mm |
β = 106.166 (2)° |
Siemens SMART CCD area-detector diffractometer | 1933 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1578 reflections with I > 2σ(I) |
Tmin = 0.604, Tmax = 0.807 | Rint = 0.027 |
5479 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.073 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.33 e Å−3 |
1933 reflections | Δρmin = −0.52 e Å−3 |
146 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.42247 (2) | −0.27591 (5) | 0.49702 (3) | 0.05526 (14) | |
O1 | 0.28452 (15) | 0.5186 (4) | 0.70204 (17) | 0.0548 (6) | |
H1 | 0.2528 | 0.5974 | 0.6517 | 0.082* | |
O2 | 0.18991 (14) | 0.6145 (4) | 0.49878 (17) | 0.0537 (6) | |
C1 | 0.31010 (19) | 0.3343 (5) | 0.6540 (2) | 0.0404 (7) | |
C2 | 0.27504 (17) | 0.2828 (4) | 0.5366 (2) | 0.0330 (6) | |
C3 | 0.30905 (17) | 0.0971 (4) | 0.4914 (2) | 0.0336 (6) | |
H3 | 0.2877 | 0.0616 | 0.4139 | 0.040* | |
C4 | 0.37381 (18) | −0.0324 (5) | 0.5610 (2) | 0.0384 (6) | |
C5 | 0.40544 (19) | 0.0138 (6) | 0.6778 (3) | 0.0493 (8) | |
H5 | 0.4478 | −0.0789 | 0.7248 | 0.059* | |
C6 | 0.37369 (19) | 0.1969 (6) | 0.7229 (2) | 0.0485 (8) | |
H6 | 0.3952 | 0.2292 | 0.8008 | 0.058* | |
C7 | 0.20810 (18) | 0.4294 (5) | 0.4636 (2) | 0.0362 (6) | |
C8 | 0.16079 (17) | 0.3613 (5) | 0.3442 (2) | 0.0340 (6) | |
C9 | 0.15422 (19) | 0.5167 (5) | 0.2563 (2) | 0.0415 (7) | |
H9 | 0.1816 | 0.6569 | 0.2718 | 0.050* | |
C10 | 0.1068 (2) | 0.4626 (6) | 0.1452 (3) | 0.0503 (8) | |
H10 | 0.1042 | 0.5646 | 0.0858 | 0.060* | |
C11 | 0.0636 (2) | 0.2594 (6) | 0.1225 (3) | 0.0510 (8) | |
H11 | 0.0310 | 0.2250 | 0.0481 | 0.061* | |
C12 | 0.06851 (19) | 0.1062 (5) | 0.2098 (3) | 0.0466 (7) | |
H12 | 0.0381 | −0.0300 | 0.1942 | 0.056* | |
C13 | 0.11812 (18) | 0.1530 (5) | 0.3204 (2) | 0.0385 (6) | |
H13 | 0.1230 | 0.0464 | 0.3784 | 0.046* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0478 (2) | 0.0490 (2) | 0.0675 (2) | 0.01286 (15) | 0.01368 (16) | −0.00212 (16) |
O1 | 0.0628 (15) | 0.0608 (15) | 0.0403 (11) | 0.0066 (11) | 0.0136 (11) | −0.0127 (10) |
O2 | 0.0641 (15) | 0.0420 (13) | 0.0519 (13) | 0.0133 (10) | 0.0108 (11) | −0.0070 (10) |
C1 | 0.0385 (16) | 0.0481 (17) | 0.0381 (15) | −0.0056 (13) | 0.0162 (13) | −0.0043 (13) |
C2 | 0.0326 (14) | 0.0341 (15) | 0.0329 (13) | −0.0019 (11) | 0.0102 (11) | 0.0019 (11) |
C3 | 0.0336 (15) | 0.0363 (15) | 0.0309 (14) | −0.0059 (12) | 0.0091 (12) | −0.0005 (12) |
C4 | 0.0330 (15) | 0.0396 (16) | 0.0450 (16) | 0.0014 (12) | 0.0146 (13) | 0.0027 (13) |
C5 | 0.0364 (17) | 0.065 (2) | 0.0425 (17) | 0.0083 (15) | 0.0039 (13) | 0.0110 (15) |
C6 | 0.0390 (17) | 0.073 (2) | 0.0306 (15) | 0.0016 (16) | 0.0054 (13) | 0.0008 (15) |
C7 | 0.0400 (16) | 0.0324 (15) | 0.0399 (15) | −0.0013 (12) | 0.0172 (13) | 0.0024 (12) |
C8 | 0.0312 (14) | 0.0339 (15) | 0.0377 (15) | 0.0057 (12) | 0.0109 (12) | 0.0017 (12) |
C9 | 0.0457 (18) | 0.0331 (16) | 0.0476 (17) | 0.0047 (13) | 0.0160 (14) | 0.0075 (13) |
C10 | 0.055 (2) | 0.057 (2) | 0.0378 (17) | 0.0142 (16) | 0.0116 (15) | 0.0143 (15) |
C11 | 0.0438 (17) | 0.064 (2) | 0.0393 (16) | 0.0131 (16) | 0.0013 (13) | −0.0034 (16) |
C12 | 0.0351 (16) | 0.0453 (18) | 0.0565 (19) | −0.0009 (13) | 0.0079 (14) | −0.0071 (15) |
C13 | 0.0360 (15) | 0.0381 (16) | 0.0421 (16) | 0.0035 (12) | 0.0117 (13) | 0.0056 (13) |
Br1—C4 | 1.898 (3) | C6—H6 | 0.9300 |
O1—C1 | 1.348 (3) | C7—C8 | 1.489 (4) |
O1—H1 | 0.8200 | C8—C9 | 1.388 (4) |
O2—C7 | 1.235 (3) | C8—C13 | 1.395 (4) |
C1—C6 | 1.382 (4) | C9—C10 | 1.386 (4) |
C1—C2 | 1.411 (4) | C9—H9 | 0.9300 |
C2—C3 | 1.400 (4) | C10—C11 | 1.371 (4) |
C2—C7 | 1.464 (4) | C10—H10 | 0.9300 |
C3—C4 | 1.370 (4) | C11—C12 | 1.377 (4) |
C3—H3 | 0.9300 | C11—H11 | 0.9300 |
C4—C5 | 1.391 (4) | C12—C13 | 1.382 (4) |
C5—C6 | 1.370 (4) | C12—H12 | 0.9300 |
C5—H5 | 0.9300 | C13—H13 | 0.9300 |
C1—O1—H1 | 109.5 | O2—C7—C8 | 118.0 (2) |
O1—C1—C6 | 118.1 (3) | C2—C7—C8 | 121.0 (2) |
O1—C1—C2 | 121.8 (3) | C9—C8—C13 | 119.6 (3) |
C6—C1—C2 | 120.1 (3) | C9—C8—C7 | 118.6 (2) |
C3—C2—C1 | 118.4 (2) | C13—C8—C7 | 121.6 (2) |
C3—C2—C7 | 121.4 (2) | C10—C9—C8 | 120.0 (3) |
C1—C2—C7 | 120.0 (2) | C10—C9—H9 | 120.0 |
C4—C3—C2 | 120.1 (2) | C8—C9—H9 | 120.0 |
C4—C3—H3 | 119.9 | C11—C10—C9 | 120.3 (3) |
C2—C3—H3 | 119.9 | C11—C10—H10 | 119.9 |
C3—C4—C5 | 121.1 (3) | C9—C10—H10 | 119.9 |
C3—C4—Br1 | 119.5 (2) | C10—C11—C12 | 120.1 (3) |
C5—C4—Br1 | 119.4 (2) | C10—C11—H11 | 120.0 |
C6—C5—C4 | 119.4 (3) | C12—C11—H11 | 120.0 |
C6—C5—H5 | 120.3 | C11—C12—C13 | 120.6 (3) |
C4—C5—H5 | 120.3 | C11—C12—H12 | 119.7 |
C5—C6—C1 | 120.8 (3) | C13—C12—H12 | 119.7 |
C5—C6—H6 | 119.6 | C12—C13—C8 | 119.4 (3) |
C1—C6—H6 | 119.6 | C12—C13—H13 | 120.3 |
O2—C7—C2 | 121.0 (2) | C8—C13—H13 | 120.3 |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2 | 0.82 | 1.85 | 2.569 (3) | 146 |
C3—H3···O1i | 0.93 | 2.60 | 3.488 (3) | 160 |
C12—H12···Cg1ii | 0.93 | 2.93 | 3.596 (3) | 130 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C13H9BrO2 |
Mr | 277.11 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 15.9510 (18), 5.8956 (6), 12.1260 (14) |
β (°) | 106.166 (2) |
V (Å3) | 1095.2 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.73 |
Crystal size (mm) | 0.15 × 0.10 × 0.06 |
Data collection | |
Diffractometer | Siemens SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.604, 0.807 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5479, 1933, 1578 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.073, 1.03 |
No. of reflections | 1933 |
No. of parameters | 146 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.33, −0.52 |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2 | 0.82 | 1.85 | 2.569 (3) | 146 |
C3—H3···O1i | 0.93 | 2.60 | 3.488 (3) | 160 |
C12—H12···Cg1ii | 0.93 | 2.93 | 3.596 (3) | 130 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x, y−1/2, −z+1/2. |
Acknowledgements
This project was supported by the Postgraduate Foundation of Xi'an Polytechnic University (No. Y05–2–09)
References
Carcelli, M., Mazza, P., Pelizzi, G. & Zani, F. (1995). J. Inorg. Biochem. 57, 43–62. CrossRef CAS PubMed Web of Science Google Scholar
Salem, A. A. (1998). Microchem. J. 60, 51–66. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Singh, R. B., Jain, P. & Singh, R. P. (1982). Talanta, 29, 77–84. CrossRef PubMed CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The chemistry of aroylhydrazones continues to attract much attention due to their coordination ability to metal ions (Singh et al., 1982; Salem, 1998) and their biological activity (Singh et al., 1982; Carcelli et al., 1995). As an extension of work on the structural characterization of aroylhydrazone derivatives, the title compound, (I), was synthesized and its crystal structure is reported here.
The title molecule displays a trans conformation with respect to the C7=O2 double bond (Fig. 1). The crystal structure is stabilized by intramolecular O—H···O and intermolecular C—H···O hydrogen bonding and C-H···π interactions (Table 1. and Fig. 2).