metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1574-m1575

catena-Poly[[bis­­(μ-3-carb­oxy­benzoato)bis­­(1,10-phenanthroline)tricopper(II)]-di-μ3-isophthalato]

aInstitute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai 200135, People's Republic of China
*Correspondence e-mail: lxf_shmtu@yahoo.com.cn

(Received 17 September 2008; accepted 10 November 2008; online 20 November 2008)

The title copper coordination polymer, [Cu3(C8H4O4)2(C8H5O4)2(C10H8N2)2]n, was synthesized by reacting Cu(NO3)2, isophthalic acid and 1,10-phenanthroline under hydro­thermal conditions. The trinuclear unit presents a central almost planar CuO4 chromophore with the cation on a symmetry center, and two symmetry-related CuN2O3 groups with the metal centre in a distorted square-pyramidal environment. These units are bridged by isophthalate ligands into one-dimensional double-chain coordination polymers which are, in turn, connected by various ππ stacking inter­actions (face-to-face distance ca 3.45 Å) and O—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular network.

Related literature

For related literature on the design and construction of coordination polymers, see: Amabilino & Stoddart (1995[Amabilino, D. B. & Stoddart, J. F. (1995). Chem. Rev. 95, 2725.]); Han et al. (2005[Han, Z. B., Cheng, X. N. & Chen, X. M. (2005). Cryst. Growth Des. 5, 695-700.], 2007[Han, Z. B., He, Y. K., Ge, C. H., Ribas, J. & Xu, L. (2007). Dalton Trans. pp. 3020-3024.], 2008[Han, Z. B., He, Y. K., Tong, M. L., Song, Y. J., Song, X. M. & Yang, L. G. (2008). CrystEngComm, 10, 1070-1073.]); He & Han (2007[He, Y. K. & Han, Z. B. (2007). Inorg. Chem. Commun. 10, 1523-1526.]); Ma et al. (2007[Ma, Y., Han, Z. B., He, Y. K. & Yang, L. G. (2007). Chem. Commun. pp. 4107-4109.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu3(C8H4O4)2(C8H5O4)2(C10H8N2)2]

  • Mr = 1209.5

  • Triclinic, [P \overline 1]

  • a = 10.383 (1) Å

  • b = 10.659 (1) Å

  • c = 11.754 (1) Å

  • α = 83.147 (1)°

  • β = 86.191 (1)°

  • γ = 71.134 (1)°

  • V = 1221.6 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.38 mm−1

  • T = 293 (2) K

  • 0.37 × 0.32 × 0.23 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.631, Tmax = 0.738

  • 9575 measured reflections

  • 4741 independent reflections

  • 4241 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.089

  • S = 1.09

  • 4741 reflections

  • 358 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O6 1.923 (1)
Cu1—O2 2.010 (1)
Cu2—O3i 1.935 (1)
Cu2—O1 1.951 (1)
Cu2—N2 2.008 (2)
Cu2—N1 2.014 (2)
Cu2—O5 2.278 (1)
O6—Cu1—O2ii 92.30 (6)
O6—Cu1—O2 87.70 (6)
O3i—Cu2—O1 92.66 (6)
O1—Cu2—N2 168.29 (7)
N2—Cu2—N1 81.94 (7)
O1—Cu2—O5 91.79 (6)
N1—Cu2—O5 98.46 (6)
Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x+1, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O4iii 0.82 1.73 2.539 (2) 170
Symmetry code: (iii) -x, -y, -z+2.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and construction of coordination polymers has attracted much attention owing to their intriguing topologies and potential applications as functional materials (Han et al., 2008, Ma et al., 2007). Many networks with various structural motifs have been documented in the past decade (Amabilino et al., 1995). Unlike pyridine 2,4-, 3,4- 2,5- and 2,6-dicarboxylic acids which were widely reported as bridging ligands to assemble various coordination polymers, isophthalic acid (H2ip) has been reported only scarcely in the role of multicarboxylate ligand (Han et al., 2007). We report here the synthesis and structure of the title copper(II) coordination polymer [Cu3(C8H4O4)2(C8H5O4)2(C10H8N2)]n,assembled from isophthalic acid, 1,10-phenanthroline(phen) and copper(II), (I).

In I, there is one and a half Cu(II) ions (Cu1 lies on center of symmetry), one ip, one Hip and one phen ligand in each independent crystallographic unit. Each Cu2 ion is coordinated by three oxygen atoms from two ip ligands and one Hip ligand in a mono-bidentate and bidentate coordination modes and two nitrogen atoms from a chelate phen ligand to furnish a distorted square pyramidal geometry. On the other hand, each Cu1 atom is four-coordinated by four oxygen atoms, forming a slightly distorted square geometry. (Fig.1 and Table 1).

The carboxylate oxygen atoms bridge three copper atoms (Cu2, Cu1 and Cu2i) via the syn–anti O,O-bridges to form a trinuclear [Cu3(ip)2(Hip)2(phen)2] subunit (Fig. 1), which are interconnected through the bridging ip groups to form an infinite one-dimensional double chain with Cu···Cu distances of 3.755 (3) and 9.994 (3) Å (Fig. 2). The lateral phen ligands from adjacent double-chains are paired to furnish moderately strong ππ stacking interactions (face-face distance ca 3.45 (1) Å) (He et al.,2007, Han et al., 2005), which extend the double-chains into two-dimensional wavelike layers parallel to the ab plane in the lattice. These layers are further linked via strong hydrogen bonds between uncoordinated carboxylate oxygen atoms of ip ligands (Table 2), forming a three-dimensional supramolecular network.

Related literature top

For related literature on the design and construction of coordination polymers, see: Amabilino & Stoddart (1995); Han et al. (2005, 2007, 2008); He & Han (2007); Ma et al. (2007).

Experimental top

A mixture of Cu(NO3)2.2H2O (0.5 mmol, 0.120 g), isophthalic acid (0.5 mmol, 0.084 g), NaOH (1 mmol, 0.04 g), and water (10 ml) was mixed in a 23 ml Teflon reactor, which was heated at 453 K for six days and then cooled to room temperature at a rate of 5 K h-1. Yield: 48%. CH&N analysis for C20H17N2O8Cu1.5 (found/calc): C, 47.05(47.22), H, 2.64(3.37), N, 5.73%(5.51%).

Refinement top

The H atoms were placed at calculated positions in the riding model approximation (C—H 0.93 Å,O—H 0.82 Å), with their temperature factors set to 1.2 times those of the equivalent isotropic temperature factors of the parent atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A trinuclear [Cu3(ip)2(Hip)2(phen)2] subunit with thermal ellipsoids at 30% probability. Symmetry transformations used to generate equivalent atoms: (i) -x+1,-y,-z+1; (ii) -x+1,-y,-z+2; (iii) x,y,z-1.
[Figure 2] Fig. 2. Packing view of I drawn along c and depicting the double chain fragment.
catena-Poly[[bis(µ-3-carboxybenzoato)bis(1,10-phenanthroline)tricopper(II)]- di-µ3-isophthalato] top
Crystal data top
[Cu3(C8H4O4)2(C8H5O4)2(C10H8N2)2]Z = 1
Mr = 1209.5F(000) = 613
Triclinic, P1Dx = 1.644 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.383 (1) ÅCell parameters from 2356 reflections
b = 10.659 (1) Åθ = 2.3–25.0°
c = 11.754 (1) ŵ = 1.38 mm1
α = 83.147 (1)°T = 293 K
β = 86.191 (1)°Block, green
γ = 71.134 (1)°0.37 × 0.32 × 0.23 mm
V = 1221.6 (2) Å3
Data collection top
Bruker SMART APEX area-detector
diffractometer
4741 independent reflections
Radiation source: fine-focus sealed tube4241 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ϕ and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.631, Tmax = 0.738k = 1313
9575 measured reflectionsl = 1214
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0453P)2 + 0.1215P]
where P = (Fo2 + 2Fc2)/3
4741 reflections(Δ/σ)max = 0.001
358 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Cu3(C8H4O4)2(C8H5O4)2(C10H8N2)2]γ = 71.134 (1)°
Mr = 1209.5V = 1221.6 (2) Å3
Triclinic, P1Z = 1
a = 10.383 (1) ÅMo Kα radiation
b = 10.659 (1) ŵ = 1.38 mm1
c = 11.754 (1) ÅT = 293 K
α = 83.147 (1)°0.37 × 0.32 × 0.23 mm
β = 86.191 (1)°
Data collection top
Bruker SMART APEX area-detector
diffractometer
4741 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4241 reflections with I > 2σ(I)
Tmin = 0.631, Tmax = 0.738Rint = 0.063
9575 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.09Δρmax = 0.43 e Å3
4741 reflectionsΔρmin = 0.35 e Å3
358 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.00000.50000.02502 (10)
Cu20.76902 (2)0.22278 (2)0.697826 (19)0.03033 (10)
C10.57791 (19)0.04808 (18)0.70129 (16)0.0290 (4)
C20.57869 (19)0.09529 (18)0.81581 (16)0.0281 (4)
C30.7018 (2)0.0843 (2)0.86308 (19)0.0404 (5)
H30.78310.05140.82190.048*
C40.7030 (2)0.1222 (3)0.9707 (2)0.0493 (6)
H40.78520.11711.00120.059*
C50.5830 (2)0.1680 (2)1.03389 (18)0.0402 (5)
H50.58500.19201.10710.048*
C60.46010 (18)0.17821 (17)0.98864 (16)0.0278 (4)
C70.45796 (18)0.14417 (17)0.87873 (16)0.0268 (4)
H70.37520.15410.84680.032*
C80.3300 (2)0.22144 (19)1.06009 (16)0.0316 (4)
C90.47836 (18)0.22297 (18)0.61761 (15)0.0280 (4)
C100.41202 (18)0.30677 (18)0.69616 (16)0.0282 (4)
C110.4890 (2)0.4306 (2)0.74662 (19)0.0376 (5)
H110.58110.46450.72710.045*
C120.4301 (2)0.5038 (2)0.8255 (2)0.0470 (6)
H120.48240.58710.85820.056*
C130.2936 (2)0.4538 (2)0.8561 (2)0.0419 (5)
H130.25410.50300.90960.050*
C140.21559 (19)0.32961 (19)0.80667 (16)0.0315 (4)
C150.27491 (18)0.25778 (19)0.72611 (16)0.0287 (4)
H150.22210.17570.69170.034*
C160.0685 (2)0.2698 (2)0.83842 (17)0.0358 (4)
C170.9058 (2)0.1207 (2)0.48733 (18)0.0392 (5)
H170.83080.04380.48130.047*
C181.0192 (2)0.1282 (3)0.4132 (2)0.0484 (6)
H181.01880.05700.35900.058*
C191.1296 (2)0.2400 (3)0.4213 (2)0.0512 (6)
H191.20600.24440.37390.061*
C201.1287 (2)0.3489 (2)0.5008 (2)0.0435 (5)
C211.2363 (2)0.4740 (3)0.5150 (2)0.0554 (7)
H211.31600.48530.47050.067*
C221.2253 (2)0.5748 (3)0.5903 (2)0.0536 (7)
H221.29640.65500.59570.064*
C231.1066 (2)0.5616 (2)0.6627 (2)0.0451 (6)
C241.0861 (3)0.6618 (2)0.7445 (2)0.0533 (6)
H241.15200.74540.75280.064*
C250.9713 (3)0.6371 (2)0.8110 (2)0.0554 (7)
H250.95740.70370.86430.066*
C260.8730 (3)0.5104 (2)0.7994 (2)0.0435 (5)
H260.79560.49370.84710.052*
C271.00094 (19)0.4393 (2)0.65414 (18)0.0348 (4)
C281.01068 (19)0.3337 (2)0.57116 (17)0.0334 (4)
N10.90243 (16)0.22039 (16)0.56575 (14)0.0318 (4)
N20.88699 (17)0.41398 (17)0.72270 (14)0.0345 (4)
O10.68897 (14)0.03047 (14)0.66264 (12)0.0370 (3)
O20.47142 (14)0.08815 (14)0.64570 (11)0.0363 (3)
O30.34517 (15)0.22533 (15)1.16551 (12)0.0386 (3)
O40.22068 (15)0.25058 (19)1.01149 (13)0.0511 (4)
O50.60479 (13)0.26213 (14)0.60173 (12)0.0346 (3)
O60.40038 (13)0.11313 (13)0.57278 (12)0.0352 (3)
O70.02655 (15)0.34182 (18)0.92198 (14)0.0495 (4)
H7A0.05400.30450.93750.074*
O80.00380 (15)0.16831 (17)0.78902 (15)0.0524 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02711 (17)0.02716 (17)0.01884 (17)0.00744 (13)0.00295 (12)0.00007 (12)
Cu20.03051 (15)0.03137 (15)0.02253 (14)0.00187 (10)0.00550 (10)0.00313 (10)
C10.0350 (10)0.0269 (9)0.0239 (9)0.0098 (8)0.0072 (8)0.0022 (7)
C20.0332 (10)0.0256 (9)0.0233 (9)0.0073 (7)0.0041 (7)0.0027 (7)
C30.0300 (10)0.0534 (13)0.0360 (11)0.0096 (9)0.0087 (8)0.0137 (10)
C40.0313 (11)0.0773 (17)0.0428 (13)0.0178 (11)0.0010 (9)0.0201 (12)
C50.0427 (12)0.0531 (13)0.0272 (11)0.0156 (10)0.0017 (9)0.0143 (9)
C60.0324 (9)0.0240 (8)0.0244 (9)0.0072 (7)0.0063 (7)0.0019 (7)
C70.0287 (9)0.0254 (9)0.0236 (9)0.0064 (7)0.0017 (7)0.0000 (7)
C80.0367 (10)0.0292 (9)0.0256 (10)0.0084 (8)0.0083 (8)0.0014 (8)
C90.0328 (10)0.0300 (9)0.0229 (9)0.0120 (8)0.0034 (7)0.0057 (7)
C100.0307 (9)0.0292 (9)0.0261 (9)0.0118 (8)0.0020 (7)0.0035 (7)
C110.0293 (10)0.0335 (10)0.0447 (12)0.0058 (8)0.0044 (9)0.0019 (9)
C120.0408 (12)0.0332 (11)0.0579 (15)0.0059 (9)0.0016 (10)0.0124 (10)
C130.0416 (11)0.0403 (11)0.0437 (13)0.0181 (9)0.0045 (10)0.0073 (9)
C140.0315 (10)0.0371 (10)0.0286 (10)0.0148 (8)0.0012 (8)0.0042 (8)
C150.0295 (9)0.0299 (9)0.0258 (9)0.0087 (7)0.0001 (7)0.0016 (7)
C160.0318 (10)0.0483 (12)0.0290 (10)0.0154 (9)0.0015 (8)0.0050 (9)
C170.0418 (11)0.0409 (11)0.0333 (11)0.0121 (9)0.0054 (9)0.0052 (9)
C180.0521 (14)0.0549 (14)0.0419 (13)0.0237 (11)0.0148 (11)0.0100 (11)
C190.0429 (13)0.0716 (17)0.0460 (14)0.0258 (12)0.0184 (11)0.0227 (12)
C200.0322 (11)0.0585 (14)0.0417 (12)0.0116 (10)0.0052 (9)0.0240 (11)
C210.0298 (11)0.0708 (17)0.0608 (16)0.0020 (11)0.0083 (11)0.0329 (14)
C220.0359 (12)0.0541 (15)0.0596 (16)0.0092 (11)0.0062 (11)0.0264 (13)
C230.0415 (12)0.0417 (12)0.0465 (13)0.0019 (10)0.0133 (10)0.0183 (10)
C240.0591 (15)0.0371 (12)0.0533 (15)0.0052 (11)0.0219 (13)0.0109 (11)
C250.0806 (19)0.0386 (12)0.0422 (14)0.0110 (12)0.0198 (13)0.0021 (10)
C260.0534 (13)0.0417 (12)0.0312 (11)0.0092 (10)0.0035 (10)0.0026 (9)
C270.0295 (10)0.0385 (11)0.0329 (11)0.0020 (8)0.0058 (8)0.0124 (8)
C280.0256 (9)0.0413 (11)0.0325 (10)0.0056 (8)0.0001 (8)0.0151 (9)
N10.0282 (8)0.0355 (9)0.0305 (9)0.0069 (7)0.0037 (7)0.0099 (7)
N20.0363 (9)0.0350 (9)0.0285 (9)0.0054 (7)0.0022 (7)0.0052 (7)
O10.0430 (8)0.0321 (7)0.0273 (7)0.0019 (6)0.0116 (6)0.0055 (6)
O20.0366 (7)0.0459 (8)0.0253 (7)0.0103 (6)0.0030 (6)0.0096 (6)
O30.0442 (8)0.0455 (8)0.0239 (7)0.0119 (7)0.0103 (6)0.0078 (6)
O40.0315 (8)0.0806 (12)0.0331 (8)0.0077 (8)0.0078 (7)0.0072 (8)
O50.0279 (7)0.0439 (8)0.0324 (8)0.0122 (6)0.0072 (6)0.0075 (6)
O60.0332 (7)0.0342 (7)0.0350 (8)0.0104 (6)0.0052 (6)0.0047 (6)
O70.0308 (7)0.0736 (11)0.0401 (9)0.0171 (7)0.0085 (6)0.0055 (8)
O80.0360 (8)0.0567 (10)0.0538 (10)0.0048 (7)0.0072 (8)0.0032 (8)
Geometric parameters (Å, º) top
Cu1—O61.923 (1)C13—C141.390 (3)
Cu1—O2i2.010 (1)C13—H130.93
Cu1—O22.010 (1)C14—C151.384 (3)
Cu2—O3ii1.935 (1)C14—C161.493 (3)
Cu2—O11.951 (1)C15—H150.93
Cu2—N22.008 (2)C16—O81.205 (3)
Cu2—N12.014 (2)C16—O71.313 (3)
Cu2—O52.278 (1)C17—N11.328 (3)
C1—O21.247 (2)C17—C181.404 (3)
C1—O11.278 (2)C17—H170.93
C1—C21.494 (3)C18—C191.360 (3)
C2—C71.391 (2)C18—H180.93
C2—C31.392 (3)C19—C201.403 (4)
C3—C41.375 (3)C19—H190.93
C3—H30.93C20—C281.407 (3)
C4—C51.383 (3)C20—C211.436 (3)
C4—H40.9300C21—C221.337 (4)
C5—C61.382 (3)C21—H210.93
C5—H50.93C22—C231.429 (4)
C6—C71.386 (3)C22—H220.93
C6—C81.510 (2)C23—C271.404 (3)
C7—H70.93C23—C241.409 (4)
C8—O41.236 (2)C24—C251.351 (4)
C8—O31.266 (2)C24—H240.93
C9—O51.251 (2)C25—C261.402 (3)
C9—O61.265 (2)C25—H250.93
C9—C101.497 (3)C26—N21.322 (3)
C10—C151.386 (2)C26—H260.93
C10—C111.388 (3)C27—N21.357 (3)
C11—C121.380 (3)C27—C281.424 (3)
C11—H110.9300C28—N11.356 (2)
C12—C131.383 (3)O3—Cu2ii1.9349 (14)
C12—H120.9300O7—H7A0.82
O6—Cu1—O2i92.30 (6)C14—C15—C10120.78 (17)
O6i—Cu1—O292.30 (6)C14—C15—H15119.6
O6—Cu1—O287.70 (6)C10—C15—H15119.6
O3ii—Cu2—O192.66 (6)O8—C16—O7124.33 (19)
O3ii—Cu2—N296.52 (7)O8—C16—C14122.77 (19)
O1—Cu2—N2168.29 (7)O7—C16—C14112.85 (18)
O3ii—Cu2—N1174.37 (6)N1—C17—C18122.0 (2)
O1—Cu2—N188.24 (6)N1—C17—H17119.0
N2—Cu2—N181.94 (7)C18—C17—H17119.0
O3ii—Cu2—O587.08 (6)C19—C18—C17119.6 (2)
O1—Cu2—O591.79 (6)C19—C18—H18120.2
N2—Cu2—O595.92 (6)C17—C18—H18120.2
N1—Cu2—O598.46 (6)C18—C19—C20120.2 (2)
O2—C1—O1122.29 (17)C18—C19—H19119.9
O2—C1—C2119.67 (16)C20—C19—H19119.9
O1—C1—C2118.02 (17)C19—C20—C28116.6 (2)
C7—C2—C3119.32 (17)C19—C20—C21125.7 (2)
C7—C2—C1120.71 (17)C28—C20—C21117.8 (2)
C3—C2—C1119.89 (17)C22—C21—C20121.9 (2)
C4—C3—C2119.93 (18)C22—C21—H21119.0
C4—C3—H3120.0C20—C21—H21119.0
C2—C3—H3120.0C21—C22—C23121.3 (2)
C3—C4—C5120.5 (2)C21—C22—H22119.3
C3—C4—H4119.7C23—C22—H22119.3
C5—C4—H4119.7C27—C23—C24116.2 (2)
C6—C5—C4120.24 (19)C27—C23—C22118.5 (2)
C6—C5—H5119.9C24—C23—C22125.3 (2)
C4—C5—H5119.9C25—C24—C23120.3 (2)
C5—C6—C7119.43 (17)C25—C24—H24119.8
C5—C6—C8120.12 (17)C23—C24—H24119.8
C7—C6—C8120.41 (17)C24—C25—C26119.6 (2)
C6—C7—C2120.50 (18)C24—C25—H25120.2
C6—C7—H7119.7C26—C25—H25120.2
C2—C7—H7119.7N2—C26—C25122.1 (2)
O4—C8—O3126.40 (18)N2—C26—H26118.9
O4—C8—C6118.12 (17)C25—C26—H26118.9
O3—C8—C6115.48 (18)N2—C27—C23123.3 (2)
O5—C9—O6123.92 (17)N2—C27—C28116.57 (17)
O5—C9—C10119.67 (17)C23—C27—C28120.1 (2)
O6—C9—C10116.40 (15)N1—C28—C20123.2 (2)
C15—C10—C11118.97 (17)N1—C28—C27116.50 (17)
C15—C10—C9120.43 (16)C20—C28—C27120.31 (19)
C11—C10—C9120.43 (16)C17—N1—C28118.42 (17)
C12—C11—C10120.60 (18)C17—N1—Cu2129.29 (14)
C12—C11—H11119.7C28—N1—Cu2111.69 (14)
C10—C11—H11119.7C26—N2—C27118.37 (18)
C11—C12—C13120.21 (19)C26—N2—Cu2129.40 (15)
C11—C12—H12119.9C27—N2—Cu2112.03 (14)
C13—C12—H12119.9C1—O1—Cu2129.14 (13)
C12—C13—C14119.75 (19)C1—O2—Cu1110.19 (11)
C12—C13—H13120.1C8—O3—Cu2ii134.22 (14)
C14—C13—H13120.1C9—O5—Cu2129.50 (12)
C15—C14—C13119.68 (18)C9—O6—Cu1112.10 (11)
C15—C14—C16118.41 (18)C16—O7—H7A109.5
C13—C14—C16121.91 (18)
O2—C1—C2—C722.0 (3)C19—C20—C28—C27179.90 (19)
O1—C1—C2—C7159.56 (17)C21—C20—C28—C270.7 (3)
O2—C1—C2—C3161.19 (19)N2—C27—C28—N12.8 (3)
O1—C1—C2—C317.2 (3)C23—C27—C28—N1177.86 (17)
C7—C2—C3—C40.3 (3)N2—C27—C28—C20176.54 (18)
C1—C2—C3—C4177.1 (2)C23—C27—C28—C202.8 (3)
C2—C3—C4—C51.7 (4)C18—C17—N1—C282.1 (3)
C3—C4—C5—C61.1 (4)C18—C17—N1—Cu2168.21 (16)
C4—C5—C6—C71.0 (3)C20—C28—N1—C172.6 (3)
C4—C5—C6—C8176.8 (2)C27—C28—N1—C17178.15 (18)
C5—C6—C7—C22.4 (3)C20—C28—N1—Cu2169.34 (16)
C8—C6—C7—C2175.41 (16)C27—C28—N1—Cu29.9 (2)
C3—C2—C7—C61.8 (3)O1—Cu2—N1—C177.31 (18)
C1—C2—C7—C6174.98 (16)N2—Cu2—N1—C17179.07 (19)
C5—C6—C8—O4168.3 (2)O5—Cu2—N1—C1784.24 (18)
C7—C6—C8—O413.9 (3)O1—Cu2—N1—C28163.50 (13)
C5—C6—C8—O311.0 (3)N2—Cu2—N1—C2810.12 (13)
C7—C6—C8—O3166.82 (17)O5—Cu2—N1—C28104.95 (13)
O5—C9—C10—C15171.84 (17)C25—C26—N2—C270.5 (3)
O6—C9—C10—C156.6 (3)C25—C26—N2—Cu2174.86 (16)
O5—C9—C10—C113.4 (3)C23—C27—N2—C261.9 (3)
O6—C9—C10—C11178.12 (18)C28—C27—N2—C26178.76 (19)
C15—C10—C11—C120.1 (3)C23—C27—N2—Cu2173.43 (15)
C9—C10—C11—C12175.2 (2)C28—C27—N2—Cu25.9 (2)
C10—C11—C12—C130.7 (4)O3ii—Cu2—N2—C268.8 (2)
C11—C12—C13—C140.3 (4)O1—Cu2—N2—C26150.2 (3)
C12—C13—C14—C150.8 (3)N1—Cu2—N2—C26176.6 (2)
C12—C13—C14—C16178.7 (2)O5—Cu2—N2—C2678.90 (19)
C13—C14—C15—C101.6 (3)O3ii—Cu2—N2—C27165.84 (13)
C16—C14—C15—C10177.98 (17)O1—Cu2—N2—C2724.5 (4)
C11—C10—C15—C141.2 (3)N1—Cu2—N2—C278.70 (13)
C9—C10—C15—C14174.09 (17)O5—Cu2—N2—C27106.44 (13)
C15—C14—C16—O87.6 (3)O2—C1—O1—Cu2100.2 (2)
C13—C14—C16—O8172.9 (2)C2—C1—O1—Cu281.5 (2)
C15—C14—C16—O7174.78 (18)O3ii—Cu2—O1—C116.66 (17)
C13—C14—C16—O74.8 (3)N2—Cu2—O1—C1158.3 (3)
N1—C17—C18—C190.1 (4)N1—Cu2—O1—C1168.91 (17)
C17—C18—C19—C201.9 (4)O5—Cu2—O1—C170.49 (17)
C18—C19—C20—C281.4 (3)O1—C1—O2—Cu14.6 (2)
C18—C19—C20—C21177.7 (2)C2—C1—O2—Cu1177.06 (13)
C19—C20—C21—C22177.6 (2)O6i—Cu1—O2—C176.87 (13)
C28—C20—C21—C221.5 (3)O6—Cu1—O2—C1103.13 (13)
C20—C21—C22—C231.6 (4)O4—C8—O3—Cu2ii21.2 (3)
C21—C22—C23—C270.6 (3)C6—C8—O3—Cu2ii159.55 (13)
C21—C22—C23—C24179.8 (2)O6—C9—O5—Cu287.4 (2)
C27—C23—C24—C251.3 (3)C10—C9—O5—Cu291.0 (2)
C22—C23—C24—C25178.0 (2)O3ii—Cu2—O5—C934.20 (17)
C23—C24—C25—C260.8 (4)O1—Cu2—O5—C958.37 (17)
C24—C25—C26—N21.8 (4)N2—Cu2—O5—C9130.45 (17)
C24—C23—C27—N22.8 (3)N1—Cu2—O5—C9146.85 (17)
C22—C23—C27—N2176.6 (2)O5—C9—O6—Cu110.3 (2)
C24—C23—C27—C28177.90 (19)C10—C9—O6—Cu1168.13 (12)
C22—C23—C27—C282.8 (3)O2i—Cu1—O6—C984.72 (13)
C19—C20—C28—N10.8 (3)O2—Cu1—O6—C995.28 (13)
C21—C20—C28—N1179.97 (19)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O4iii0.821.732.539 (2)170
Symmetry code: (iii) x, y, z+2.

Experimental details

Crystal data
Chemical formula[Cu3(C8H4O4)2(C8H5O4)2(C10H8N2)2]
Mr1209.5
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.383 (1), 10.659 (1), 11.754 (1)
α, β, γ (°)83.147 (1), 86.191 (1), 71.134 (1)
V3)1221.6 (2)
Z1
Radiation typeMo Kα
µ (mm1)1.38
Crystal size (mm)0.37 × 0.32 × 0.23
Data collection
DiffractometerBruker SMART APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.631, 0.738
No. of measured, independent and
observed [I > 2σ(I)] reflections
9575, 4741, 4241
Rint0.063
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.089, 1.09
No. of reflections4741
No. of parameters358
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.35

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—O61.923 (1)Cu2—N22.008 (2)
Cu1—O22.010 (1)Cu2—N12.014 (2)
Cu2—O3i1.935 (1)Cu2—O52.278 (1)
Cu2—O11.951 (1)
O6—Cu1—O2ii92.30 (6)N2—Cu2—N181.94 (7)
O6—Cu1—O287.70 (6)O1—Cu2—O591.79 (6)
O3i—Cu2—O192.66 (6)N1—Cu2—O598.46 (6)
O1—Cu2—N2168.29 (7)
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O4iii0.821.732.539 (2)169.5
Symmetry code: (iii) x, y, z+2.
 

Acknowledgements

This work was supported by the Shanghai Municipal Education Commission, Project Nos. 2008068, 2008080.

References

First citationAmabilino, D. B. & Stoddart, J. F. (1995). Chem. Rev. 95, 2725.  CrossRef Web of Science Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHan, Z. B., Cheng, X. N. & Chen, X. M. (2005). Cryst. Growth Des. 5, 695–700.  Web of Science CSD CrossRef CAS Google Scholar
First citationHan, Z. B., He, Y. K., Ge, C. H., Ribas, J. & Xu, L. (2007). Dalton Trans. pp. 3020–3024.  Web of Science CSD CrossRef Google Scholar
First citationHan, Z. B., He, Y. K., Tong, M. L., Song, Y. J., Song, X. M. & Yang, L. G. (2008). CrystEngComm, 10, 1070–1073.  Web of Science CrossRef CAS Google Scholar
First citationHe, Y. K. & Han, Z. B. (2007). Inorg. Chem. Commun. 10, 1523–1526.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Y., Han, Z. B., He, Y. K. & Yang, L. G. (2007). Chem. Commun. pp. 4107-4109.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1574-m1575
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds