metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1612-m1613

Tetra­kis[μ-2-(3-phen­oxy­phen­yl)propionato-κ2O:O′]bis­­[(di­methyl­formamide-κO)copper(II)]

aDepartamentode Química, Universidad Nacional del Sur, Av. Alem 1253, B8000CPB, Bahía Blanca, Argentina, bCrystallography, Solid State and Materials Laboratory (Cryssmat-Lab), DETEMA, Facultad de Química, Universidad de la República, CC 1157, 11800 Montevideo, Uruguay, and cCentro NanoMat, Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, 91000, Canelones, Uruguay
*Correspondence e-mail: rfaccio@fq.edu.uy

(Received 14 October 2008; accepted 19 November 2008; online 26 November 2008)

The title compound, [Cu2(C15H13O3)4(C3H7NO)2], is formed by the chelate coordination of four racemic fenoprofenate (fenoprofenate is 2,3-phenoxyphenyl propionate) anions and two dimethyl­formamide mol­ecules to two copper(II) ions, building a paddle-wheel dinuclear mol­ecule. The distorted square-pyramidal coordination of each CuII atom is made up of four O atoms of the four fenoprofenate units and another O atom from a dimethyl­formamide mol­ecule. The two enanti­omeric forms of the fenoprofenate anions are present in the complex, in an optically inactive centrosymmetric arrangement.

Related literature

For the properties of fenoprofen, see: Brogden et al. (1977[Brogden, R. N., Pinder, R. M., Speight, T. M. & Avery, G. S. (1977). Drugs, 13, 241-265.]); Nickander et al. (1977[Nickander, R., Marshall, W., Emmerson, J. L., Todd, G. C., McMahon, R. & Culp, H. W. (1977). Pharmacol. Biochem. Prop. Drug. Subst. 1, 183-213.]); Weder et al. (2002[Weder, J. E., Dillon, C. T., Hambley, T. W., Kennedy, B. J., Lay, P. A., Biffin, J. R., Regtop, H. L. & Davies, N. M. (2002). Coord. Chem. Rev. 232, 95-126.]). For fenoprofen structures, see: Hamilton & Chen (1988a[Hamilton, J. A. & Chen, L. (1988a). J. Am. Chem. Soc. 110, 4379-4391.],b[Hamilton, J. A. & Chen, L. (1988b). J. Am. Chem. Soc. 110, 5833-5841.]); Stephenson & Diseroad (2000[Stephenson, G. A. & Diseroad, B. A. (2000). Int. J. Pharm. 198, 167-177.]); Weder et al. (2002[Weder, J. E., Dillon, C. T., Hambley, T. W., Kennedy, B. J., Lay, P. A., Biffin, J. R., Regtop, H. L. & Davies, N. M. (2002). Coord. Chem. Rev. 232, 95-126.]); Zhu et al. (2001[Zhu, H., Xu, J., Varlashkin, P., Long, S. & Kidd, C. (2001). J. Pharm. Sci. 90, 845-859.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C15H13O3)4(C3H7NO)2]

  • Mr = 1238.29

  • Monoclinic, P 21 /c

  • a = 11.142 (8) Å

  • b = 11.580 (8) Å

  • c = 23.891 (6) Å

  • β = 99.85 (6)°

  • V = 3037 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 293 (2) K

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Rigaku AFC-7S diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.862, Tmax = 0.927

  • 8818 measured reflections

  • 6969 independent reflections

  • 4101 reflections with I > 2σ(I)

  • Rint = 0.091

  • 3 standard reflections every 150 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.200

  • S = 1.02

  • 6969 reflections

  • 381 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.54 e Å−3

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993[Molecular Structure Corporation (1993). MSC/AFC Diffractometer Control Software. MSC, The Woodlands, Texas, USA.]); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: MSC/AFC Diffractometer Control Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Fenoprofen[2-(3-phenoxyphenyl)propionic acid] is a non steroidal anti-inflammatory, antipyretic and analgesic drug (Nickander et al., 1977; Brogden et al., 1977). Its crystalline structure as a pure compound is not known. The crystal structures of the inclusion complexes of β-cyclodextrin with racemic fenoprofen and its enantiomerically pure forms have been reported: β-cyclodextrin(RS)-fenoprofen clathrate hydrate, β-cyclodextrin (R)-(-)-fenoprofen clathratehydrate, and β-cyclodextrin (S)-(+)-fenoprofen clathrate hydrate (Hamilton & Chen, 1988a,1988b).

Little is known about chemical structures of fenoprofen salts and complexes. Only the crystal structures of sodium fenoprofenate dihydrate (Stephenson & Diseroad, 2000) and calcium fenoprofenate monohydrate (Zhu et al., 2001) have been reported. On the other hand, the complexes of copper(II) with other nonsteroidal anti-inflammatory drugs (NSAIDs) have been widely studied because they have enhanced anti-inflammatory activity and reduced gastrointestinal toxicity compared with their uncomplexed parent drugs (Weder et al., 2002).

Aiming to contribute to the knowledge of new fenoprofen coordination compounds of biological interest, we report in this paper the crystal structure of the complex Cu2(Fen)4(DMF)2(Fen: fenoprofenate anion, C15H13O3-; DMF: dimethylformamide).

Each Cu(II) ion in the dinuclear complex (Fig. 1)has four oxygen atoms from different carboxylate groups in equatorial positions, with a Cu···O range of 1.95–1.96 Å. The square pyramidal geometry is completed with an oxygen atom from the DMF molecule with a Cu—O distance of 2.1634 (39) Å. The four carboxylate bridges linking copper ions form the classical paddle-wheel type cage with a Cu···Cu distance of 2.6309 (20) Å. The intermetallic separation is in the range of reported distances for other dicopper(II) tetracarboxilates (Weder et al., 2002). The two enantiomeric forms of the fenoprofenate anion are present in the complex, in an optically inactive centrosymmetric arrangement, where atoms C12 and C32 (shown in Fig. 1) correspond to the R-enantiomer.

There are no conventional hydrogen bonds in the structure; while weak π···π and C—H···πi interactions were identified. In the case of the π···π interactions, one of them corresponds to symmetry related phenyl rings (C14—C19, centroid Cg1)with a Cg1-Cg1i distance of 3.620 (4) Å [symmetry code (i) = 1 - x, 3 - y, -z] , a dihedral angle α=0°, an a slippage angle β = 18.22° .

The other intermolecular phenyl interaction corresponds to C20—C25 (centroid Cg2) and C40—C45 (centroid Cg3)rings, the Cg2-Cg3ii distance being 4.132 (6) Å [symmetry code (ii) = 1 - x, 1/2 + y,1/2 - z], with a dihedral angle α= 22.1 (4)°, and β=23.63°.

Additionally C14—C19 and C40—C45 rings are involved in intermolecular C—H···πi interactions. The C22—H22···Cg1iii angle is 160° [symmetry code (iii) = 2 - x, 3 - y, -z] and the H22···Cg1iiidistance is 2.78 Å. The C24—H24···Cg3iv angle is 147° [symmetry code (iv) = 1 + x,y, z] and the H24···Cg3iv distance is 2.73 Å.

Although the steric demand from the benzyl groups avoids significant contact between neighbour binuclear units, the intermolecular interactions form a weak two-dimensional network parallel to the (100) plane (Fig. 2).

Related literature top

For the properties of fenoprofen, see: Brogden et al. (1977); Nickander et al. (1977); Weder et al., 2002. For fenoprofen structures, see: Hamilton & Chen (1988a,b); Stephenson & Diseroad (2000); Weder et al. (2002); Zhu et al. (2001).

Experimental top

A 2.0 mLDMF solution containing 0.0810 g (0.150 mmol) of racemic fenoprofen calcium salthydrate (Ca(Fen)2.H2O) was added to a 3.0 ml e thanolicsolution of 0.0170 g (0.100 mmol) CuCl2.2H2O.The resulting green solution was stirred at room temperature for about one hourand reposed all over the night. Then an excess of water was added leading tothe immediate precipitation of the complex, which gradually recrystallized atroom temperature after three weeks. The bright green crystals obtained werefiltered, washed with water and air dried (Yield: 43%). Analysis calculated for C66H66Cu2N2O14:C 64.02, H 5.37, N 2.26%. Found: C 63.5, H 4.9, N, 1.7%. FTIR(cm-1): 1668 (DMF), 1614 (asym. stretch.COO), 1484 (sym. stretch. COO). UV-visible (DMF, λmax/nm): 705.

Refinement top

The H atoms were positionedgeometrically and treated as riding with C—H = 0.93–0.98 Å. H atoms bonded totertiary C atoms were refined with Uiso(H)=1.2Ueq(C),while for the rest Uiso(H)=1.5Ueq(C). Additionally, the idealized H atoms from the DMF's methyl groups were allowed to ride on the immediate Catoms. The anisotropic displacements ellipsoids of atoms O13 and O33 displayeda marked elongation in the normal direction to both O—C bond directions,indicating a possible conformation disorder. It can be related with thetendency of higher values of Ueq for the outermost phenyl carbonatoms.

The position of the highest residual electron-density peak is located at 1.67 Åfrom N52.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993); cell refinement: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993); data reduction: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The structure of the Cu2(C15H13O3)4(C3H7ON)2complex with the labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of the packing scheme, normal to the [100] direction.
Tetrakis[µ-2-(3-phenoxyphenyl)propionato- κ2O:O']bis[(dimethylformamide-κO)copper(II)] top
Crystal data top
[Cu2(C15H13O3)4(C3H7NO)2]F(000) = 1292
Mr = 1238.29Dx = 1.354 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 50 reflections
a = 11.142 (8) Åθ = 5.1–13.6°
b = 11.580 (8) ŵ = 0.77 mm1
c = 23.891 (6) ÅT = 293 K
β = 99.85 (6)°Plate, green
V = 3037 (3) Å30.20 × 0.20 × 0.10 mm
Z = 2
Data collection top
Rigaku AFC-7S
diffractometer
4101 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.091
Graphite monochromatorθmax = 27.5°, θmin = 2.3°
θ/2θ scansh = 114
Absorption correction: ψ scan
(North et al., 1968)
k = 115
Tmin = 0.862, Tmax = 0.927l = 3130
8818 measured reflections3 standard reflections every 150 reflections
6969 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.200H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0755P)2 + 0.3252P]
where P = (Fo2 + 2Fc2)/3
6969 reflections(Δ/σ)max < 0.001
381 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
[Cu2(C15H13O3)4(C3H7NO)2]V = 3037 (3) Å3
Mr = 1238.29Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.142 (8) ŵ = 0.77 mm1
b = 11.580 (8) ÅT = 293 K
c = 23.891 (6) Å0.20 × 0.20 × 0.10 mm
β = 99.85 (6)°
Data collection top
Rigaku AFC-7S
diffractometer
4101 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.091
Tmin = 0.862, Tmax = 0.9273 standard reflections every 150 reflections
8818 measured reflections intensity decay: none
6969 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.200H-atom parameters constrained
S = 1.02Δρmax = 0.51 e Å3
6969 reflectionsΔρmin = 0.54 e Å3
381 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.5569 (6)1.1752 (5)0.0520 (2)0.0417 (15)
C120.5867 (6)1.2834 (6)0.0844 (3)0.0546 (17)
H120.51031.30660.10840.066*
C130.6736 (8)1.2579 (7)0.1238 (3)0.093 (3)
H13A0.64401.19360.14760.139*
H13B0.75201.23930.10220.139*
H13C0.68081.32440.14700.139*
C140.6237 (5)1.3829 (5)0.0446 (2)0.0391 (13)
C150.5925 (5)1.4966 (5)0.0623 (3)0.0511 (17)
H150.54771.50900.09830.061*
C160.6263 (6)1.5889 (6)0.0277 (3)0.0599 (19)
H160.60591.66310.04090.072*
C170.6902 (6)1.5738 (6)0.0264 (4)0.061 (2)
H170.71331.63680.04990.073*
C180.7191 (5)1.4632 (6)0.0449 (3)0.0501 (15)
C190.6876 (5)1.3686 (5)0.0097 (3)0.0413 (14)
H190.70981.29480.02300.050*
C200.9021 (5)1.4495 (5)0.1130 (3)0.0461 (15)
C210.9731 (6)1.4870 (7)0.0754 (3)0.066 (2)
H210.93751.51240.03950.079*
C221.0966 (6)1.4868 (9)0.0911 (3)0.095 (3)
H221.14531.50980.06520.114*
C231.1509 (7)1.4529 (8)0.1453 (4)0.088 (3)
H231.23531.45400.15570.106*
C241.0802 (7)1.4184 (7)0.1828 (3)0.071 (2)
H241.11591.39530.21910.085*
C250.9548 (6)1.4174 (6)0.1672 (3)0.0572 (17)
H250.90611.39510.19330.069*
C310.5588 (6)1.0976 (6)0.0955 (2)0.0477 (15)
C320.5866 (6)1.1560 (7)0.1538 (3)0.062 (2)
H320.55091.23350.14900.075*
C330.7150 (8)1.1719 (9)0.1752 (3)0.109 (4)
H33A0.75151.21410.14790.163*
H33B0.75371.09790.18170.163*
H33C0.72501.21420.21020.163*
C340.5154 (6)1.0908 (7)0.1932 (3)0.0566 (17)
C350.3948 (6)1.1190 (7)0.1930 (3)0.0602 (19)
H350.35811.17530.16790.072*
C360.3279 (6)1.0659 (8)0.2289 (3)0.071 (2)
C370.3784 (8)0.9814 (9)0.2655 (3)0.092 (3)
H370.33380.94700.29060.111*
C380.4965 (8)0.9486 (9)0.2645 (4)0.097 (3)
H380.53120.88890.28780.116*
C390.5636 (7)1.0035 (7)0.2291 (3)0.074 (2)
H390.64390.98090.22950.088*
C400.1689 (6)1.1642 (7)0.2655 (3)0.0594 (18)
C410.2497 (7)1.2272 (7)0.3036 (3)0.074 (2)
H410.33311.22240.30370.089*
C420.2046 (10)1.2973 (8)0.3415 (3)0.095 (3)
H420.25781.34060.36760.114*
C430.0822 (11)1.3038 (10)0.3410 (4)0.108 (4)
H430.05221.35190.36650.129*
C440.0026 (8)1.2392 (9)0.3027 (4)0.088 (3)
H440.08061.24250.30310.106*
C450.0460 (7)1.1709 (7)0.2645 (3)0.068 (2)
H450.00741.12900.23790.082*
C510.8413 (6)0.9038 (6)0.0378 (3)0.0563 (17)
H510.79590.93920.06940.068*
C531.0207 (7)0.8041 (8)0.0057 (3)0.094 (3)
H53A1.09980.83900.01480.141*
H53B1.02930.72460.00440.141*
H53C0.98040.80860.03800.141*
C541.0004 (8)0.8783 (9)0.0945 (3)0.098 (3)
H54A0.94250.91560.12310.147*
H54B1.01990.80340.10770.147*
H54C1.07320.92410.08660.147*
Cu10.61251 (6)0.96206 (6)0.00433 (3)0.0391 (2)
O110.6419 (4)1.1044 (4)0.03595 (19)0.0546 (12)
O120.4481 (4)1.1667 (3)0.04371 (17)0.0468 (10)
O130.7767 (4)1.4439 (4)0.10133 (18)0.0607 (13)
O310.6426 (4)1.0452 (4)0.07660 (17)0.0529 (10)
O320.4517 (4)1.1100 (4)0.06887 (18)0.0536 (11)
O330.2043 (4)1.0911 (6)0.2244 (2)0.095 (2)
O510.7945 (4)0.8967 (4)0.00567 (19)0.0579 (12)
N520.9482 (5)0.8656 (5)0.0425 (3)0.0612 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.064 (4)0.032 (3)0.029 (3)0.018 (3)0.009 (3)0.001 (2)
C120.063 (4)0.052 (4)0.049 (4)0.013 (3)0.011 (3)0.008 (3)
C130.138 (8)0.065 (5)0.084 (6)0.028 (6)0.046 (6)0.014 (5)
C140.027 (3)0.038 (3)0.053 (4)0.001 (3)0.009 (3)0.007 (3)
C150.026 (3)0.048 (4)0.079 (5)0.000 (3)0.008 (3)0.017 (3)
C160.050 (4)0.038 (4)0.092 (6)0.001 (3)0.013 (4)0.009 (4)
C170.055 (4)0.040 (4)0.092 (6)0.001 (3)0.025 (4)0.009 (4)
C180.029 (3)0.057 (4)0.068 (4)0.007 (4)0.019 (3)0.004 (4)
C190.025 (3)0.038 (3)0.062 (4)0.003 (3)0.011 (3)0.009 (3)
C200.031 (3)0.046 (4)0.061 (4)0.009 (3)0.007 (3)0.004 (3)
C210.041 (3)0.092 (6)0.061 (4)0.011 (4)0.001 (3)0.014 (4)
C220.043 (4)0.170 (10)0.074 (5)0.021 (5)0.018 (4)0.034 (6)
C230.045 (4)0.123 (8)0.088 (6)0.001 (5)0.010 (4)0.024 (6)
C240.066 (5)0.070 (5)0.070 (5)0.002 (4)0.005 (4)0.022 (4)
C250.059 (4)0.057 (4)0.057 (4)0.011 (3)0.011 (3)0.001 (3)
C310.058 (4)0.053 (4)0.033 (3)0.020 (4)0.012 (3)0.005 (3)
C320.058 (4)0.084 (5)0.048 (4)0.020 (4)0.017 (3)0.020 (4)
C330.113 (8)0.145 (9)0.067 (6)0.066 (7)0.013 (5)0.019 (6)
C340.061 (4)0.069 (4)0.039 (4)0.009 (4)0.005 (3)0.013 (3)
C350.065 (4)0.078 (5)0.036 (4)0.000 (4)0.002 (3)0.008 (3)
C360.052 (4)0.111 (7)0.050 (4)0.011 (4)0.009 (4)0.013 (4)
C370.074 (5)0.141 (9)0.065 (5)0.002 (6)0.023 (4)0.036 (6)
C380.076 (6)0.124 (9)0.090 (6)0.014 (6)0.016 (5)0.032 (6)
C390.054 (4)0.095 (6)0.076 (5)0.007 (4)0.021 (4)0.002 (5)
C400.050 (4)0.074 (5)0.054 (4)0.002 (4)0.006 (3)0.009 (4)
C410.064 (5)0.091 (6)0.062 (5)0.000 (5)0.004 (4)0.007 (5)
C420.117 (8)0.097 (7)0.063 (6)0.011 (6)0.007 (5)0.003 (5)
C430.136 (9)0.123 (9)0.072 (6)0.044 (8)0.040 (7)0.008 (6)
C440.082 (6)0.112 (8)0.075 (6)0.019 (6)0.023 (5)0.012 (6)
C450.059 (4)0.081 (5)0.067 (5)0.000 (4)0.015 (4)0.005 (4)
C510.043 (4)0.063 (4)0.060 (4)0.002 (4)0.002 (3)0.002 (4)
C530.063 (5)0.108 (7)0.111 (7)0.041 (5)0.015 (5)0.015 (6)
C540.091 (6)0.122 (8)0.092 (6)0.009 (6)0.047 (5)0.012 (6)
Cu10.0343 (3)0.0397 (4)0.0429 (4)0.0012 (4)0.0060 (3)0.0011 (4)
O110.037 (2)0.047 (3)0.081 (3)0.001 (2)0.013 (2)0.012 (2)
O120.043 (2)0.037 (2)0.061 (3)0.0041 (19)0.010 (2)0.013 (2)
O130.039 (2)0.085 (4)0.058 (3)0.014 (2)0.010 (2)0.009 (3)
O310.049 (2)0.058 (3)0.051 (2)0.008 (2)0.004 (2)0.013 (2)
O320.046 (2)0.062 (3)0.052 (3)0.004 (2)0.003 (2)0.011 (2)
O330.056 (3)0.147 (6)0.082 (4)0.005 (3)0.009 (3)0.042 (4)
O510.042 (2)0.071 (3)0.062 (3)0.018 (2)0.014 (2)0.004 (3)
N520.038 (3)0.069 (4)0.080 (4)0.008 (3)0.022 (3)0.017 (3)
Geometric parameters (Å, º) top
C11—O111.261 (7)C34—C351.382 (9)
C11—O121.265 (7)C35—C361.375 (9)
C11—C121.538 (8)C35—H350.9300
C12—C131.491 (9)C36—C371.368 (11)
C12—C141.505 (8)C36—O331.393 (8)
C12—H120.9800C37—C381.374 (11)
C13—H13A0.9600C37—H370.9300
C13—H13B0.9600C38—C391.378 (10)
C13—H13C0.9600C38—H380.9300
C14—C191.381 (8)C39—H390.9300
C14—C151.407 (8)C40—C451.368 (9)
C15—C161.364 (9)C40—C411.375 (10)
C15—H150.9300C40—O331.403 (8)
C16—C171.377 (10)C41—C421.374 (11)
C16—H160.9300C41—H410.9300
C17—C181.375 (9)C42—C431.364 (12)
C17—H170.9300C42—H420.9300
C18—C191.388 (8)C43—C441.379 (12)
C18—O131.408 (7)C43—H430.9300
C19—H190.9300C44—C451.357 (10)
C20—C211.364 (9)C44—H440.9300
C20—O131.379 (7)C45—H450.9300
C20—C251.379 (8)C51—O511.241 (7)
C21—C221.364 (9)C51—N521.293 (8)
C21—H210.9300C51—H510.9300
C22—C231.388 (10)C53—N521.472 (9)
C22—H220.9300C53—H53A0.9600
C23—C241.351 (10)C53—H53B0.9600
C23—H230.9300C53—H53C0.9600
C24—C251.383 (10)C54—N521.465 (8)
C24—H240.9300C54—H54A0.9600
C25—H250.9300C54—H54B0.9600
C31—O311.260 (7)C54—H54C0.9600
C31—O321.260 (7)Cu1—O12i1.945 (4)
C31—C321.533 (8)Cu1—O311.955 (4)
C32—C331.446 (10)Cu1—O32i1.959 (4)
C32—C341.530 (9)Cu1—O111.964 (4)
C32—H320.9800Cu1—O512.160 (4)
C33—H33A0.9600Cu1—Cu1i2.631 (2)
C33—H33B0.9600O12—Cu1i1.945 (4)
C33—H33C0.9600O32—Cu1i1.959 (4)
C34—C391.373 (10)
O11—C11—O12126.3 (5)C34—C35—H35119.3
O11—C11—C12117.8 (5)C37—C36—C35120.8 (7)
O12—C11—C12115.9 (6)C37—C36—O33119.5 (7)
C13—C12—C14114.4 (6)C35—C36—O33119.5 (7)
C13—C12—C11112.1 (6)C36—C37—C38118.5 (8)
C14—C12—C11111.4 (5)C36—C37—H37120.8
C13—C12—H12106.1C38—C37—H37120.8
C14—C12—H12106.1C37—C38—C39120.4 (8)
C11—C12—H12106.1C37—C38—H38119.8
C12—C13—H13A109.5C39—C38—H38119.8
C12—C13—H13B109.5C34—C39—C38121.8 (7)
H13A—C13—H13B109.5C34—C39—H39119.1
C12—C13—H13C109.5C38—C39—H39119.1
H13A—C13—H13C109.5C45—C40—C41121.4 (8)
H13B—C13—H13C109.5C45—C40—O33115.0 (7)
C19—C14—C15117.0 (6)C41—C40—O33123.6 (7)
C19—C14—C12122.9 (5)C40—C41—C42118.6 (8)
C15—C14—C12120.0 (5)C40—C41—H41120.7
C16—C15—C14121.6 (6)C42—C41—H41120.7
C16—C15—H15119.2C43—C42—C41120.2 (9)
C14—C15—H15119.2C43—C42—H42119.9
C15—C16—C17120.9 (7)C41—C42—H42119.9
C15—C16—H16119.5C42—C43—C44120.3 (9)
C17—C16—H16119.5C42—C43—H43119.8
C18—C17—C16118.4 (7)C44—C43—H43119.8
C18—C17—H17120.8C45—C44—C43119.9 (9)
C16—C17—H17120.8C45—C44—H44120.0
C17—C18—C19121.3 (6)C43—C44—H44120.0
C17—C18—O13119.9 (7)C44—C45—C40119.5 (8)
C19—C18—O13118.7 (6)C44—C45—H45120.2
C14—C19—C18120.7 (6)C40—C45—H45120.2
C14—C19—H19119.6O51—C51—N52125.2 (7)
C18—C19—H19119.6O51—C51—H51117.4
C21—C20—O13124.3 (6)N52—C51—H51117.4
C21—C20—C25120.1 (6)N52—C53—H53A109.5
O13—C20—C25115.5 (5)N52—C53—H53B109.5
C22—C21—C20119.3 (7)H53A—C53—H53B109.5
C22—C21—H21120.3N52—C53—H53C109.5
C20—C21—H21120.3H53A—C53—H53C109.5
C21—C22—C23121.1 (7)H53B—C53—H53C109.5
C21—C22—H22119.5N52—C54—H54A109.5
C23—C22—H22119.5N52—C54—H54B109.5
C24—C23—C22119.4 (7)H54A—C54—H54B109.5
C24—C23—H23120.3N52—C54—H54C109.5
C22—C23—H23120.3H54A—C54—H54C109.5
C23—C24—C25120.0 (7)H54B—C54—H54C109.5
C23—C24—H24120.0O12i—Cu1—O3188.38 (18)
C25—C24—H24120.0O12i—Cu1—O32i90.05 (18)
C20—C25—C24119.9 (6)O31—Cu1—O32i168.30 (17)
C20—C25—H25120.0O12i—Cu1—O11168.87 (17)
C24—C25—H25120.0O31—Cu1—O1190.08 (19)
O31—C31—O32124.7 (5)O32i—Cu1—O1189.23 (19)
O31—C31—C32119.4 (6)O12i—Cu1—O5197.32 (18)
O32—C31—C32115.8 (6)O31—Cu1—O5198.09 (18)
C33—C32—C34115.6 (6)O32i—Cu1—O5193.61 (18)
C33—C32—C31114.3 (6)O11—Cu1—O5193.81 (17)
C34—C32—C31107.2 (5)O12i—Cu1—Cu1i83.62 (13)
C33—C32—H32106.4O31—Cu1—Cu1i85.52 (14)
C34—C32—H32106.4O32i—Cu1—Cu1i82.78 (14)
C31—C32—H32106.4O11—Cu1—Cu1i85.28 (13)
C32—C33—H33A109.5O51—Cu1—Cu1i176.28 (13)
C32—C33—H33B109.5C11—O11—Cu1121.0 (4)
H33A—C33—H33B109.5C11—O12—Cu1i123.8 (4)
C32—C33—H33C109.5C20—O13—C18117.8 (5)
H33A—C33—H33C109.5C31—O31—Cu1121.9 (4)
H33B—C33—H33C109.5C31—O32—Cu1i124.8 (4)
C39—C34—C35116.9 (7)C36—O33—C40117.7 (6)
C39—C34—C32124.0 (7)C51—O51—Cu1119.5 (4)
C35—C34—C32119.1 (7)C51—N52—C54123.0 (7)
C36—C35—C34121.5 (7)C51—N52—C53119.1 (6)
C36—C35—H35119.3C54—N52—C53117.8 (6)
O11—C11—C12—C1337.9 (8)C32—C34—C39—C38178.9 (7)
O12—C11—C12—C13142.6 (6)C37—C38—C39—C341.1 (14)
O11—C11—C12—C1491.8 (7)C45—C40—C41—C420.5 (12)
O12—C11—C12—C1487.8 (6)O33—C40—C41—C42179.1 (7)
C13—C12—C14—C1994.5 (7)C40—C41—C42—C430.1 (13)
C11—C12—C14—C1933.9 (8)C41—C42—C43—C440.5 (15)
C13—C12—C14—C1585.9 (8)C42—C43—C44—C451.5 (15)
C11—C12—C14—C15145.7 (6)C43—C44—C45—C401.9 (13)
C19—C14—C15—C161.5 (9)C41—C40—C45—C441.5 (12)
C12—C14—C15—C16178.8 (6)O33—C40—C45—C44179.9 (7)
C14—C15—C16—C171.5 (10)O12—C11—O11—Cu11.8 (8)
C15—C16—C17—C180.1 (10)C12—C11—O11—Cu1178.7 (4)
C16—C17—C18—C191.5 (9)O12i—Cu1—O11—C114.9 (13)
C16—C17—C18—O13175.5 (5)O31—Cu1—O11—C1186.9 (5)
C15—C14—C19—C180.1 (8)O32i—Cu1—O11—C1181.4 (5)
C12—C14—C19—C18179.7 (5)O51—Cu1—O11—C11175.0 (5)
C17—C18—C19—C141.5 (8)O11—C11—O12—Cu1i0.9 (8)
O13—C18—C19—C14175.6 (4)C12—C11—O12—Cu1i179.6 (4)
O13—C20—C21—C22178.8 (8)C21—C20—O13—C189.0 (10)
C25—C20—C21—C223.3 (12)C25—C20—O13—C18173.0 (6)
C20—C21—C22—C232.2 (14)C17—C18—O13—C2087.2 (7)
C21—C22—C23—C240.7 (15)C19—C18—O13—C2095.8 (6)
C22—C23—C24—C250.2 (14)O32—C31—O31—Cu15.8 (9)
C21—C20—C25—C242.8 (11)C32—C31—O31—Cu1176.9 (4)
O13—C20—C25—C24179.0 (7)O12i—Cu1—O31—C3181.3 (5)
C23—C24—C25—C201.3 (12)O32i—Cu1—O31—C311.1 (12)
O31—C31—C32—C3316.0 (10)O11—Cu1—O31—C3187.7 (5)
O32—C31—C32—C33161.6 (7)O51—Cu1—O31—C31178.4 (5)
O31—C31—C32—C34113.4 (7)O31—C31—O32—Cu1i6.3 (9)
O32—C31—C32—C3469.0 (8)C32—C31—O32—Cu1i176.2 (4)
C33—C32—C34—C3933.3 (11)C37—C36—O33—C4081.8 (10)
C31—C32—C34—C3995.4 (8)C35—C36—O33—C40103.9 (8)
C33—C32—C34—C35147.4 (7)C45—C40—O33—C36169.9 (7)
C31—C32—C34—C3584.0 (8)C41—C40—O33—C3611.5 (11)
C39—C34—C35—C362.9 (10)N52—C51—O51—Cu1178.4 (5)
C32—C34—C35—C36177.7 (6)O12i—Cu1—O51—C51136.1 (5)
C34—C35—C36—C371.2 (12)O31—Cu1—O51—C51134.5 (5)
C34—C35—C36—O33175.4 (7)O32i—Cu1—O51—C5145.6 (5)
C35—C36—C37—C381.8 (14)O11—Cu1—O51—C5143.9 (5)
O33—C36—C37—C38172.4 (8)O51—C51—N52—C54178.6 (7)
C36—C37—C38—C392.9 (15)O51—C51—N52—C532.8 (11)
C35—C34—C39—C381.8 (12)
Symmetry code: (i) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula[Cu2(C15H13O3)4(C3H7NO)2]
Mr1238.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.142 (8), 11.580 (8), 23.891 (6)
β (°) 99.85 (6)
V3)3037 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerRigaku AFC-7S
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.862, 0.927
No. of measured, independent and
observed [I > 2σ(I)] reflections
8818, 6969, 4101
Rint0.091
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.200, 1.02
No. of reflections6969
No. of parameters381
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.54

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), PLATON (Spek, 2003).

 

Acknowledgements

The authors thank PEDECIBA-Quimica Uruguay for financial support.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrogden, R. N., Pinder, R. M., Speight, T. M. & Avery, G. S. (1977). Drugs, 13, 241–265.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHamilton, J. A. & Chen, L. (1988a). J. Am. Chem. Soc. 110, 4379–4391.  CSD CrossRef CAS Web of Science Google Scholar
First citationHamilton, J. A. & Chen, L. (1988b). J. Am. Chem. Soc. 110, 5833–5841.  CSD CrossRef CAS Web of Science Google Scholar
First citationMolecular Structure Corporation (1993). MSC/AFC Diffractometer Control Software. MSC, The Woodlands, Texas, USA.  Google Scholar
First citationNickander, R., Marshall, W., Emmerson, J. L., Todd, G. C., McMahon, R. & Culp, H. W. (1977). Pharmacol. Biochem. Prop. Drug. Subst. 1, 183–213.  CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStephenson, G. A. & Diseroad, B. A. (2000). Int. J. Pharm. 198, 167–177.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWeder, J. E., Dillon, C. T., Hambley, T. W., Kennedy, B. J., Lay, P. A., Biffin, J. R., Regtop, H. L. & Davies, N. M. (2002). Coord. Chem. Rev. 232, 95–126.  Web of Science CrossRef CAS Google Scholar
First citationZhu, H., Xu, J., Varlashkin, P., Long, S. & Kidd, C. (2001). J. Pharm. Sci. 90, 845–859.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1612-m1613
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds