organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzyl N′-benzhydryl­idene­hydrazine­carbodi­thio­ate

aDepartment of Chemistry, Taishan University, 271021 Taian, Shandong, People's Republic of China
*Correspondence e-mail: bezhbx@163.com

(Received 4 November 2008; accepted 24 November 2008; online 29 November 2008)

In the title mol­ecule, C21H18N2S2, the C=N—N angle of 117.6 (2)° is significantly smaller than the ideal value of 120° expected for sp2-hybridized N atoms. This is probably a consequence of repulsion between the nitro­gen lone pairs and the adjacent N atom, as suggested in Zheng, Qiu, Lin & Liu [Acta Cryst. (2006), E62, o1913–o1914]. The two neighbouring benzene rings form a dihedral angle of 75.95 (3)° with each other, while subtending dihedral angles of 84.18 (3) and 8.44 (2)° with the third ring in the structure.

Related literature

For related literature on ligands derived from S-benzyl­dithio­carbazate (SBDTC), see: Ali et al. (2002[Ali, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B., Ali, A. M. & Manaf, A. (2002). J. Inorg. Biochem. 92, 141-148.], 2008[Ali, M. A., Baker, H. J. H. A., Mirza, A. H., Smith, S. J., Gahan, L. R. & Bernhardt, P. V. (2008). Polyhedron, 27, 71-79.]); Crouse et al. (2004[Crouse, K. A., Chew, K.-B., Tarafder, M. T. H., Kasbollah, A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2004). Polyhedron, 23, 161-168.]); Tarafder et al. (2001[Tarafder, M. T. H., Kasbollah, A., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2001). Polyhedron, 20, 2363-2370.], 2008[Tarafder, M. T. H., Islam, M. T., Islam, M. A. A. A. A., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, m416-m417.]); Zheng et al. (2006[Zheng, P.-W., Qiu, Q.-M., Lin, Y.-Y. & Liu, K.-F. (2006). Acta Cryst. E62, o1913-o1914.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C21H18N2S2

  • Mr = 362.49

  • Monoclinic, P 21 /c

  • a = 20.2903 (14) Å

  • b = 9.0951 (6) Å

  • c = 10.5818 (7) Å

  • β = 103.9240 (10)°

  • V = 1895.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 295 (2) K

  • 0.12 × 0.10 × 0.06 mm

Data collection
  • Bruker APEX2 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.967, Tmax = 0.983

  • 9776 measured reflections

  • 3363 independent reflections

  • 2191 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.116

  • S = 1.05

  • 3363 reflections

  • 214 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, the interesting coordination chemistry and increasingly relevant biomedical properties of ligands derived from S-benzyldithiocarbazate(SBDTC) have received much attention (Ali et al., 2002, 2008; Crouse et al., 2004; Tarafder et al., 2001, 2008). In order to search for new ligands derived from SBDTC, the title compound C21H18N2S2 (I) was synthesized and its crystal structure determined. Fig 1 shows a molecular diagram of (I), where bond lengths and angles are basically in normal ranges (Allen et al., 1987). The C=N bond length of 1.293 (3) Å(C9=N2) shows double-bond character. The C=N—N angle of 117.6 (2) ° is significantly smaller than the ideal value of 120 ° expected for sp2-hybridized N atoms. This is probably a consequence of repulsion between the nitrogen lone pairs and the adjacent N atom (Zheng et al., 2006). The C10—C15, C16—C21 benzene rings are oriented at 84.18 (3) °, 8.44 (2) ° with respect to the C1—C6 one. The dihedral angle formed by the C10—C15 and C16—C21 rings is 75.95 (3) °.

Related literature top

For related literature on ligands derived from S-benzyldithiocarbazate (SBDTC), see: Ali et al. (2002, 2008); Crouse et al. (2004); Tarafder et al. (2001, 2008); Zheng et al. (2006). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was synthesized by the reaction of Hydrazinecarbodithioic acid benzyl ester(1 mmol, 198.3 mg) with Diphenyl-methanone(1 mmol, 182.2 mg) in ethanol(15 ml) under reflux conditions (338 K) for 5 h. The solvent was removed and the solid product recrystallized from tetrahydrofuran. After six days yellow crystals suitable for X-ray diffraction study were obtained.

Refinement top

All H atoms were placed in idealized positions (C—H = 0.93— 0.97 Å, N—H = 0.86 Å) and refined as riding atoms. For those bound to C, Uiso(H) = 1.2 or 1.5Ueq(C). while for those bound to N, Uiso(H) = 1.2 Ueq(N).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level.
Benzyl N'-benzhydrylidenehydrazinecarbodithioate top
Crystal data top
C21H18N2S2F(000) = 760
Mr = 362.49Dx = 1.270 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1615 reflections
a = 20.2903 (14) Åθ = 3.0–22.7°
b = 9.0951 (6) ŵ = 0.29 mm1
c = 10.5818 (7) ÅT = 295 K
β = 103.924 (1)°Block, yellow
V = 1895.4 (2) Å30.12 × 0.10 × 0.06 mm
Z = 4
Data collection top
Bruker APEX2 CCD area-detector
diffractometer
3363 independent reflections
Radiation source: fine-focus sealed tube2191 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2424
Tmin = 0.967, Tmax = 0.983k = 1010
9776 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0462P)2 + 0.2919P]
where P = (Fo2 + 2Fc2)/3
3363 reflections(Δ/σ)max = 0.001
214 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C21H18N2S2V = 1895.4 (2) Å3
Mr = 362.49Z = 4
Monoclinic, P21/cMo Kα radiation
a = 20.2903 (14) ŵ = 0.29 mm1
b = 9.0951 (6) ÅT = 295 K
c = 10.5818 (7) Å0.12 × 0.10 × 0.06 mm
β = 103.924 (1)°
Data collection top
Bruker APEX2 CCD area-detector
diffractometer
3363 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2191 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.983Rint = 0.039
9776 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.05Δρmax = 0.22 e Å3
3363 reflectionsΔρmin = 0.23 e Å3
214 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.29194 (4)0.73862 (8)0.23650 (8)0.0593 (2)
S20.15831 (4)0.59677 (8)0.10325 (8)0.0636 (3)
N10.17341 (11)0.8548 (2)0.2139 (2)0.0539 (6)
H10.12990.86300.19090.065*
N20.21181 (11)0.9673 (2)0.2809 (2)0.0508 (6)
C10.39011 (8)0.5783 (2)0.1752 (2)0.0578 (8)
C20.41212 (13)0.6495 (2)0.0766 (2)0.0836 (10)
H20.38070.69090.00700.100*
C30.48112 (15)0.6589 (3)0.0820 (3)0.1024 (13)
H30.49580.70650.01600.123*
C40.52811 (9)0.5971 (3)0.1861 (3)0.1042 (14)
H40.57430.60340.18970.125*
C50.50611 (11)0.5259 (3)0.2847 (3)0.1084 (14)
H50.53760.48450.35430.130*
C60.43711 (12)0.5165 (3)0.2793 (2)0.0868 (11)
H60.42240.46890.34520.104*
C70.31560 (14)0.5689 (3)0.1698 (4)0.0709 (9)
H7A0.30650.48570.22040.085*
H7B0.28980.55660.08050.085*
C80.20349 (13)0.7318 (3)0.1840 (2)0.0475 (7)
C90.18138 (13)1.0901 (3)0.2909 (2)0.0450 (6)
C100.22361 (13)1.2075 (3)0.3651 (2)0.0449 (6)
C110.29263 (14)1.1870 (3)0.4165 (3)0.0603 (8)
H110.31291.09970.40000.072*
C120.33158 (15)1.2931 (3)0.4912 (3)0.0714 (9)
H120.37771.27700.52560.086*
C130.30214 (17)1.4240 (3)0.5153 (3)0.0718 (9)
H130.32841.49590.56640.086*
C140.23479 (16)1.4474 (3)0.4641 (3)0.0664 (8)
H140.21531.53620.47920.080*
C150.19518 (15)1.3404 (3)0.3898 (3)0.0554 (7)
H150.14911.35740.35590.067*
C160.10755 (13)1.1135 (3)0.2328 (2)0.0437 (6)
C170.05888 (14)1.0439 (3)0.2829 (3)0.0564 (7)
H170.07230.98290.35500.068*
C180.00925 (15)1.0638 (3)0.2275 (3)0.0653 (8)
H180.04141.01760.26340.078*
C190.02962 (16)1.1503 (3)0.1210 (3)0.0664 (9)
H190.07571.16320.08390.080*
C200.01760 (16)1.2191 (3)0.0678 (3)0.0670 (8)
H200.00351.27760.00580.080*
C210.08623 (15)1.2016 (3)0.1237 (3)0.0569 (7)
H210.11811.24910.08800.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0445 (4)0.0491 (4)0.0788 (6)0.0040 (3)0.0042 (4)0.0127 (4)
S20.0521 (5)0.0564 (5)0.0746 (6)0.0006 (4)0.0000 (4)0.0137 (4)
N10.0414 (13)0.0488 (13)0.0692 (16)0.0060 (11)0.0091 (12)0.0080 (12)
N20.0458 (14)0.0466 (13)0.0590 (15)0.0028 (11)0.0109 (11)0.0066 (12)
C10.0502 (18)0.0447 (16)0.075 (2)0.0061 (14)0.0092 (16)0.0101 (16)
C20.079 (3)0.085 (2)0.083 (3)0.004 (2)0.012 (2)0.005 (2)
C30.092 (3)0.112 (3)0.113 (3)0.017 (3)0.043 (3)0.008 (3)
C40.056 (2)0.103 (3)0.157 (4)0.003 (2)0.032 (3)0.015 (3)
C50.055 (2)0.116 (3)0.142 (4)0.008 (2)0.000 (2)0.022 (3)
C60.057 (2)0.096 (3)0.105 (3)0.004 (2)0.013 (2)0.022 (2)
C70.0489 (18)0.0562 (18)0.106 (3)0.0071 (15)0.0148 (17)0.0217 (19)
C80.0460 (16)0.0449 (15)0.0490 (16)0.0064 (13)0.0061 (13)0.0026 (13)
C90.0434 (15)0.0456 (15)0.0471 (16)0.0044 (13)0.0131 (13)0.0009 (13)
C100.0455 (16)0.0438 (14)0.0474 (16)0.0001 (13)0.0149 (13)0.0013 (13)
C110.0478 (18)0.0486 (16)0.085 (2)0.0010 (14)0.0170 (16)0.0034 (17)
C120.0443 (18)0.069 (2)0.096 (3)0.0064 (16)0.0091 (17)0.006 (2)
C130.068 (2)0.066 (2)0.081 (2)0.0139 (18)0.0166 (19)0.0177 (18)
C140.065 (2)0.0560 (18)0.078 (2)0.0044 (16)0.0167 (18)0.0150 (17)
C150.0504 (17)0.0555 (17)0.0610 (19)0.0064 (14)0.0148 (15)0.0089 (15)
C160.0435 (16)0.0386 (14)0.0478 (16)0.0057 (12)0.0087 (13)0.0025 (13)
C170.0494 (18)0.0600 (18)0.0606 (18)0.0050 (14)0.0145 (15)0.0111 (15)
C180.0477 (19)0.075 (2)0.074 (2)0.0001 (16)0.0154 (16)0.0044 (19)
C190.0477 (19)0.065 (2)0.078 (2)0.0080 (16)0.0017 (17)0.0048 (18)
C200.067 (2)0.066 (2)0.060 (2)0.0142 (17)0.0012 (17)0.0090 (17)
C210.0591 (19)0.0528 (16)0.0591 (18)0.0061 (15)0.0148 (15)0.0070 (15)
Geometric parameters (Å, º) top
S1—C81.747 (3)C10—C111.388 (4)
S1—C71.810 (3)C10—C151.391 (3)
S2—C81.643 (3)C11—C121.371 (4)
N1—C81.348 (3)C11—H110.9300
N1—N21.375 (3)C12—C131.383 (4)
N1—H10.8600C12—H120.9300
N2—C91.293 (3)C13—C141.360 (4)
C1—C21.3900C13—H130.9300
C1—C61.3900C14—C151.381 (4)
C1—C71.501 (3)C14—H140.9300
C2—C31.3900C15—H150.9300
C2—H20.9300C16—C171.381 (4)
C3—C41.3900C16—C211.386 (3)
C3—H30.9300C17—C181.377 (4)
C4—C51.3900C17—H170.9300
C4—H40.9300C18—C191.355 (4)
C5—C61.3900C18—H180.9300
C5—H50.9300C19—C201.373 (4)
C6—H60.9300C19—H190.9300
C7—H7A0.9700C20—C211.385 (4)
C7—H7B0.9700C20—H200.9300
C9—C101.472 (3)C21—H210.9300
C9—C161.491 (3)
C8—S1—C7101.19 (13)C11—C10—C9121.0 (2)
C8—N1—N2120.4 (2)C15—C10—C9121.1 (2)
C8—N1—H1119.8C12—C11—C10121.3 (3)
N2—N1—H1119.8C12—C11—H11119.4
C9—N2—N1117.6 (2)C10—C11—H11119.4
C2—C1—C6120.0C11—C12—C13119.8 (3)
C2—C1—C7120.0 (2)C11—C12—H12120.1
C6—C1—C7120.0 (2)C13—C12—H12120.1
C3—C2—C1120.0C14—C13—C12119.9 (3)
C3—C2—H2120.0C14—C13—H13120.0
C1—C2—H2120.0C12—C13—H13120.0
C2—C3—C4120.0C13—C14—C15120.5 (3)
C2—C3—H3120.0C13—C14—H14119.7
C4—C3—H3120.0C15—C14—H14119.7
C5—C4—C3120.0C14—C15—C10120.6 (3)
C5—C4—H4120.0C14—C15—H15119.7
C3—C4—H4120.0C10—C15—H15119.7
C4—C5—C6120.0C17—C16—C21118.4 (3)
C4—C5—H5120.0C17—C16—C9121.1 (2)
C6—C5—H5120.0C21—C16—C9120.5 (2)
C5—C6—C1120.0C18—C17—C16120.9 (3)
C5—C6—H6120.0C18—C17—H17119.5
C1—C6—H6120.0C16—C17—H17119.5
C1—C7—S1107.18 (18)C19—C18—C17120.2 (3)
C1—C7—H7A110.3C19—C18—H18119.9
S1—C7—H7A110.3C17—C18—H18119.9
C1—C7—H7B110.3C18—C19—C20120.1 (3)
S1—C7—H7B110.3C18—C19—H19119.9
H7A—C7—H7B108.5C20—C19—H19119.9
N1—C8—S2121.0 (2)C19—C20—C21120.1 (3)
N1—C8—S1112.58 (19)C19—C20—H20119.9
S2—C8—S1126.42 (15)C21—C20—H20119.9
N2—C9—C10116.3 (2)C20—C21—C16120.2 (3)
N2—C9—C16122.8 (2)C20—C21—H21119.9
C10—C9—C16120.9 (2)C16—C21—H21119.9
C11—C10—C15117.9 (3)
C8—N1—N2—C9170.5 (2)C16—C9—C10—C153.9 (4)
C6—C1—C2—C30.0C15—C10—C11—C121.1 (4)
C7—C1—C2—C3179.7 (2)C9—C10—C11—C12176.6 (3)
C1—C2—C3—C40.0C10—C11—C12—C130.7 (5)
C2—C3—C4—C50.0C11—C12—C13—C140.4 (5)
C3—C4—C5—C60.0C12—C13—C14—C151.0 (5)
C4—C5—C6—C10.0C13—C14—C15—C100.6 (5)
C2—C1—C6—C50.0C11—C10—C15—C140.5 (4)
C7—C1—C6—C5179.7 (2)C9—C10—C15—C14177.3 (2)
C2—C1—C7—S183.8 (2)N2—C9—C16—C1770.2 (3)
C6—C1—C7—S195.8 (2)C10—C9—C16—C17109.1 (3)
C8—S1—C7—C1164.8 (2)N2—C9—C16—C21107.4 (3)
N2—N1—C8—S2179.69 (18)C10—C9—C16—C2173.4 (3)
N2—N1—C8—S11.2 (3)C21—C16—C17—C181.2 (4)
C7—S1—C8—N1175.2 (2)C9—C16—C17—C18178.8 (3)
C7—S1—C8—S23.2 (2)C16—C17—C18—C191.1 (4)
N1—N2—C9—C10179.0 (2)C17—C18—C19—C200.1 (5)
N1—N2—C9—C160.3 (4)C18—C19—C20—C210.7 (4)
N2—C9—C10—C112.3 (4)C19—C20—C21—C160.6 (4)
C16—C9—C10—C11178.4 (2)C17—C16—C21—C200.3 (4)
N2—C9—C10—C15175.4 (2)C9—C16—C21—C20178.0 (2)

Experimental details

Crystal data
Chemical formulaC21H18N2S2
Mr362.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)20.2903 (14), 9.0951 (6), 10.5818 (7)
β (°) 103.924 (1)
V3)1895.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.12 × 0.10 × 0.06
Data collection
DiffractometerBruker APEX2 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.967, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
9776, 3363, 2191
Rint0.039
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.116, 1.05
No. of reflections3363
No. of parameters214
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.23

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008.

 

Acknowledgements

This project was supported by the Postgraduate Foundation of Taishan University (No. Y03–1–13).

References

First citationAli, M. A., Baker, H. J. H. A., Mirza, A. H., Smith, S. J., Gahan, L. R. & Bernhardt, P. V. (2008). Polyhedron, 27, 71–79.  Web of Science CSD CrossRef CAS Google Scholar
First citationAli, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B., Ali, A. M. & Manaf, A. (2002). J. Inorg. Biochem. 92, 141–148.  PubMed Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrouse, K. A., Chew, K.-B., Tarafder, M. T. H., Kasbollah, A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2004). Polyhedron, 23, 161–168.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Islam, M. T., Islam, M. A. A. A. A., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, m416–m417.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Kasbollah, A., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2001). Polyhedron, 20, 2363–2370.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, P.-W., Qiu, Q.-M., Lin, Y.-Y. & Liu, K.-F. (2006). Acta Cryst. E62, o1913–o1914.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds