metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(tetra­methyl­ammonium) tetra-μ2-sulfido-tetra­sulfidocopper(I)dimolyb­denum(VI) N,N-di­methyl­formamide solvate

aInstitute of Transition Metallic Compounds, Nanjing University of Information Science and Technology, 219 Ninliu Road, Nanjing 210044, Jiangsu, People's Republic of China, and bSchool of Mathematics and Physics, Nanjing University of Information Science and Technology, 219 Ninliu Road, Nanjing 210044, Jiangsu, People's Republic of China
*Correspondence e-mail: caoyuannust@yahoo.com.cn

(Received 26 September 2008; accepted 6 November 2008; online 13 November 2008)

The title compound, (C4H12N)3[CuMo2S8]·C3H7NO, was obtained from the self-assembly of tetra­thio­molybdate, tetra­methyl­ammonium nitrate and cuprous sulfide in dimethyl­formamide (DMF). The asymmetric unit contains three (NMe4)+ cations, one [Mo2S8Cu]3− anion and one DMF solvent mol­ecule, and no obvious inter­actions are observed between these species. The trinuclear anion can be viewed as fused [MoS4Cu] units sharing a copper center. The geometric parameters of the trivalent anion are comparable to those reported for other related salts including isomorphous anions, namely (NEt4)2(PPh4)[Mo2S8Cu] (a) and (Ph3P=N=PPh3)2(NEt4)[W2S8Cu]·2CH3CN (b). However, the Mo—Cu—Mo angle is found to be 160.24 (3)° for the title salt, while this angle is 162.97 (2)° in (a) and the W—Cu—W angle is 170.3 (2)° in (b), indicating that the largest deviation from linearity is in the title compound.

Related literature

For related MoVI/CuI and WVI/CuI complexes, see: Niu et al. (2002[Niu, Y.-Y., Chen, T.-N., Liu, S.-X., Song, Y.-L., Wang, Y.-X., Xue, Z.-L. & Xin, X.-Q. (2002). J. Chem. Soc. Dalton Trans. pp. 1980-1984.]); Maiti et al. (2004[Maiti, B., Pal, K. & Sarkar, S. (2004). Inorg. Chem. Commun. 7, 1027-1029.]); Müller et al. (1989[Müller, A., Bögge, H., Schimanski, U., Penk, M., Nieradzik, K., Dartmann, M., Krickemeyer, E., Schimanski, J., Römer, C., Römer, M., Dornfeld, H., Wienböker, U., Hellmann, W. & Zimmermann, M. (1989). Monatsh. Chem. 120, 367-391.]).

[Scheme 1]

Experimental

Crystal data
  • (C4H12N)3[CuMo2S8]·C3H7NO

  • Mr = 807.43

  • Monoclinic, P 21 /n

  • a = 9.4380 (19) Å

  • b = 20.336 (4) Å

  • c = 17.718 (4) Å

  • β = 98.60 (3)°

  • V = 3362.4 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.87 mm−1

  • T = 293 (2) K

  • 0.40 × 0.30 × 0.25 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.527, Tmax = 0.618

  • 17155 measured reflections

  • 6625 independent reflections

  • 5061 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.136

  • S = 1.05

  • 6625 reflections

  • 274 parameters

  • H-atom parameters constrained

  • Δρmax = 0.93 e Å−3

  • Δρmin = −0.85 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (NMe4)3[Mo2S8Cu].C3H7ON, was obtained from the self-assembly of tetrathiomolybdate, tetramethylammonium nitrate and cuprous sulfide in N,N-dimethylformamide (DMF). The asymmetric unit contains three tetramethylammonium cations, one [Mo2S8Cu]3- anion and one DMF solvent molecule, with no obvious interactions observed among these species. The trinuclear anion can be viewed as fused by two binuclear units [MoS4Cu]- through one shared copper. The two binuclear units are perpendicular to each other, as found in other linear trinuclear clusters, such as {MoS4Cu2[PPh2(py)]4} (py = pyridyl) (Niu et al., 2002). However, in the latter, [MoS4]2- is a tetradentate ligand, while in the former, it serves as a bidentate ligand. In the title cluster, one Mo center is close to retain the original tetrahedral configuration of free [MoS4]2-, with six S—Mo—S bond angles varying from 108.88 (6) to 111.20 (6)°. The other Mo center distorts slightly more, the corresponding angles ranging from 107.24 (6) to 111.79 (6)°. The geometric parameters of the trivalent anion are comparable to those reported for the compounds bis(tetraethylammonium) tetraphenylphosphonium bis(di-µ2-sulfido-dithioxomolybdenum)copper (a) (Maiti et al., 2004) and bis[bis(triphenylphosphine)iminium] tetraethylammonium bis(di-µ2-sulfido-dithioxotungsten)copper acetonitrile disolvate (b) (Müller et al., 1989), except a notable difference among the Mo—Cu—Mo angles: 160.24 (3)° for the title compound, 162.97 (2)° for (a), while W—Cu—W angle is 170.3 (2)° in (b), indicating a largest deviation from ideal linear array in the title salt.

Related literature top

For related MoVI/CuI and WVI/CuI complexes, see: Niu et al. (2002); Maiti et al. (2004); (Müller et al. (1989).

Experimental top

0.75 mmol of Cu2S powder was added to a solution of [NH4]2MoS4 (1 mmol in 10 ml DMF) and stirred for 4 h. at room temperature. After filtration, the filtrate was carefully laid on the surface with DMF (3 ml) and saturated (Me4N)NO3 solution (5 ml in methanol), successively. Black red polyhedric crystals of the title compound were obtained after two weeks.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for aldehydic H atom and C—H = 0.96 Å for methyl groups. Isotropic displacement parameters for H atoms were calculated as Uiso(H) = 1.5Ueq(carrier C), except for H11A: Uiso(H11A) = 1.2Ueq(C11).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids. All H atoms have been omitted.
Tris(tetramethylammonium) tetra-µ2-sulfido-tetrasulfidocopper(I)dimolybdenum(VI) N,N-dimethylformamide solvate top
Crystal data top
(C4H12N)3[CuMo2S8]·C3H7NOF(000) = 1640
Mr = 807.43Dx = 1.595 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7032 reflections
a = 9.4380 (19) Åθ = 1.2–26.1°
b = 20.336 (4) ŵ = 1.87 mm1
c = 17.718 (4) ÅT = 293 K
β = 98.60 (3)°Polyhedron, black red
V = 3362.4 (12) Å30.40 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
6625 independent reflections
Radiation source: fine-focus sealed tube5061 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1111
Tmin = 0.527, Tmax = 0.618k = 2425
17155 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0646P)2]
where P = (Fo2 + 2Fc2)/3
6625 reflections(Δ/σ)max < 0.001
274 parametersΔρmax = 0.93 e Å3
0 restraintsΔρmin = 0.85 e Å3
Crystal data top
(C4H12N)3[CuMo2S8]·C3H7NOV = 3362.4 (12) Å3
Mr = 807.43Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.4380 (19) ŵ = 1.87 mm1
b = 20.336 (4) ÅT = 293 K
c = 17.718 (4) Å0.40 × 0.30 × 0.25 mm
β = 98.60 (3)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
6625 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
5061 reflections with I > 2σ(I)
Tmin = 0.527, Tmax = 0.618Rint = 0.039
17155 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.05Δρmax = 0.93 e Å3
6625 reflectionsΔρmin = 0.85 e Å3
274 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.25496 (5)0.15816 (2)0.93899 (3)0.04775 (14)
Mo20.31519 (5)0.05342 (2)0.66754 (3)0.04773 (14)
Cu10.24065 (7)0.09541 (3)0.80223 (4)0.04912 (18)
S10.11495 (15)0.18682 (7)0.83342 (8)0.0494 (3)
S20.31587 (15)0.05454 (7)0.92589 (8)0.0489 (3)
S30.12487 (15)0.02298 (7)0.71839 (8)0.0483 (3)
S40.43472 (16)0.12836 (7)0.74081 (8)0.0514 (3)
S50.45325 (16)0.03117 (8)0.65994 (8)0.0532 (3)
S60.24512 (16)0.09507 (7)0.55703 (9)0.0543 (3)
S70.44848 (16)0.21739 (7)0.95638 (8)0.0516 (3)
S80.13280 (16)0.16860 (7)1.03204 (8)0.0522 (3)
O10.1656 (5)0.1069 (2)1.2555 (3)0.0610 (11)
N10.2487 (5)0.1922 (2)1.3279 (3)0.0500 (11)
C110.2068 (7)0.1295 (3)1.3196 (4)0.0553 (14)
H11A0.20880.10281.36240.066*
C120.2912 (7)0.2217 (3)1.4013 (4)0.0605 (15)
H12A0.30930.18791.43930.091*
H12B0.21600.24991.41330.091*
H12C0.37670.24711.40060.091*
C130.2171 (7)0.2367 (3)1.2639 (4)0.0579 (15)
H13A0.19010.21181.21790.087*
H13B0.30060.26251.25920.087*
H13C0.13980.26531.27190.087*
N20.7731 (5)0.1115 (2)0.5453 (3)0.0507 (11)
C210.8726 (7)0.1130 (3)0.4883 (4)0.0616 (16)
H21A0.96070.09160.50890.092*
H21B0.89180.15780.47610.092*
H21C0.83010.09050.44290.092*
C220.8482 (7)0.1530 (3)0.6068 (3)0.0549 (14)
H22A0.93990.13400.62540.082*
H22B0.79220.15570.64760.082*
H22C0.86130.19630.58730.082*
C230.6306 (7)0.1439 (3)0.5187 (4)0.0600 (15)
H23A0.57170.14110.55830.090*
H23B0.58390.12190.47380.090*
H23C0.64570.18920.50700.090*
C240.7503 (7)0.0474 (3)0.5762 (4)0.0557 (14)
H24A0.84110.02690.59310.084*
H24B0.69600.02070.53760.084*
H24C0.69850.05190.61860.084*
N30.7749 (5)0.0309 (2)0.8680 (3)0.0525 (11)
C310.9019 (7)0.0048 (3)0.9017 (3)0.0554 (14)
H31A0.98180.02480.91080.083*
H31B0.92240.03890.86740.083*
H31C0.88570.02410.94910.083*
C320.7374 (7)0.0836 (3)0.9250 (4)0.0574 (14)
H32A0.81460.11460.93500.086*
H32B0.72310.06260.97190.086*
H32C0.65130.10610.90360.086*
C330.7972 (6)0.0578 (3)0.7979 (4)0.0577 (14)
H33A0.87600.08810.80610.087*
H33B0.71230.08050.77510.087*
H33C0.81870.02320.76450.087*
C340.6474 (4)0.01784 (16)0.85381 (19)0.0594 (14)
H34A0.66750.05120.81850.089*
H34B0.56200.00540.83290.089*
H34C0.63390.03800.90120.089*
N40.2179 (4)0.32703 (16)0.67898 (19)0.0504 (10)
C410.2608 (4)0.27407 (16)0.63794 (19)0.0593 (15)
H41A0.24820.23390.66470.089*
H41B0.35990.27910.63250.089*
H41C0.20370.27270.58830.089*
C420.3149 (6)0.3291 (3)0.7528 (3)0.0522 (13)
H42A0.30320.28970.78110.078*
H42B0.29220.36660.78160.078*
H42C0.41240.33220.74360.078*
C430.2388 (6)0.3897 (3)0.6357 (3)0.0512 (13)
H43A0.33680.39290.62760.077*
H43B0.21520.42690.66470.077*
H43C0.17740.38900.58730.077*
C440.0667 (6)0.3221 (3)0.6915 (4)0.0560 (14)
H44A0.05360.28240.71900.084*
H44B0.00530.32140.64320.084*
H44C0.04310.35930.72060.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.0462 (3)0.0487 (3)0.0477 (3)0.00610 (19)0.00487 (19)0.00193 (19)
Mo20.0459 (3)0.0490 (3)0.0484 (3)0.00548 (19)0.00763 (19)0.00304 (19)
Cu10.0491 (4)0.0505 (4)0.0476 (4)0.0071 (3)0.0065 (3)0.0035 (3)
S10.0479 (7)0.0533 (7)0.0479 (7)0.0088 (6)0.0104 (6)0.0037 (6)
S20.0476 (7)0.0524 (7)0.0464 (7)0.0074 (6)0.0060 (5)0.0030 (6)
S30.0467 (7)0.0504 (7)0.0484 (7)0.0073 (5)0.0092 (6)0.0045 (6)
S40.0545 (8)0.0472 (7)0.0531 (7)0.0107 (6)0.0103 (6)0.0061 (6)
S50.0503 (8)0.0580 (8)0.0526 (7)0.0073 (6)0.0124 (6)0.0045 (6)
S60.0538 (8)0.0518 (8)0.0567 (8)0.0112 (6)0.0069 (6)0.0029 (6)
S70.0513 (7)0.0521 (7)0.0526 (7)0.0119 (6)0.0118 (6)0.0056 (6)
S80.0511 (7)0.0520 (7)0.0540 (8)0.0122 (6)0.0101 (6)0.0052 (6)
O10.058 (2)0.069 (3)0.056 (2)0.014 (2)0.0089 (19)0.022 (2)
N10.046 (2)0.050 (3)0.055 (3)0.0102 (19)0.011 (2)0.012 (2)
C110.053 (3)0.053 (3)0.061 (4)0.015 (3)0.010 (3)0.015 (3)
C120.062 (4)0.053 (3)0.068 (4)0.014 (3)0.014 (3)0.010 (3)
C130.063 (3)0.044 (3)0.061 (3)0.009 (3)0.006 (3)0.015 (3)
N20.051 (3)0.051 (3)0.051 (3)0.005 (2)0.011 (2)0.011 (2)
C210.060 (4)0.056 (3)0.061 (3)0.017 (3)0.015 (3)0.008 (3)
C220.051 (3)0.067 (4)0.050 (3)0.005 (3)0.017 (2)0.010 (3)
C230.067 (4)0.051 (3)0.054 (3)0.020 (3)0.015 (3)0.008 (3)
C240.054 (3)0.059 (3)0.055 (3)0.013 (3)0.008 (3)0.008 (3)
N30.056 (3)0.047 (2)0.054 (3)0.004 (2)0.009 (2)0.004 (2)
C310.067 (4)0.049 (3)0.051 (3)0.009 (3)0.011 (3)0.009 (2)
C320.056 (3)0.063 (4)0.054 (3)0.006 (3)0.009 (3)0.015 (3)
C330.040 (3)0.064 (4)0.070 (4)0.005 (2)0.009 (3)0.013 (3)
C340.059 (4)0.057 (3)0.062 (4)0.004 (3)0.011 (3)0.010 (3)
N40.049 (3)0.045 (2)0.057 (3)0.010 (2)0.006 (2)0.006 (2)
C410.066 (4)0.063 (4)0.049 (3)0.010 (3)0.009 (3)0.015 (3)
C420.047 (3)0.057 (3)0.054 (3)0.006 (2)0.011 (2)0.011 (3)
C430.050 (3)0.056 (3)0.050 (3)0.015 (2)0.015 (2)0.011 (2)
C440.053 (3)0.051 (3)0.059 (3)0.012 (3)0.005 (3)0.009 (3)
Geometric parameters (Å, º) top
Mo1—S82.1589 (16)C23—H23C0.9600
Mo1—S72.1710 (17)C24—H24A0.9600
Mo1—S12.2013 (16)C24—H24B0.9600
Mo1—S22.2057 (15)C24—H24C0.9600
Mo1—Cu12.7241 (9)N3—C331.401 (8)
Mo2—S62.1451 (17)N3—C311.453 (8)
Mo2—S52.1742 (16)N3—C321.549 (9)
Mo2—S42.2006 (17)N3—C341.550 (6)
Mo2—S32.2148 (16)C31—H31A0.9600
Mo2—Cu12.7241 (10)C31—H31B0.9600
Cu1—S32.2549 (17)C31—H31C0.9600
Cu1—S12.3161 (15)C32—H32A0.9600
Cu1—S22.3518 (16)C32—H32B0.9600
Cu1—S42.3630 (17)C32—H32C0.9600
O1—C111.232 (8)C33—H33A0.9600
N1—C111.338 (8)C33—H33B0.9600
N1—C121.434 (9)C33—H33C0.9600
N1—C131.447 (8)C34—H34A0.9600
C11—H11A0.9300C34—H34B0.9600
C12—H12A0.9600C34—H34C0.9600
C12—H12B0.9600N4—C411.392 (9)
C12—H12C0.9600N4—C421.481 (7)
C13—H13A0.9600N4—C441.481 (7)
C13—H13B0.9600N4—C431.515 (7)
C13—H13C0.9600C41—H41A0.9600
N2—C241.443 (8)C41—H41B0.9600
N2—C221.473 (8)C41—H41C0.9600
N2—C211.478 (9)C42—H42A0.9600
N2—C231.508 (7)C42—H42B0.9600
C21—H21A0.9600C42—H42C0.9600
C21—H21B0.9600C43—H43A0.9600
C21—H21C0.9600C43—H43B0.9600
C22—H22A0.9600C43—H43C0.9600
C22—H22B0.9600C44—H44A0.9600
C22—H22C0.9600C44—H44B0.9600
C23—H23A0.9600C44—H44C0.9600
C23—H23B0.9600
S8—Mo1—S7111.79 (6)H22B—C22—H22C109.5
S8—Mo1—S1107.55 (6)N2—C23—H23A109.5
S7—Mo1—S1111.04 (6)N2—C23—H23B109.5
S8—Mo1—S2110.59 (6)H23A—C23—H23B109.5
S7—Mo1—S2108.54 (6)N2—C23—H23C109.5
S1—Mo1—S2107.24 (6)H23A—C23—H23C109.5
S8—Mo1—Cu1139.84 (5)H23B—C23—H23C109.5
S7—Mo1—Cu1108.35 (5)N2—C24—H24A109.5
S1—Mo1—Cu154.87 (4)N2—C24—H24B109.5
S2—Mo1—Cu155.80 (4)H24A—C24—H24B109.5
S6—Mo2—S5111.20 (6)N2—C24—H24C109.5
S6—Mo2—S4109.02 (6)H24A—C24—H24C109.5
S5—Mo2—S4108.98 (6)H24B—C24—H24C109.5
S6—Mo2—S3108.88 (6)C33—N3—C31109.6 (5)
S5—Mo2—S3109.52 (6)C33—N3—C32112.8 (5)
S4—Mo2—S3109.21 (6)C31—N3—C32109.4 (5)
S6—Mo2—Cu1126.23 (5)C33—N3—C34108.8 (4)
S5—Mo2—Cu1122.54 (5)C31—N3—C34108.6 (4)
S4—Mo2—Cu156.14 (4)C32—N3—C34107.5 (4)
S3—Mo2—Cu153.12 (5)N3—C31—H31A109.5
S3—Cu1—S1117.80 (6)N3—C31—H31B109.5
S3—Cu1—S2115.59 (6)H31A—C31—H31B109.5
S1—Cu1—S298.94 (6)N3—C31—H31C109.5
S3—Cu1—S4102.39 (6)H31A—C31—H31C109.5
S1—Cu1—S4110.01 (6)H31B—C31—H31C109.5
S2—Cu1—S4112.49 (6)N3—C32—H32A109.5
S3—Cu1—Mo251.78 (4)N3—C32—H32B109.5
S1—Cu1—Mo2132.00 (5)H32A—C32—H32B109.5
S2—Cu1—Mo2128.60 (4)N3—C32—H32C109.5
S4—Cu1—Mo250.66 (4)H32A—C32—H32C109.5
S3—Cu1—Mo1147.85 (5)H32B—C32—H32C109.5
S1—Cu1—Mo151.01 (4)N3—C33—H33A109.5
S2—Cu1—Mo150.87 (4)N3—C33—H33B109.5
S4—Cu1—Mo1109.76 (5)H33A—C33—H33B109.5
Mo2—Cu1—Mo1160.24 (3)N3—C33—H33C109.5
Mo1—S1—Cu174.13 (5)H33A—C33—H33C109.5
Mo1—S2—Cu173.34 (5)H33B—C33—H33C109.5
Mo2—S3—Cu175.09 (5)N3—C34—H34A109.5
Mo2—S4—Cu173.20 (5)N3—C34—H34B109.5
C11—N1—C12122.4 (5)H34A—C34—H34B109.5
C11—N1—C13119.2 (5)N3—C34—H34C109.5
C12—N1—C13116.6 (5)H34A—C34—H34C109.5
O1—C11—N1120.3 (5)H34B—C34—H34C109.5
O1—C11—H11A119.9C41—N4—C42107.0 (3)
N1—C11—H11A119.9C41—N4—C44112.8 (3)
N1—C12—H12A109.5C42—N4—C44110.6 (4)
N1—C12—H12B109.5C41—N4—C43108.4 (3)
H12A—C12—H12B109.5C42—N4—C43108.3 (4)
N1—C12—H12C109.5C44—N4—C43109.5 (4)
H12A—C12—H12C109.5N4—C41—H41A109.5
H12B—C12—H12C109.5N4—C41—H41B109.5
N1—C13—H13A109.5H41A—C41—H41B109.5
N1—C13—H13B109.5N4—C41—H41C109.5
H13A—C13—H13B109.5H41A—C41—H41C109.5
N1—C13—H13C109.5H41B—C41—H41C109.5
H13A—C13—H13C109.5N4—C42—H42A109.5
H13B—C13—H13C109.5N4—C42—H42B109.5
C24—N2—C22108.6 (5)H42A—C42—H42B109.5
C24—N2—C21115.1 (5)N4—C42—H42C109.5
C22—N2—C21102.0 (4)H42A—C42—H42C109.5
C24—N2—C23109.7 (5)H42B—C42—H42C109.5
C22—N2—C23106.8 (5)N4—C43—H43A109.5
C21—N2—C23113.9 (5)N4—C43—H43B109.5
N2—C21—H21A109.5H43A—C43—H43B109.5
N2—C21—H21B109.5N4—C43—H43C109.5
H21A—C21—H21B109.5H43A—C43—H43C109.5
N2—C21—H21C109.5H43B—C43—H43C109.5
H21A—C21—H21C109.5N4—C44—H44A109.5
H21B—C21—H21C109.5N4—C44—H44B109.5
N2—C22—H22A109.5H44A—C44—H44B109.5
N2—C22—H22B109.5N4—C44—H44C109.5
H22A—C22—H22B109.5H44A—C44—H44C109.5
N2—C22—H22C109.5H44B—C44—H44C109.5
H22A—C22—H22C109.5
S6—Mo2—Cu1—S387.24 (8)S7—Mo1—Cu1—Mo23.80 (11)
S5—Mo2—Cu1—S390.96 (7)S1—Mo1—Cu1—Mo2107.05 (11)
S4—Mo2—Cu1—S3176.95 (6)S2—Mo1—Cu1—Mo296.54 (10)
S6—Mo2—Cu1—S17.91 (9)S8—Mo1—S1—Cu1139.25 (6)
S5—Mo2—Cu1—S1173.89 (8)S7—Mo1—S1—Cu198.15 (6)
S4—Mo2—Cu1—S181.80 (8)S2—Mo1—S1—Cu120.28 (6)
S3—Mo2—Cu1—S195.15 (8)S3—Cu1—S1—Mo1143.57 (6)
S6—Mo2—Cu1—S2178.47 (8)S2—Cu1—S1—Mo118.32 (6)
S5—Mo2—Cu1—S23.34 (9)S4—Cu1—S1—Mo199.67 (6)
S4—Mo2—Cu1—S288.76 (8)Mo2—Cu1—S1—Mo1154.22 (5)
S3—Mo2—Cu1—S294.29 (8)S8—Mo1—S2—Cu1137.04 (6)
S6—Mo2—Cu1—S489.71 (8)S7—Mo1—S2—Cu199.99 (6)
S5—Mo2—Cu1—S492.10 (7)S1—Mo1—S2—Cu120.04 (6)
S3—Mo2—Cu1—S4176.95 (6)S3—Cu1—S2—Mo1145.14 (5)
S6—Mo2—Cu1—Mo198.05 (11)S1—Cu1—S2—Mo118.36 (6)
S5—Mo2—Cu1—Mo183.75 (11)S4—Cu1—S2—Mo197.75 (6)
S4—Mo2—Cu1—Mo18.35 (10)Mo2—Cu1—S2—Mo1154.55 (4)
S3—Mo2—Cu1—Mo1174.71 (11)S6—Mo2—S3—Cu1121.63 (6)
S8—Mo1—Cu1—S35.97 (12)S5—Mo2—S3—Cu1116.59 (6)
S7—Mo1—Cu1—S3175.98 (9)S4—Mo2—S3—Cu12.69 (6)
S1—Mo1—Cu1—S380.77 (10)S1—Cu1—S3—Mo2123.21 (6)
S2—Mo1—Cu1—S375.63 (10)S2—Cu1—S3—Mo2120.22 (5)
S8—Mo1—Cu1—S174.81 (8)S4—Cu1—S3—Mo22.42 (5)
S7—Mo1—Cu1—S1103.25 (7)Mo1—Cu1—S3—Mo2176.64 (7)
S2—Mo1—Cu1—S1156.40 (7)S6—Mo2—S4—Cu1121.44 (5)
S8—Mo1—Cu1—S281.60 (8)S5—Mo2—S4—Cu1117.02 (5)
S7—Mo1—Cu1—S2100.35 (7)S3—Mo2—S4—Cu12.59 (5)
S1—Mo1—Cu1—S2156.40 (7)S3—Cu1—S4—Mo22.46 (5)
S8—Mo1—Cu1—S4175.01 (7)S1—Cu1—S4—Mo2128.49 (5)
S7—Mo1—Cu1—S43.04 (6)S2—Cu1—S4—Mo2122.26 (6)
S1—Mo1—Cu1—S4100.20 (7)Mo1—Cu1—S4—Mo2177.01 (3)
S2—Mo1—Cu1—S4103.39 (6)C12—N1—C11—O1177.0 (6)
S8—Mo1—Cu1—Mo2178.14 (9)C13—N1—C11—O113.0 (9)

Experimental details

Crystal data
Chemical formula(C4H12N)3[CuMo2S8]·C3H7NO
Mr807.43
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.4380 (19), 20.336 (4), 17.718 (4)
β (°) 98.60 (3)
V3)3362.4 (12)
Z4
Radiation typeMo Kα
µ (mm1)1.87
Crystal size (mm)0.40 × 0.30 × 0.25
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.527, 0.618
No. of measured, independent and
observed [I > 2σ(I)] reflections
17155, 6625, 5061
Rint0.039
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.136, 1.05
No. of reflections6625
No. of parameters274
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.93, 0.85

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

Financial support from NUIST is acknowledged.

References

First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMaiti, B., Pal, K. & Sarkar, S. (2004). Inorg. Chem. Commun. 7, 1027–1029.  Web of Science CSD CrossRef CAS Google Scholar
First citationMüller, A., Bögge, H., Schimanski, U., Penk, M., Nieradzik, K., Dartmann, M., Krickemeyer, E., Schimanski, J., Römer, C., Römer, M., Dornfeld, H., Wienböker, U., Hellmann, W. & Zimmermann, M. (1989). Monatsh. Chem. 120, 367–391.  CSD CrossRef Web of Science Google Scholar
First citationNiu, Y.-Y., Chen, T.-N., Liu, S.-X., Song, Y.-L., Wang, Y.-X., Xue, Z.-L. & Xin, X.-Q. (2002). J. Chem. Soc. Dalton Trans. pp. 1980–1984.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds