metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1616-m1617

catena-Poly[[[di­aqua­bis­(2-methyl-6-oxo-1,6-di­hydro-3,4′-bi­pyridine-5-carbo­nitrile)copper(II)]-μ-sulfato] tetra­hydrate]

aCollege of Sciences, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: niu_cy2000@yahoo.com.cn

(Received 12 October 2008; accepted 20 November 2008; online 26 November 2008)

In the title polymer, {[Cu(SO4)(C12H9N3O)2(H2O)2]·4H2O}n, both the metal center and the sulfate anion are located on a twofold axis. The CuII ion is coordinated by two pyridyl N atoms from two symmetry-related organic ligands, two O atoms from two symmetry-related water mol­ecules, and two O atoms from two symmetry-related sulfate anions, resulting in a distorted octa­hedral geometry. The sulfate anions act as μ2-bridges and connect metal ions, forming a one-dimensional chain along the b axis. The three-dimensional crystal structure is established through inter­molecular N—H⋯O and O—H⋯O hydrogen bonds involving the organic ligands, sulfate anions, coordinated and uncoordinated water mol­ecules, and through ππ inter­acting 2-pyridone rings, with centroid–centroid separations of ca 3.96 Å and tilt angles of ca 2.62°.

Related literature

For background on metal-organic frameworks using sulfate ions as bridging ligands, see: Carlucci et al. (2003[Carlucci, L., Ciani, G., Proserpio, D. M. & Rizzato, S. (2003). CrystEngComm, 5, 190-199.]); Niu et al. (2008[Niu, C.-Y., Wu, B.-L., Zheng, X.-F., Zhang, H.-Y., Hou, H.-W., Niu, Y.-Y. & Li, Z.-J. (2008). Cryst. Growth Des. 8, 1566-1574.]); Xu et al. (2003[Xu, Y., Bi, W.-H., Li, X., Sun, D.-F., Cao, R. & Hong, M.-C. (2003). Inorg. Chem. Commun. 6, 495-497.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(SO4)(C12H9N3O)2(H2O)2]·4H2O

  • Mr = 690.14

  • Orthorhombic, P c c n

  • a = 21.672 (3) Å

  • b = 6.8533 (8) Å

  • c = 19.860 (3) Å

  • V = 2949.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.88 mm−1

  • T = 291 (2) K

  • 0.32 × 0.23 × 0.22 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS . Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.764, Tmax = 0.828

  • 14282 measured reflections

  • 2751 independent reflections

  • 2195 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.091

  • S = 1.03

  • 2751 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O4i 2.0093 (17)
Cu1—O4 2.0093 (17)
Cu1—N1 2.0197 (19)
Cu1—N1i 2.0197 (19)
Cu1—O2 2.3450 (18)
Cu1—O2i 2.3450 (18)
O4i—Cu1—O4 90.42 (10)
O4i—Cu1—N1 176.94 (7)
O4—Cu1—N1 88.10 (8)
O4i—Cu1—N1i 88.10 (8)
O4—Cu1—N1i 176.94 (8)
N1—Cu1—N1i 93.50 (11)
O4i—Cu1—O2 86.57 (6)
O4—Cu1—O2 89.37 (7)
N1—Cu1—O2 90.73 (7)
N1i—Cu1—O2 93.21 (8)
O4i—Cu1—O2i 89.37 (7)
O4—Cu1—O2i 86.58 (6)
N1—Cu1—O2i 93.21 (8)
N1i—Cu1—O2i 90.73 (7)
O2—Cu1—O2i 174.24 (9)
Symmetry code: (i) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, z].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2D⋯O3ii 0.86 1.99 2.847 (3) 173
O4—H2W⋯O5 0.82 1.90 2.709 (3) 167
O5—H4W⋯O3 0.83 2.10 2.922 (3) 170
O4—H1W⋯O3iii 0.82 1.93 2.727 (2) 164
O5—H3W⋯O6iv 0.83 1.94 2.763 (4) 171
O6—H6W⋯O1v 0.83 2.05 2.737 (4) 139
Symmetry codes: (ii) -x+1, -y+1, -z+1; (iii) x, y+1, z; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [x+{\script{1\over 2}}, -y+1, -z+{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS . Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS . Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The coordinating modes of sulfate anions can be µ2, µ3, and µ4 bridges that have been used to construct metal-organic frameworks (Carlucci, et al., 2003; Xu, et al., 2003; Niu, et al., 2008).

In the title compound, (I), the central copper ion is coordinated by two N atoms from two symmetry-related organic ligands [N1, N1i; symmetry code: (i) -x + 3/2, -y + 3/2, z], two O atoms from two symmetry-related sulfate anions (O2, O2i), and two symmetry-related water O atoms (O4, O4i), forming a slightly distorted octahedral coordination environment (Fig. 1). The trans bond angles around metal centers are in the range 174.24 (9)–176.94 (8)°, close to 180 °, and the cis bond angles are in the range 86.58 (6)–93.50 (11) °, close to the right angle (Table 1).

Sulfate anions in the title compound act as µ2-bridging ligands to connect copper ions together, forming a one-dimensional chain along b axis. The separation of two neighbouring copper atoms in one chain is about 6.85 Å. The organic molecules, 1,6-dihydro-2-methyl-6-oxo-(3,4'-bipyridine)-5-carbonitrile, act as terminal ligands, being coordinated to the copper atoms in chains only through pyridyl N atoms, with the other N and O atoms remaining uncoordinated (Fig. 2). The S1 atom of the sulfate anion is located on a special position of space group Pccn, bonding four symmetry-related oxygen atoms [O2, O2ii, O3, O3ii; symmetry code: (ii) -x + 3/2, -y + 1/2, z]

There are hydrogen bonds involving organic ligands, sulfate anions, coordinated water molecules, and solvent water molecules. All O atoms of water molecules can either act as donors or as acceptors. Uncoordinating N atoms of pyridone rings only act as donors and sulfate O atoms as acceptors. Neighbouring chains are connected together by these hydrogen bonds (Fig. 3). In addition to these intermolecular hydrogen bonds, there are weak π-π interactions between parallel pyridone rings from two neighbouring chains, with centroid to centroid distances of about 3.96 Å and dihedral angles of about 2.62°.

Related literature top

For backgorung on metal-organic frameworks using sulfate ions as bridging ligands, see: Carlucci et al. (2003); Niu et al. (2008); Xu et al. (2003).

Experimental top

A solution of CuSO4.5H2O (0.025 g, 0.1 mmol) in CH3OH (10 ml) was added to a solution of 1,6-dihydro-2-methyl-6-oxo-(3,4'-bipyridine)-5-carbonitrile (0.021 g, 0.1 mmol) in CH3OH (20 ml) under stirring. The mixture was filtered and the resulting solution allowed to evaporate slowly. About 40 days later, blue block single crystals suitable for X-ray analysis were obtained (yield: ca. 35%).

Refinement top

H atoms of water molecules were first found in a difference map and refined freely, with Uiso(H) = 1.5Ueq(carrier O). The remaining H atoms were positioned geometrically and refined using a riding model [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms; N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N); C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms]. The final difference map had a highest peak at 0.62 Å from atom H6W and a deepest hole at 0.55 Å from atom Cu1, but were otherwise featureless.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the CuII coordination environment in the polymeric structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. All H atoms and solvent water molecules are omitted for clarity. [Symmetry codes: (i) -x + 3/2, -y + 3/2, z; (ii) -x + 3/2, -y + 1/2, z].
[Figure 2] Fig. 2. A ball-stick diagram showing the one-dimensional chain. All water molecules and H atoms have been omitted for clarity.
[Figure 3] Fig. 3. A diagram showing the intermolecular hydrogen bonds indicated by dashed lines.
catena-Poly[[[diaquabis(2-methyl-6-oxo-1,6-dihydro-3,4'-bipyridine-5- carbonitrile)copper(II)]-µ-sulfato] tetrahydrate] top
Crystal data top
[Cu(SO4)(C12H9N3O)2(H2O)2]·4H2OF(000) = 1428
Mr = 690.14Dx = 1.554 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 3682 reflections
a = 21.672 (3) Åθ = 2.3–25.8°
b = 6.8533 (8) ŵ = 0.88 mm1
c = 19.860 (3) ÅT = 291 K
V = 2949.8 (6) Å3Block, blue
Z = 40.32 × 0.23 × 0.22 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
2751 independent reflections
Radiation source: fine-focus sealed tube2195 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
h = 2326
Tmin = 0.764, Tmax = 0.828k = 88
14282 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0412P)2 + 2.9734P]
where P = (Fo2 + 2Fc2)/3
2751 reflections(Δ/σ)max = 0.001
201 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Cu(SO4)(C12H9N3O)2(H2O)2]·4H2OV = 2949.8 (6) Å3
Mr = 690.14Z = 4
Orthorhombic, PccnMo Kα radiation
a = 21.672 (3) ŵ = 0.88 mm1
b = 6.8533 (8) ÅT = 291 K
c = 19.860 (3) Å0.32 × 0.23 × 0.22 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
2751 independent reflections
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
2195 reflections with I > 2σ(I)
Tmin = 0.764, Tmax = 0.828Rint = 0.034
14282 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.03Δρmax = 0.43 e Å3
2751 reflectionsΔρmin = 0.41 e Å3
201 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.75000.75000.559997 (19)0.02153 (13)
S10.75000.25000.60744 (4)0.02089 (19)
O10.39746 (9)0.8422 (3)0.20721 (9)0.0447 (5)
O20.73015 (9)0.4141 (3)0.56593 (9)0.0336 (4)
O30.69854 (8)0.1865 (3)0.65199 (9)0.0321 (4)
O40.68578 (8)0.7952 (2)0.63128 (9)0.0291 (4)
H1W0.68860.90770.64530.044*
H2W0.69250.71250.66010.044*
O50.69067 (10)0.5382 (3)0.73479 (10)0.0464 (5)
H3W0.71710.53270.76540.070*
H4W0.68880.43320.71390.070*
O60.78398 (17)0.0151 (9)0.32780 (19)0.183 (3)
H5W0.77130.13160.33290.275*
H6W0.81450.01560.30230.275*
N10.68294 (9)0.7831 (3)0.49032 (10)0.0250 (5)
N20.42947 (9)0.8330 (3)0.31661 (10)0.0282 (5)
H2D0.39150.83170.32920.034*
N30.52884 (13)0.8349 (4)0.10367 (12)0.0514 (7)
C10.67866 (13)0.9364 (4)0.44882 (13)0.0357 (7)
H10.70901.03230.45090.043*
C20.63105 (12)0.9583 (4)0.40299 (14)0.0371 (7)
H20.63001.06650.37470.044*
C30.58505 (11)0.8190 (4)0.39931 (12)0.0268 (5)
C40.58919 (13)0.6623 (4)0.44327 (14)0.0392 (7)
H4A0.55900.56590.44300.047*
C50.63819 (12)0.6500 (4)0.48731 (14)0.0374 (7)
H50.64010.54370.51630.045*
C60.53443 (11)0.8312 (4)0.34882 (12)0.0260 (5)
C70.54932 (11)0.8372 (4)0.27966 (12)0.0265 (5)
H70.59060.84070.26700.032*
C80.50482 (11)0.8381 (4)0.23072 (11)0.0269 (5)
C90.44027 (11)0.8380 (4)0.24792 (12)0.0280 (6)
C100.47276 (11)0.8298 (4)0.36634 (12)0.0270 (5)
C110.44750 (13)0.8324 (5)0.43639 (13)0.0405 (7)
H11A0.42370.94900.44300.061*
H11B0.48090.82950.46810.061*
H11C0.42160.72040.44310.061*
C120.51933 (12)0.8364 (4)0.16012 (13)0.0318 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0154 (2)0.0276 (2)0.0216 (2)0.00008 (18)0.0000.000
S10.0153 (4)0.0200 (4)0.0273 (4)0.0008 (4)0.0000.000
O10.0265 (10)0.0688 (15)0.0387 (10)0.0036 (10)0.0118 (9)0.0038 (10)
O20.0356 (10)0.0244 (10)0.0408 (10)0.0002 (8)0.0124 (8)0.0060 (8)
O30.0225 (9)0.0322 (10)0.0417 (10)0.0012 (8)0.0090 (8)0.0015 (8)
O40.0268 (10)0.0271 (9)0.0335 (9)0.0005 (7)0.0046 (8)0.0011 (7)
O50.0499 (13)0.0423 (12)0.0469 (12)0.0064 (10)0.0111 (10)0.0005 (9)
O60.073 (2)0.360 (8)0.116 (3)0.085 (4)0.016 (2)0.094 (4)
N10.0171 (10)0.0333 (12)0.0245 (10)0.0016 (9)0.0005 (8)0.0027 (9)
N20.0143 (10)0.0381 (12)0.0323 (11)0.0005 (10)0.0005 (8)0.0017 (10)
N30.0542 (17)0.0684 (19)0.0316 (14)0.0124 (15)0.0024 (12)0.0037 (13)
C10.0284 (15)0.0395 (16)0.0393 (15)0.0127 (13)0.0094 (12)0.0105 (12)
C20.0317 (15)0.0414 (16)0.0382 (15)0.0090 (13)0.0098 (12)0.0167 (12)
C30.0186 (12)0.0360 (14)0.0260 (12)0.0003 (11)0.0011 (10)0.0009 (11)
C40.0291 (15)0.0370 (15)0.0516 (17)0.0134 (13)0.0144 (13)0.0133 (14)
C50.0294 (15)0.0379 (16)0.0451 (15)0.0084 (13)0.0117 (12)0.0156 (13)
C60.0208 (13)0.0299 (13)0.0274 (12)0.0020 (11)0.0042 (10)0.0029 (11)
C70.0172 (12)0.0298 (13)0.0325 (13)0.0002 (11)0.0013 (10)0.0044 (11)
C80.0252 (13)0.0289 (13)0.0265 (12)0.0016 (11)0.0000 (10)0.0018 (10)
C90.0229 (13)0.0302 (14)0.0309 (13)0.0004 (11)0.0040 (11)0.0013 (11)
C100.0220 (13)0.0307 (13)0.0284 (12)0.0008 (11)0.0019 (10)0.0005 (11)
C110.0299 (15)0.0608 (19)0.0309 (14)0.0027 (15)0.0027 (11)0.0016 (14)
C120.0278 (14)0.0343 (15)0.0333 (15)0.0037 (12)0.0023 (11)0.0031 (12)
Geometric parameters (Å, º) top
Cu1—O4i2.0093 (17)N2—H2D0.8600
Cu1—O42.0093 (17)N3—C121.140 (3)
Cu1—N12.0197 (19)C1—C21.384 (4)
Cu1—N1i2.0197 (19)C1—H10.9300
Cu1—O22.3450 (18)C2—C31.382 (4)
Cu1—O2i2.3450 (18)C2—H20.9300
S1—O21.4592 (17)C3—C41.387 (4)
S1—O2ii1.4592 (17)C3—C61.489 (3)
S1—O3ii1.4885 (17)C4—C51.378 (4)
S1—O31.4885 (17)C4—H4A0.9300
O1—C91.231 (3)C5—H50.9300
O4—H1W0.8217C6—C101.381 (3)
O4—H2W0.8188C6—C71.412 (3)
O5—H3W0.8349C7—C81.369 (3)
O5—H4W0.8320C7—H70.9300
O6—H5W0.8509C8—C121.437 (4)
O6—H6W0.8326C8—C91.440 (3)
N1—C51.333 (3)C10—C111.495 (3)
N1—C11.339 (3)C11—H11A0.9600
N2—C101.363 (3)C11—H11B0.9600
N2—C91.385 (3)C11—H11C0.9600
O4i—Cu1—O490.42 (10)C2—C1—H1118.6
O4i—Cu1—N1176.94 (7)C3—C2—C1119.9 (2)
O4—Cu1—N188.10 (8)C3—C2—H2120.1
O4i—Cu1—N1i88.10 (8)C1—C2—H2120.1
O4—Cu1—N1i176.94 (8)C2—C3—C4117.0 (2)
N1—Cu1—N1i93.50 (11)C2—C3—C6121.9 (2)
O4i—Cu1—O286.57 (6)C4—C3—C6121.0 (2)
O4—Cu1—O289.37 (7)C5—C4—C3119.8 (3)
N1—Cu1—O290.73 (7)C5—C4—H4A120.1
N1i—Cu1—O293.21 (8)C3—C4—H4A120.1
O4i—Cu1—O2i89.37 (7)N1—C5—C4123.2 (2)
O4—Cu1—O2i86.58 (6)N1—C5—H5118.4
N1—Cu1—O2i93.21 (8)C4—C5—H5118.4
N1i—Cu1—O2i90.73 (7)C10—C6—C7117.8 (2)
O2—Cu1—O2i174.24 (9)C10—C6—C3122.9 (2)
O2—S1—O2ii111.21 (15)C7—C6—C3119.2 (2)
O2—S1—O3ii109.36 (10)C8—C7—C6122.0 (2)
O2ii—S1—O3ii109.88 (10)C8—C7—H7119.0
O2—S1—O3109.88 (10)C6—C7—H7119.0
O2ii—S1—O3109.37 (10)C7—C8—C12122.6 (2)
O3ii—S1—O3107.06 (15)C7—C8—C9121.1 (2)
S1—O2—Cu1136.96 (10)C12—C8—C9116.4 (2)
Cu1—O4—H1W109.4O1—C9—N2121.3 (2)
Cu1—O4—H2W105.3O1—C9—C8125.2 (2)
H1W—O4—H2W113.6N2—C9—C8113.5 (2)
H3W—O5—H4W110.9N2—C10—C6118.9 (2)
H5W—O6—H6W108.9N2—C10—C11115.0 (2)
C5—N1—C1117.3 (2)C6—C10—C11126.1 (2)
C5—N1—Cu1118.51 (17)C10—C11—H11A109.5
C1—N1—Cu1124.06 (17)C10—C11—H11B109.5
C10—N2—C9126.7 (2)H11A—C11—H11B109.5
C10—N2—H2D116.6C10—C11—H11C109.5
C9—N2—H2D116.6H11A—C11—H11C109.5
N1—C1—C2122.8 (2)H11B—C11—H11C109.5
N1—C1—H1118.6N3—C12—C8177.8 (3)
O2ii—S1—O2—Cu1130.08 (19)Cu1—N1—C5—C4177.7 (2)
O3ii—S1—O2—Cu18.6 (2)C3—C4—C5—N10.1 (5)
O3—S1—O2—Cu1108.69 (16)C2—C3—C6—C10124.4 (3)
O4i—Cu1—O2—S16.07 (17)C4—C3—C6—C1058.0 (4)
O4—Cu1—O2—S184.39 (17)C2—C3—C6—C758.1 (4)
N1—Cu1—O2—S1172.48 (17)C4—C3—C6—C7119.5 (3)
N1i—Cu1—O2—S193.97 (17)C10—C6—C7—C81.2 (4)
O4—Cu1—N1—C566.4 (2)C3—C6—C7—C8176.5 (3)
N1i—Cu1—N1—C5116.2 (2)C6—C7—C8—C12177.5 (2)
O2—Cu1—N1—C522.9 (2)C6—C7—C8—C91.6 (4)
O2i—Cu1—N1—C5152.9 (2)C10—N2—C9—O1179.4 (3)
O4—Cu1—N1—C1110.0 (2)C10—N2—C9—C80.5 (4)
N1i—Cu1—N1—C167.4 (2)C7—C8—C9—O1178.7 (3)
O2—Cu1—N1—C1160.6 (2)C12—C8—C9—O12.2 (4)
O2i—Cu1—N1—C123.5 (2)C7—C8—C9—N21.2 (4)
C5—N1—C1—C21.4 (4)C12—C8—C9—N2177.9 (2)
Cu1—N1—C1—C2177.9 (2)C9—N2—C10—C60.2 (4)
N1—C1—C2—C30.6 (5)C9—N2—C10—C11177.7 (3)
C1—C2—C3—C40.5 (4)C7—C6—C10—N20.4 (4)
C1—C2—C3—C6177.2 (3)C3—C6—C10—N2177.2 (2)
C2—C3—C4—C50.8 (4)C7—C6—C10—C11177.2 (3)
C6—C3—C4—C5176.9 (3)C3—C6—C10—C115.2 (5)
C1—N1—C5—C41.0 (4)
Symmetry codes: (i) x+3/2, y+3/2, z; (ii) x+3/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2D···O3iii0.861.992.847 (3)173
O4—H2W···O50.821.902.709 (3)167
O5—H4W···O30.832.102.922 (3)170
O4—H1W···O3iv0.821.932.727 (2)164
O5—H3W···O6v0.831.942.763 (4)171
O6—H6W···O1vi0.832.052.737 (4)139
Symmetry codes: (iii) x+1, y+1, z+1; (iv) x, y+1, z; (v) x, y+1/2, z+1/2; (vi) x+1/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(SO4)(C12H9N3O)2(H2O)2]·4H2O
Mr690.14
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)291
a, b, c (Å)21.672 (3), 6.8533 (8), 19.860 (3)
V3)2949.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.88
Crystal size (mm)0.32 × 0.23 × 0.22
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Siemens, 1996)
Tmin, Tmax0.764, 0.828
No. of measured, independent and
observed [I > 2σ(I)] reflections
14282, 2751, 2195
Rint0.034
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.091, 1.03
No. of reflections2751
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.41

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2005).

Selected geometric parameters (Å, º) top
Cu1—O4i2.0093 (17)Cu1—N1i2.0197 (19)
Cu1—O42.0093 (17)Cu1—O22.3450 (18)
Cu1—N12.0197 (19)Cu1—O2i2.3450 (18)
O4i—Cu1—O490.42 (10)N1—Cu1—O290.73 (7)
O4i—Cu1—N1176.94 (7)N1i—Cu1—O293.21 (8)
O4—Cu1—N188.10 (8)O4i—Cu1—O2i89.37 (7)
O4i—Cu1—N1i88.10 (8)O4—Cu1—O2i86.58 (6)
O4—Cu1—N1i176.94 (8)N1—Cu1—O2i93.21 (8)
N1—Cu1—N1i93.50 (11)N1i—Cu1—O2i90.73 (7)
O4i—Cu1—O286.57 (6)O2—Cu1—O2i174.24 (9)
O4—Cu1—O289.37 (7)
Symmetry code: (i) x+3/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2D···O3ii0.861.992.847 (3)173.3
O4—H2W···O50.821.902.709 (3)167.2
O5—H4W···O30.832.102.922 (3)169.6
O4—H1W···O3iii0.821.932.727 (2)164.1
O5—H3W···O6iv0.831.942.763 (4)170.6
O6—H6W···O1v0.832.052.737 (4)138.9
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x, y+1/2, z+1/2; (v) x+1/2, y+1, z+1/2.
 

Acknowledgements

We gratefully acknowledge financial support from the Natural Science Foundation of Henan Province (2008B150008) and the Science and Technology Key Task of Henan Province (0624040011).

References

First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCarlucci, L., Ciani, G., Proserpio, D. M. & Rizzato, S. (2003). CrystEngComm, 5, 190–199.  Web of Science CSD CrossRef CAS Google Scholar
First citationNiu, C.-Y., Wu, B.-L., Zheng, X.-F., Zhang, H.-Y., Hou, H.-W., Niu, Y.-Y. & Li, Z.-J. (2008). Cryst. Growth Des. 8, 1566–1574.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART, SAINT and SADABS . Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationXu, Y., Bi, W.-H., Li, X., Sun, D.-F., Cao, R. & Hong, M.-C. (2003). Inorg. Chem. Commun. 6, 495–497.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1616-m1617
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds