metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1492-m1493

catena-Poly[[[diacrylato-κ4O,O′-neodymium(III)]-di-μ-acrylato-κ3O,O′:O′;κ3O:O,O′-[tri­aqua­neodymium(III)]-di-μ-acrylato-κ3O,O′:O′;κ3O:O,O′] trihydrate]

aCollege of Food and Biological Engineering, Shandong Institute of Light Industry, Jinan 250353, People's Republic of China, and bMaize Research Institute, Shandong Academy of Agricultural Science, Jinan 250100, People's Republic of China
*Correspondence e-mail: lujianghao001@yahoo.com.cn

(Received 14 July 2008; accepted 15 August 2008; online 8 November 2008)

The title compound, {[Nd2(CH2CHCOO)6(H2O)3]·3H2O}n, was synthesized by hydro­thermal methods. The structure contains one-dimensional coordination polymers in which two distinct NdIII atoms show different coordination modes. One is coordinated by four bidentate acrylate ligands, two of which bridge NdIII atoms, and by two O atoms from a further two bridging acrylate ligands. The other NdIII atom is coordinated by two bidentate acrylate ligands, two O atoms from bridging acrylate ligands, and three water mol­ecules. Extensive hydrogen bonding between the coordinated and uncoordin­ated water mol­ecules and the O atoms of the acrylate ligands link the coordination polymers into a three-dimensional network.

Related literature

For related literature, see: Church & Halvorson (1959[Church, B. S. & Halvorson, H. (1959). Nature (London), 183, 124-125.]); Chung et al. (1971[Chung, L., Rajan, K. S., Merdinger, E. & Crecz, N. (1971). Biophys. J. 11, 469-475.]); Okabe & Oya (2000[Okabe, N. & Oya, N. (2000). Acta Cryst. C56, 1416-1417.]); Okabe et al. (2002[Okabe, N., Kyoyama, H. & Fujimoto, A. (2002). Acta Cryst. E58, m354-m356.]); Serre et al. (2005[Serre, C., Marrot, J. & Ferey, G. (2005). Inorg. Chem. 44, 654-658.]); Pocker & Fong (1980[Pocker, Y. & Fong, C. T. O. (1980). Biochemistry, 19, 2045-2049.]); Scapin et al. (1997[Scapin, G., Reddy, S. G., Zheng, R. & Blanchard, J. S. (1997). Biochemistry, 36, 15081-15088.]).

[Scheme 1]

Experimental

Crystal data
  • [Nd2(C3H3O2)6(H2O)3]·3H2O

  • Mr = 822.90

  • Monoclinic, P 21 /c

  • a = 10.2012 (10) Å

  • b = 15.242 (2) Å

  • c = 20.3073 (10) Å

  • β = 100.801 (2)°

  • V = 3101.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.38 mm−1

  • T = 295 (2) K

  • 0.42 × 0.28 × 0.22 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.300, Tmax = 0.475

  • 14403 measured reflections

  • 5390 independent reflections

  • 4416 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.109

  • S = 1.10

  • 5390 reflections

  • 343 parameters

  • 72 restraints

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.87 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O8 0.85 1.98 2.808 (6) 166
O1—H2⋯O16 0.85 1.92 2.751 (7) 164
O2—H3⋯O12i 0.85 1.91 2.723 (6) 161
O2—H4⋯O17 0.85 1.89 2.723 (7) 168
O3—H5⋯O9i 0.85 1.80 2.637 (7) 169
O3—H6⋯O13 0.85 2.15 2.647 (7) 117
O16—H7⋯O6ii 0.85 1.96 2.809 (7) 180
O16—H8⋯O17 0.85 1.92 2.772 (8) 180
O17—H9⋯O8ii 0.85 1.96 2.806 (7) 170
O17—H10⋯O18iii 0.85 2.03 2.859 (9) 163
O18—H12⋯O11iv 0.85 2.77 3.169 (8) 110
O18—H12⋯O14iv 0.85 2.29 3.139 (8) 180
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z; (iii) -x+2, -y+1, -z; (iv) x+1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design of coordination compounds has received long-lasting research interest not only because of their appealing structural and topological novelty but also due to their unusual optical, electronic, magnetic and catalytic properties, and their further potential medical value derived from their antiviral and the inhibition of angiogenesis (Church & Halvorson, 1959; Chung et al., 1971) and in biological systems (Okabe & Oya, 2000; Serre et al., 2005; Pocker & Fong, 1980; Scapin et al., 1997). To date, much of the work has been focused on coordination polymers with relatively large organic acid ligands. In this paper, we report the structure of the title NdIII compound, containing acrylic acid.

Related literature top

For related literature, see: Church & Halvorson (1959); Chung et al. (1971); Okabe & Oya (2000); Okabe et al. (2002); Serre et al. (2005); Pocker & Fong (1980); Scapin et al. (1997).

Experimental top

A mixture of neodymium(III) nitrate hexahydrate (0.1 mmol), acrylic acid (0.2 mmol) and H2O (16 ml) in a 25 ml Teflon-lined stainless steel autoclave was kept at 473 K for three days. Violet crystals were obtained after cooling to room temperature with a yield of 6%. Elemental analysis calculated: C 26.79, H 2.98%; found: C 26.71, H 2.92%.

Refinement top

H atoms bound to C atoms were placed in calculated positions with a C—H bond distance of 0.93%A and refined as riding with Uiso(H) = 1.2Ueq(C). The H atoms of the water molecules were placed so as to form a reasonable hydrogen-bond network, with O—H = 0.85 Å, and refined as riding with Uiso(H) = 1.5Ueq(O). The anisotropic displacement parameters of the two terminal C atoms of each acrylate ligand were restrained to approximate isotropic behaviour.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids drawn at 30% probability for non-H atoms.
[Figure 2] Fig. 2. One-dimensional coordination polymers running along the [010] direction.
[Figure 3] Fig. 3. View of the packing of the title compound.
catena-Poly[[[diacrylato-κ4O,O'-neodymium(III)]-di-µ- acrylato-κ3O,O':O';κ3O:O,O'-[triaquaneodymium(III)]-di-µ- acrylato-κ3O,O':O';κ3O:O,O'] trihydrate] top
Crystal data top
[Nd2(C3H3O2)6(H2O)3]·3H2OF(000) = 1608
Mr = 822.90Dx = 1.749 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5390 reflections
a = 10.2012 (10) Åθ = 1.7–25.1°
b = 15.242 (2) ŵ = 3.38 mm1
c = 20.3073 (10) ÅT = 295 K
β = 100.801 (2)°Block, violet
V = 3101.7 (5) Å30.42 × 0.28 × 0.22 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
5390 independent reflections
Radiation source: fine-focus sealed tube4416 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 25.1°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1210
Tmin = 0.300, Tmax = 0.475k = 1818
14403 measured reflectionsl = 2124
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0473P)2 + 8.3226P]
where P = (Fo2 + 2Fc2)/3
5390 reflections(Δ/σ)max = 0.001
343 parametersΔρmax = 0.87 e Å3
72 restraintsΔρmin = 0.87 e Å3
Crystal data top
[Nd2(C3H3O2)6(H2O)3]·3H2OV = 3101.7 (5) Å3
Mr = 822.90Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.2012 (10) ŵ = 3.38 mm1
b = 15.242 (2) ÅT = 295 K
c = 20.3073 (10) Å0.42 × 0.28 × 0.22 mm
β = 100.801 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
5390 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4416 reflections with I > 2σ(I)
Tmin = 0.300, Tmax = 0.475Rint = 0.034
14403 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04172 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.10Δρmax = 0.87 e Å3
5390 reflectionsΔρmin = 0.87 e Å3
343 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nd10.56385 (3)0.45807 (2)0.191128 (18)0.03537 (12)
Nd20.35529 (3)0.70432 (2)0.209240 (18)0.03519 (12)
C10.4158 (6)0.2907 (4)0.1465 (3)0.0340 (14)
C20.3402 (8)0.2089 (5)0.1262 (4)0.0483 (18)
H2A0.37510.15610.14480.058*
C30.2300 (10)0.2073 (7)0.0846 (5)0.080 (3)
H3A0.19310.25920.06540.096*
H3B0.18640.15420.07350.096*
C40.7001 (6)0.6303 (4)0.2170 (3)0.0395 (15)
C50.7686 (7)0.7146 (5)0.2180 (4)0.0500 (18)
H5A0.72060.76570.22170.060*
C60.8912 (9)0.7210 (6)0.2139 (5)0.076 (3)
H6A0.94100.67070.21020.092*
H6B0.93110.77600.21470.092*
C70.2188 (7)0.5346 (4)0.1710 (4)0.0417 (16)
C80.1496 (8)0.4493 (5)0.1711 (5)0.067 (2)
H8A0.19790.39800.16870.080*
C90.0265 (10)0.4431 (7)0.1744 (6)0.093 (3)
H9A0.02370.49360.17680.111*
H9B0.01330.38820.17430.111*
C100.2684 (7)0.6554 (5)0.3355 (4)0.0459 (17)
C110.2344 (11)0.6327 (6)0.4014 (5)0.080 (3)
H11A0.27770.58520.42470.097*
C120.1484 (14)0.6749 (9)0.4281 (7)0.115 (4)
H12A0.10360.72260.40590.138*
H12B0.13110.65760.46950.138*
C130.1885 (7)0.8637 (4)0.1723 (4)0.0456 (17)
C140.0995 (10)0.9380 (6)0.1499 (5)0.078 (3)
H14A0.11120.99010.17410.094*
C150.0045 (12)0.9334 (8)0.0971 (6)0.114 (4)
H15A0.00870.88180.07230.137*
H15B0.05000.98170.08430.137*
C160.4621 (8)0.7649 (5)0.0902 (4)0.0476 (17)
C170.5220 (12)0.7930 (7)0.0339 (5)0.091 (3)
H17A0.51540.75770.00390.110*
C180.5862 (17)0.8694 (12)0.0366 (9)0.168 (7)
H18A0.59290.90480.07440.201*
H18B0.62440.88730.00070.201*
O10.5484 (5)0.5364 (3)0.0820 (2)0.0486 (12)
H10.50110.58260.07610.073*
H20.60540.53720.05640.073*
O20.7108 (5)0.3755 (3)0.1297 (2)0.0473 (12)
H30.75010.33000.14800.071*
H40.72470.38020.08990.071*
O30.4934 (8)0.4659 (4)0.3008 (3)0.093 (3)
H50.51480.41740.32060.139*
H60.41080.47570.29910.139*
O40.7608 (5)0.5595 (3)0.2143 (3)0.0539 (14)
O50.5747 (4)0.6278 (3)0.2182 (2)0.0341 (9)
O60.3974 (5)0.3575 (3)0.1107 (2)0.0450 (11)
O70.4972 (4)0.2917 (3)0.2019 (2)0.0364 (10)
O80.4008 (5)0.6912 (3)0.0861 (2)0.0473 (12)
O90.4736 (5)0.8099 (3)0.1423 (2)0.0476 (12)
O100.2794 (4)0.8729 (3)0.2236 (2)0.0392 (10)
O110.1697 (5)0.7925 (3)0.1422 (3)0.0525 (13)
O120.2189 (5)0.7220 (3)0.3044 (3)0.0457 (12)
O130.3521 (5)0.6084 (3)0.3138 (3)0.0508 (12)
O140.1589 (4)0.6050 (3)0.1722 (3)0.0539 (14)
O150.3457 (4)0.5347 (3)0.1730 (3)0.0438 (12)
O160.7445 (5)0.5710 (4)0.0093 (3)0.0594 (14)
H70.70200.59270.02710.089*
H80.75960.51610.00950.089*
O170.7927 (5)0.3919 (4)0.0102 (3)0.0590 (14)
H90.72960.36500.01510.088*
H100.86510.38430.00400.088*
O180.9798 (6)0.6714 (5)0.0387 (3)0.091 (2)
H110.90850.64130.02980.137*
H121.02830.65350.07490.137*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.0335 (2)0.0297 (2)0.0442 (2)0.00266 (13)0.01071 (16)0.00193 (14)
Nd20.0305 (2)0.0306 (2)0.0441 (2)0.00072 (13)0.00585 (15)0.00324 (14)
C10.032 (3)0.037 (3)0.038 (3)0.003 (3)0.019 (3)0.004 (3)
C20.053 (4)0.042 (4)0.046 (4)0.015 (3)0.002 (3)0.003 (3)
C30.074 (6)0.074 (5)0.084 (6)0.021 (4)0.005 (5)0.000 (5)
C40.035 (4)0.044 (4)0.041 (4)0.003 (3)0.011 (3)0.000 (3)
C50.043 (4)0.042 (4)0.069 (5)0.005 (3)0.019 (3)0.003 (3)
C60.061 (5)0.058 (5)0.117 (7)0.014 (4)0.033 (5)0.011 (5)
C70.032 (4)0.043 (4)0.052 (4)0.006 (3)0.012 (3)0.001 (3)
C80.044 (4)0.046 (4)0.116 (7)0.002 (3)0.027 (4)0.009 (4)
C90.059 (5)0.074 (6)0.151 (8)0.012 (5)0.035 (5)0.007 (6)
C100.049 (4)0.039 (4)0.056 (4)0.012 (3)0.025 (4)0.009 (3)
C110.100 (6)0.065 (5)0.089 (6)0.002 (5)0.052 (5)0.006 (5)
C120.134 (8)0.110 (7)0.120 (8)0.011 (7)0.069 (7)0.009 (6)
C130.038 (4)0.036 (4)0.062 (5)0.002 (3)0.007 (3)0.005 (3)
C140.080 (6)0.059 (5)0.085 (6)0.018 (4)0.013 (5)0.006 (4)
C150.108 (7)0.099 (7)0.117 (7)0.039 (6)0.027 (6)0.004 (6)
C160.059 (5)0.040 (4)0.048 (4)0.009 (3)0.020 (4)0.000 (3)
C170.133 (8)0.079 (6)0.075 (6)0.033 (6)0.055 (6)0.009 (5)
C180.205 (11)0.167 (10)0.153 (10)0.040 (8)0.089 (8)0.012 (8)
O10.068 (3)0.039 (3)0.045 (3)0.014 (2)0.025 (2)0.012 (2)
O20.055 (3)0.039 (3)0.055 (3)0.014 (2)0.028 (2)0.007 (2)
O30.154 (7)0.070 (4)0.076 (4)0.075 (4)0.074 (4)0.039 (3)
O40.032 (3)0.029 (2)0.100 (4)0.001 (2)0.011 (3)0.000 (3)
O50.021 (2)0.034 (2)0.048 (3)0.0008 (17)0.0099 (18)0.003 (2)
O60.049 (3)0.039 (3)0.043 (3)0.001 (2)0.001 (2)0.004 (2)
O70.032 (2)0.039 (2)0.035 (2)0.0001 (18)0.0015 (19)0.0082 (19)
O80.056 (3)0.038 (3)0.047 (3)0.001 (2)0.007 (2)0.004 (2)
O90.064 (3)0.037 (3)0.048 (3)0.008 (2)0.023 (2)0.005 (2)
O100.028 (2)0.042 (3)0.043 (3)0.0012 (19)0.004 (2)0.005 (2)
O110.044 (3)0.038 (3)0.066 (3)0.009 (2)0.014 (2)0.005 (2)
O120.045 (3)0.032 (2)0.065 (3)0.003 (2)0.023 (2)0.002 (2)
O130.060 (3)0.038 (3)0.060 (3)0.010 (2)0.026 (3)0.002 (2)
O140.030 (2)0.037 (3)0.091 (4)0.000 (2)0.002 (2)0.016 (3)
O150.022 (2)0.039 (3)0.070 (3)0.0021 (18)0.011 (2)0.007 (2)
O160.056 (3)0.068 (4)0.052 (3)0.000 (3)0.006 (3)0.013 (3)
O170.056 (3)0.067 (4)0.054 (3)0.007 (3)0.011 (3)0.003 (3)
O180.057 (4)0.135 (6)0.075 (4)0.002 (4)0.008 (3)0.010 (4)
Geometric parameters (Å, º) top
Nd1—O22.467 (4)C8—C91.273 (12)
Nd1—O32.468 (6)C8—H8A0.930
Nd1—O152.479 (4)C9—H9A0.930
Nd1—O10i2.490 (4)C9—H9B0.930
Nd1—O12.496 (4)C10—O121.250 (9)
Nd1—O42.508 (5)C10—O131.256 (8)
Nd1—O62.619 (5)C10—C111.485 (12)
Nd1—O52.643 (4)C11—C121.286 (15)
Nd1—O72.645 (4)C11—H11A0.930
Nd1—C42.971 (7)C12—H12A0.930
Nd1—C13.016 (6)C12—H12B0.930
Nd2—O52.500 (4)C13—O111.243 (8)
Nd2—O7ii2.505 (4)C13—O101.266 (8)
Nd2—O112.506 (4)C13—C141.470 (11)
Nd2—O142.511 (4)C14—C151.305 (14)
Nd2—O92.552 (5)C14—H14A0.930
Nd2—O132.583 (5)C15—H15A0.930
Nd2—O122.598 (5)C15—H15B0.930
Nd2—O82.636 (5)C16—O91.247 (8)
Nd2—O152.685 (4)C16—O81.281 (9)
Nd2—O102.716 (4)C16—C171.459 (12)
Nd2—C102.961 (7)C17—C181.331 (17)
Nd2—C72.972 (7)C17—H17A0.930
C1—O61.246 (7)C18—H18A0.930
C1—O71.267 (7)C18—H18B0.930
C1—C21.483 (9)O1—H10.850
C2—C31.274 (11)O1—H20.850
C2—H2A0.930O2—H30.850
C3—H3A0.930O2—H40.850
C3—H3B0.930O3—H50.850
C4—O41.251 (8)O3—H60.850
C4—O51.285 (7)O7—Nd2i2.505 (4)
C4—C51.461 (9)O10—Nd1ii2.490 (4)
C5—C61.273 (11)O16—H70.850
C5—H5A0.930O16—H80.850
C6—H6A0.930O17—H90.850
C6—H6B0.930O17—H100.850
C7—O141.238 (8)O18—H110.850
C7—O151.288 (8)O18—H120.850
C7—C81.480 (10)
O2—Nd1—O3141.98 (17)O14—Nd2—C724.29 (16)
O2—Nd1—O15141.19 (16)O9—Nd2—C7130.91 (17)
O3—Nd1—O1572.91 (19)O13—Nd2—C769.20 (18)
O2—Nd1—O10i73.36 (15)O12—Nd2—C789.70 (17)
O3—Nd1—O10i69.83 (17)O8—Nd2—C780.95 (17)
O15—Nd1—O10i142.21 (16)O15—Nd2—C725.68 (16)
O2—Nd1—O174.85 (15)O10—Nd2—C7136.31 (16)
O3—Nd1—O1142.90 (16)C10—Nd2—C778.80 (19)
O15—Nd1—O174.78 (17)O6—C1—O7120.7 (6)
O10i—Nd1—O1142.37 (16)O6—C1—C2120.8 (6)
O2—Nd1—O482.42 (17)O7—C1—C2118.4 (6)
O3—Nd1—O499.1 (2)O6—C1—Nd159.7 (3)
O15—Nd1—O4113.74 (14)O7—C1—Nd161.0 (3)
O10i—Nd1—O478.65 (15)C2—C1—Nd1178.1 (5)
O1—Nd1—O477.71 (18)C3—C2—C1123.2 (8)
O2—Nd1—O676.75 (16)C3—C2—H2A118.4
O3—Nd1—O6109.1 (2)C1—C2—H2A118.4
O15—Nd1—O673.98 (15)C2—C3—H3A120.0
O10i—Nd1—O6112.68 (14)C2—C3—H3B120.0
O1—Nd1—O678.48 (16)H3A—C3—H3B120.0
O4—Nd1—O6151.69 (18)O4—C4—O5118.6 (6)
O2—Nd1—O5126.78 (14)O4—C4—C5121.4 (6)
O3—Nd1—O576.88 (17)O5—C4—C5120.1 (6)
O15—Nd1—O564.60 (13)O4—C4—Nd156.5 (3)
O10i—Nd1—O5111.66 (14)O5—C4—Nd162.8 (3)
O1—Nd1—O573.12 (14)C5—C4—Nd1170.5 (5)
O4—Nd1—O549.98 (13)C6—C5—C4122.7 (8)
O6—Nd1—O5134.37 (13)C6—C5—H5A118.7
O2—Nd1—O775.09 (15)C4—C5—H5A118.7
O3—Nd1—O781.30 (18)C5—C6—H6A120.0
O15—Nd1—O7103.09 (14)C5—C6—H6B120.0
O10i—Nd1—O765.44 (13)H6A—C6—H6B120.0
O1—Nd1—O7123.89 (15)O14—C7—O15119.7 (6)
O4—Nd1—O7141.67 (14)O14—C7—C8121.6 (6)
O6—Nd1—O749.02 (13)O15—C7—C8118.6 (6)
O5—Nd1—O7157.32 (14)O14—C7—Nd256.5 (3)
O2—Nd1—C4103.41 (17)O15—C7—Nd264.6 (3)
O3—Nd1—C490.2 (2)C8—C7—Nd2164.7 (6)
O15—Nd1—C489.26 (16)C9—C8—C7122.7 (8)
O10i—Nd1—C496.84 (16)C9—C8—H8A118.7
O1—Nd1—C471.59 (17)C7—C8—H8A118.7
O4—Nd1—C424.58 (16)C8—C9—H9A120.0
O6—Nd1—C4148.70 (16)C8—C9—H9B120.0
O5—Nd1—C425.61 (15)H9A—C9—H9B120.0
O7—Nd1—C4162.07 (16)O12—C10—O13121.5 (7)
O2—Nd1—C174.59 (16)O12—C10—C11120.3 (7)
O3—Nd1—C195.6 (2)O13—C10—C11118.2 (7)
O15—Nd1—C188.21 (15)O12—C10—Nd261.1 (4)
O10i—Nd1—C189.33 (16)O13—C10—Nd260.4 (4)
O1—Nd1—C1101.13 (16)C11—C10—Nd2175.9 (6)
O4—Nd1—C1156.34 (16)C12—C11—C10123.8 (11)
O6—Nd1—C124.25 (15)C12—C11—H11A118.1
O5—Nd1—C1152.81 (14)C10—C11—H11A118.1
O7—Nd1—C124.78 (15)C11—C12—H12A120.0
C4—Nd1—C1172.70 (18)C11—C12—H12B120.0
O5—Nd2—O7ii77.69 (14)H12A—C12—H12B120.0
O5—Nd2—O11149.84 (17)O11—C13—O10121.6 (6)
O7ii—Nd2—O11113.40 (15)O11—C13—C14119.4 (7)
O5—Nd2—O14113.20 (14)O10—C13—C14118.9 (7)
O7ii—Nd2—O14150.92 (17)O11—C13—Nd256.0 (3)
O11—Nd2—O1471.41 (16)O10—C13—Nd265.7 (3)
O5—Nd2—O980.01 (15)C14—C13—Nd2175.3 (6)
O7ii—Nd2—O976.61 (15)C15—C14—C13122.3 (10)
O11—Nd2—O975.91 (17)C15—C14—H14A118.9
O14—Nd2—O9130.62 (18)C13—C14—H14A118.9
O5—Nd2—O1379.93 (15)C14—C15—H15A120.0
O7ii—Nd2—O1378.88 (16)C14—C15—H15B120.0
O11—Nd2—O13128.74 (18)H15A—C15—H15B120.0
O14—Nd2—O1376.87 (18)O9—C16—O8120.4 (7)
O9—Nd2—O13151.06 (17)O9—C16—C17121.0 (7)
O5—Nd2—O12126.24 (15)O8—C16—C17118.6 (7)
O7ii—Nd2—O1275.06 (15)O9—C16—Nd258.2 (4)
O11—Nd2—O1283.88 (17)O8—C16—Nd262.2 (4)
O14—Nd2—O1277.10 (16)C17—C16—Nd2176.7 (7)
O9—Nd2—O12134.73 (14)C18—C17—C16120.1 (11)
O13—Nd2—O1249.93 (15)C18—C17—H17A120.0
O5—Nd2—O873.69 (15)C16—C17—H17A120.0
O7ii—Nd2—O8122.36 (15)C17—C18—H18A120.0
O11—Nd2—O876.95 (17)C17—C18—H18B120.0
O14—Nd2—O886.70 (17)H18A—C18—H18B120.0
O9—Nd2—O850.00 (15)Nd1—O1—H1117.5
O13—Nd2—O8140.23 (14)Nd1—O1—H2127.9
O12—Nd2—O8158.09 (16)H1—O1—H2109.7
O5—Nd2—O1563.70 (13)Nd1—O2—H3118.6
O7ii—Nd2—O15134.05 (14)Nd1—O2—H4131.5
O11—Nd2—O15112.49 (15)H3—O2—H4109.5
O14—Nd2—O1549.58 (14)Nd1—O3—H5107.0
O9—Nd2—O15117.26 (15)Nd1—O3—H6115.2
O13—Nd2—O1571.02 (16)H5—O3—H6109.7
O12—Nd2—O15107.85 (14)C4—O4—Nd198.9 (4)
O8—Nd2—O1570.77 (15)C4—O5—Nd2150.0 (4)
O5—Nd2—O10134.66 (13)C4—O5—Nd191.6 (4)
O7ii—Nd2—O1064.17 (13)Nd2—O5—Nd1116.07 (15)
O11—Nd2—O1049.41 (14)C1—O6—Nd196.0 (4)
O14—Nd2—O10112.03 (14)C1—O7—Nd2i147.0 (4)
O9—Nd2—O1068.48 (14)C1—O7—Nd194.2 (4)
O13—Nd2—O10113.55 (14)Nd2i—O7—Nd1116.12 (15)
O12—Nd2—O1067.59 (14)C16—O8—Nd292.4 (4)
O8—Nd2—O10106.17 (14)C16—O9—Nd297.2 (4)
O15—Nd2—O10160.80 (13)C13—O10—Nd1ii155.0 (4)
O5—Nd2—C10103.23 (18)C13—O10—Nd289.2 (4)
O7ii—Nd2—C1075.35 (17)Nd1ii—O10—Nd2114.15 (15)
O11—Nd2—C10106.7 (2)C13—O11—Nd299.7 (4)
O14—Nd2—C1075.88 (19)C10—O12—Nd294.0 (4)
O9—Nd2—C10150.29 (17)C10—O13—Nd294.6 (4)
O13—Nd2—C1025.02 (17)C7—O14—Nd299.2 (4)
O12—Nd2—C1024.91 (17)C7—O15—Nd1150.9 (4)
O8—Nd2—C10159.58 (16)C7—O15—Nd289.7 (4)
O15—Nd2—C1089.62 (17)Nd1—O15—Nd2115.31 (16)
O10—Nd2—C1090.43 (17)H7—O16—H8116.9
O5—Nd2—C788.98 (16)H9—O17—H10109.7
O7ii—Nd2—C7147.14 (17)H11—O18—H12110.4
O11—Nd2—C793.18 (17)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O80.851.982.808 (6)166
O1—H2···O160.851.922.751 (7)164
O2—H3···O12i0.851.912.723 (6)161
O2—H4···O170.851.892.723 (7)168
O3—H5···O9i0.851.802.637 (7)169
O3—H6···O130.852.152.647 (7)117
O16—H7···O6iii0.851.962.809 (7)180
O16—H8···O170.851.922.772 (8)180
O17—H9···O8iii0.851.962.806 (7)170
O17—H10···O18iv0.852.032.859 (9)163
O18—H12···O11v0.852.773.169 (8)110
O18—H12···O14v0.852.293.139 (8)180
Symmetry codes: (i) x+1, y1/2, z+1/2; (iii) x+1, y+1, z; (iv) x+2, y+1, z; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Nd2(C3H3O2)6(H2O)3]·3H2O
Mr822.90
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)10.2012 (10), 15.242 (2), 20.3073 (10)
β (°) 100.801 (2)
V3)3101.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)3.38
Crystal size (mm)0.42 × 0.28 × 0.22
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.300, 0.475
No. of measured, independent and
observed [I > 2σ(I)] reflections
14403, 5390, 4416
Rint0.034
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.109, 1.10
No. of reflections5390
No. of parameters343
No. of restraints72
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.87, 0.87

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O80.851.982.808 (6)166.2
O1—H2···O160.851.922.751 (7)164.0
O2—H3···O12i0.851.912.723 (6)161.0
O2—H4···O170.851.892.723 (7)168.2
O3—H5···O9i0.851.802.637 (7)169.0
O3—H6···O130.852.152.647 (7)117.4
O16—H7···O6ii0.851.962.809 (7)179.5
O16—H8···O170.851.922.772 (8)179.7
O17—H9···O8ii0.851.962.806 (7)170.1
O17—H10···O18iii0.852.032.859 (9)163.1
O18—H12···O11iv0.852.773.169 (8)110.2
O18—H12···O14iv0.852.293.139 (8)179.9
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1, z; (iii) x+2, y+1, z; (iv) x+1, y, z.
 

Acknowledgements

This work is supported by the Natural Science Foundation of Shandong Province (grant No. Y2007D39).

References

First citationBruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChung, L., Rajan, K. S., Merdinger, E. & Crecz, N. (1971). Biophys. J. 11, 469–475.  CrossRef CAS Web of Science PubMed Google Scholar
First citationChurch, B. S. & Halvorson, H. (1959). Nature (London), 183, 124–125.  CrossRef PubMed CAS Web of Science Google Scholar
First citationOkabe, N., Kyoyama, H. & Fujimoto, A. (2002). Acta Cryst. E58, m354–m356.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkabe, N. & Oya, N. (2000). Acta Cryst. C56, 1416–1417.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPocker, Y. & Fong, C. T. O. (1980). Biochemistry, 19, 2045–2049.  CrossRef CAS PubMed Web of Science Google Scholar
First citationScapin, G., Reddy, S. G., Zheng, R. & Blanchard, J. S. (1997). Biochemistry, 36, 15081–15088.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSerre, C., Marrot, J. & Ferey, G. (2005). Inorg. Chem. 44, 654–658.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1492-m1493
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds