metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­aqua­(2,2′-bi­pyridine-κ2N,N′)(5-nitro­isophthalato-κO1)zinc(II) monohydrate

aCollege of Food and Biological Engineering, Shandong Institute of Light Industry, Jinan 250353, People's Republic of China, and bMaize Research Institute, Shandong Academy of Agricultural Science, Jinan 250100, People's Republic of China
*Correspondence e-mail: lujianghao001@yahoo.com.cn

(Received 26 September 2008; accepted 28 October 2008; online 8 November 2008)

In the title compound, [Zn(C8H3NO6)(C10H8N2)(H2O)3]·H2O, the ZnII cation is hexa­coordinated by a chelating 2,2′-bipyridine ligand, one carboxyl­ate O atom from a 5-nitro­isophthalate dianion and three water mol­ecules in a slightly distorted octa­hedral geometry. The structure contains isolated neutral complexes, in contrast to coordination polymers formed by MnII, CoII and CuII with the same ligand set. An extensive network of hydrogen bonds is formed between the water mol­ecules and the carboxyl­ate groups.

Related literature

For related coordination polymers formed with the same ligand set and MnII, CoII or CuII, see: Xiao et al. (2005[Xiao, H. P., Li, X.-H. & Cheng, Y.-Q. (2005). Acta Cryst. E61, m158-m159.]); Xie et al. (2005[Xie, G., Zeng, M.-H., Chen, S.-P. & Gao, S.-L. (2005). Acta Cryst. E61, m2273-m2275.], 2006[Xie, G., Zeng, M.-H., Chen, S.-P. & Gao, S.-L. (2006). Acta Cryst. E62, m397-m399.]). For other examples of transition-metal complexes containing benzene carboxyl­ates and pyridine-based ligands, see: Kim et al. (2001[Kim, Y., Lee, E. & Jung, D. Y. (2001). Chem. Mater. 13, 2684-2690.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C8H3NO6)(C10H8N2)(H2O)3]·H2O

  • Mr = 502.73

  • Triclinic, [P \overline 1]

  • a = 7.5200 (10) Å

  • b = 10.6700 (15) Å

  • c = 12.8300 (15) Å

  • α = 90.024 (10)°

  • β = 87.670 (10)°

  • γ = 74.720 (10)°

  • V = 992.2 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.30 mm−1

  • T = 293 (2) K

  • 0.32 × 0.28 × 0.22 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.592, Tmax = 0.747

  • 5594 measured reflections

  • 3801 independent reflections

  • 3240 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.147

  • S = 1.06

  • 3801 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 1.13 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H2W⋯O3i 0.84 1.96 2.776 (4) 165
O7—H1W⋯O10ii 0.84 1.78 2.607 (4) 168
O8—H3W⋯O5 0.84 1.94 2.715 (4) 153
O8—H4W⋯O3iii 0.84 1.89 2.721 (4) 172
O9—H5W⋯O3iv 0.84 1.94 2.727 (4) 156
O10—H8W⋯O4vi 0.84 1.79 2.631 (4) 180
O10—H7W⋯O5 0.84 1.87 2.713 (5) 180
Symmetry codes: (i) x+1, y-1, z; (ii) x+1, y, z; (iii) x, y-1, z; (iv) -x+1, -y+2, -z+2; (v) -x+1, -y+1, -z+2; (vi) -x, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, carboxylic acids have been widely used in materials science as polydentate ligands which can coordinate to transition-metal or rare-earth cations to yield complexes with interesting or useful properties. For example, Kim et al. (2001) have focused on the syntheses of transition-metal complexes containing benzene carboxylate and rigid aromatic pyridine ligands in order to study their electronic conductivity and magnetic properties. The importance of transition-metal dicarboxylate complexes motivated us to pursue synthetic strategies for these compounds, using 5-nitroisophthalic acid as a polydentate ligand.

Related literature top

For related coordination polymers formed with the same ligand set and MnII, CoII or CuII, see: Xiao et al. (2005); Xie et al. (2005, 2006). For other examples of transition-metal complexes containing benzene carboxylates and pyridine-based ligands, see: Kim et al. (2001).

Experimental top

A mixture of zinc dichloride (0.5 mmol), 2,2'-bipyridine (0.5 mmol), and 5-nitroisophthalic acid (0.5 mmol) in H2O (8 ml) and ethanol (8 ml) was sealed in a 25 ml Teflon-lined stainless steel autoclave and kept at 413 K for three days. Colourless crystals were obtained after cooling to room temperature with a yield of 27%. Elemental analysis calculated: C 42.97, H 3.78, N 9.55%; found: C 42.86, H 3.76, N 9.51%.

Refinement top

The H atoms of the water molecule were located from difference density maps. The O—H bonds were normalised to 0.84 Å, and the H atoms were then allowed to ride on the parent O atom with Uiso(H) = 1.5Ueq(O). All other H atoms were placed in calculated positions with a C—H bond distance of 0.93 Å and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing displacement ellipsoids at 50% probability for non-H atoms.
Triaqua(2,2'-bipyridine-κ2N,N')(5-nitroisophthalato-κO1)zinc(II) monohydrate top
Crystal data top
[Zn(C8H3NO6)(C10H8N2)(H2O)3]·H2OZ = 2
Mr = 502.73F(000) = 516
Triclinic, P1Dx = 1.683 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.520 (1) ÅCell parameters from 3801 reflections
b = 10.6700 (15) Åθ = 1.6–26.0°
c = 12.8300 (15) ŵ = 1.30 mm1
α = 90.024 (10)°T = 293 K
β = 87.67 (1)°Block, colorless
γ = 74.72 (1)°0.32 × 0.28 × 0.22 mm
V = 992.2 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3801 independent reflections
Radiation source: fine-focus sealed tube3240 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.592, Tmax = 0.747k = 1313
5594 measured reflectionsl = 015
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0817P)2 + 1.7563P]
where P = (Fo2 + 2Fc2)/3
3801 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 1.13 e Å3
0 restraintsΔρmin = 0.72 e Å3
Crystal data top
[Zn(C8H3NO6)(C10H8N2)(H2O)3]·H2Oγ = 74.72 (1)°
Mr = 502.73V = 992.2 (2) Å3
Triclinic, P1Z = 2
a = 7.520 (1) ÅMo Kα radiation
b = 10.6700 (15) ŵ = 1.30 mm1
c = 12.8300 (15) ÅT = 293 K
α = 90.024 (10)°0.32 × 0.28 × 0.22 mm
β = 87.67 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3801 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3240 reflections with I > 2σ(I)
Tmin = 0.592, Tmax = 0.747Rint = 0.016
5594 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.06Δρmax = 1.13 e Å3
3801 reflectionsΔρmin = 0.72 e Å3
289 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.72904 (6)0.47118 (4)0.78573 (3)0.02670 (18)
C10.5256 (5)1.0550 (3)0.6738 (3)0.0200 (7)
C20.4383 (5)1.1472 (3)0.7462 (3)0.0204 (7)
H2A0.41661.23510.73140.024*
C30.3825 (5)1.1075 (3)0.8421 (3)0.0185 (7)
C40.2892 (5)1.2039 (3)0.9251 (3)0.0192 (7)
C50.4090 (5)0.9779 (3)0.8610 (3)0.0206 (7)
H5A0.36750.95130.92430.025*
C60.4968 (5)0.8863 (3)0.7869 (3)0.0212 (7)
C70.5604 (5)0.9247 (3)0.6925 (3)0.0230 (7)
H7A0.62480.86370.64330.028*
C80.5179 (5)0.7461 (3)0.8070 (3)0.0258 (8)
C90.7336 (6)0.5092 (4)0.5475 (3)0.0323 (9)
H9A0.66300.59320.56300.039*
C100.7887 (7)0.4771 (5)0.4446 (3)0.0434 (11)
H10A0.75300.53680.39170.052*
C110.8961 (8)0.3562 (5)0.4235 (3)0.0491 (13)
H11A0.93830.33210.35540.059*
C120.9428 (7)0.2692 (4)0.5027 (3)0.0396 (11)
H12A1.01830.18610.48900.048*
C130.8759 (5)0.3064 (3)0.6038 (3)0.0216 (7)
C140.9011 (5)0.2164 (3)0.6926 (3)0.0190 (7)
C150.9850 (5)0.0861 (4)0.6817 (3)0.0279 (8)
H15A1.04290.05160.61870.033*
C160.9811 (6)0.0076 (4)0.7667 (4)0.0355 (10)
H16A1.03580.08120.76110.043*
C170.8971 (6)0.0598 (4)0.8594 (3)0.0326 (9)
H17A0.89080.00710.91650.039*
C180.8232 (5)0.1903 (4)0.8660 (3)0.0267 (8)
H18A0.77000.22670.92950.032*
N10.5836 (5)1.0974 (3)0.5725 (2)0.0275 (7)
N20.7767 (4)0.4257 (3)0.6256 (2)0.0215 (6)
N30.8239 (4)0.2684 (3)0.7848 (2)0.0192 (6)
O10.6969 (4)1.0197 (3)0.5172 (2)0.0373 (7)
O20.5184 (5)1.2084 (3)0.5476 (2)0.0445 (8)
O30.2776 (4)1.3214 (2)0.9070 (2)0.0255 (6)
O40.2275 (4)1.1635 (3)1.0056 (2)0.0337 (7)
O50.3987 (5)0.7173 (3)0.8669 (3)0.0524 (10)
O60.6527 (4)0.6677 (2)0.7630 (2)0.0254 (6)
O71.0013 (4)0.4817 (3)0.7943 (2)0.0272 (6)
H1W1.00420.55490.81720.041*
H2W1.06980.42720.83250.041*
O80.4497 (4)0.4721 (2)0.7915 (2)0.0273 (6)
H3W0.39890.54510.81860.041*
H4W0.40610.41970.82640.041*
O90.7038 (4)0.4909 (3)0.9526 (2)0.0347 (7)
H5W0.71880.55860.98020.052*
H6W0.67840.43970.99700.052*
O100.0498 (5)0.6904 (4)0.8813 (5)0.113 (3)
H7W0.15790.69860.87680.169*
H8W0.03870.73700.91750.169*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0308 (3)0.0205 (3)0.0280 (3)0.00584 (19)0.00216 (18)0.00145 (17)
C10.0244 (18)0.0183 (17)0.0177 (16)0.0059 (14)0.0015 (14)0.0002 (13)
C20.0244 (18)0.0132 (16)0.0245 (18)0.0060 (13)0.0034 (14)0.0019 (13)
C30.0185 (17)0.0152 (16)0.0220 (17)0.0050 (13)0.0002 (13)0.0002 (13)
C40.0197 (17)0.0125 (16)0.0241 (17)0.0019 (13)0.0012 (14)0.0004 (13)
C50.0203 (17)0.0149 (16)0.0257 (18)0.0037 (13)0.0036 (14)0.0015 (13)
C60.0199 (17)0.0101 (16)0.0322 (19)0.0021 (13)0.0017 (14)0.0000 (14)
C70.0252 (18)0.0167 (17)0.0260 (18)0.0039 (14)0.0017 (15)0.0051 (14)
C80.0234 (19)0.0114 (16)0.042 (2)0.0038 (14)0.0057 (16)0.0009 (15)
C90.042 (2)0.025 (2)0.027 (2)0.0042 (17)0.0037 (17)0.0066 (16)
C100.068 (3)0.041 (3)0.023 (2)0.016 (2)0.006 (2)0.0102 (18)
C110.085 (4)0.046 (3)0.019 (2)0.023 (3)0.010 (2)0.0022 (19)
C120.060 (3)0.032 (2)0.024 (2)0.010 (2)0.016 (2)0.0078 (17)
C130.0265 (19)0.0175 (17)0.0211 (17)0.0069 (14)0.0033 (14)0.0011 (13)
C140.0215 (17)0.0160 (16)0.0197 (17)0.0053 (13)0.0003 (13)0.0003 (13)
C150.031 (2)0.0176 (18)0.032 (2)0.0019 (15)0.0039 (16)0.0042 (15)
C160.040 (2)0.0165 (19)0.048 (3)0.0037 (17)0.006 (2)0.0033 (17)
C170.038 (2)0.027 (2)0.036 (2)0.0121 (18)0.0078 (18)0.0127 (17)
C180.035 (2)0.0255 (19)0.0212 (18)0.0117 (16)0.0004 (15)0.0040 (15)
N10.0378 (19)0.0274 (17)0.0202 (15)0.0138 (15)0.0002 (14)0.0003 (13)
N20.0273 (16)0.0189 (15)0.0186 (14)0.0070 (12)0.0002 (12)0.0019 (11)
N30.0244 (15)0.0128 (13)0.0200 (14)0.0045 (11)0.0006 (12)0.0011 (11)
O10.0459 (18)0.0380 (17)0.0252 (14)0.0082 (14)0.0138 (13)0.0063 (12)
O20.075 (2)0.0262 (16)0.0294 (16)0.0094 (15)0.0061 (15)0.0088 (12)
O30.0364 (15)0.0108 (12)0.0276 (13)0.0042 (10)0.0049 (11)0.0013 (10)
O40.0486 (18)0.0168 (13)0.0314 (15)0.0041 (12)0.0177 (13)0.0001 (11)
O50.0441 (19)0.0160 (14)0.095 (3)0.0102 (13)0.0398 (19)0.0053 (15)
O60.0282 (14)0.0084 (11)0.0365 (15)0.0011 (10)0.0110 (11)0.0008 (10)
O70.0257 (14)0.0190 (13)0.0376 (15)0.0061 (10)0.0077 (11)0.0022 (11)
O80.0232 (13)0.0186 (13)0.0402 (15)0.0065 (10)0.0059 (11)0.0013 (11)
O90.065 (2)0.0230 (14)0.0190 (13)0.0171 (14)0.0029 (13)0.0040 (10)
O100.036 (2)0.074 (3)0.229 (7)0.025 (2)0.051 (3)0.107 (4)
Geometric parameters (Å, º) top
Zn1—O62.047 (2)C11—C121.370 (7)
Zn1—O72.087 (3)C11—H11A0.930
Zn1—N32.092 (3)C12—C131.391 (5)
Zn1—O82.096 (3)C12—H12A0.930
Zn1—N22.105 (3)C13—N21.318 (5)
Zn1—O92.148 (3)C13—C141.475 (5)
C1—C21.368 (5)C14—N31.349 (4)
C1—C71.369 (5)C14—C151.371 (5)
C1—N11.463 (5)C15—C161.380 (6)
C2—C31.386 (5)C15—H15A0.930
C2—H2A0.930C16—C171.370 (6)
C3—C51.367 (5)C16—H16A0.930
C3—C41.497 (5)C17—C181.357 (6)
C4—O41.240 (4)C17—H17A0.930
C4—O31.255 (4)C18—N31.335 (5)
C5—C61.380 (5)C18—H18A0.930
C5—H5A0.930N1—O21.204 (5)
C6—C71.385 (5)N1—O11.222 (4)
C6—C81.486 (5)O7—H1W0.840
C7—H7A0.930O7—H2W0.840
C8—O61.245 (4)O8—H3W0.840
C8—O51.256 (5)O8—H4W0.840
C9—N21.334 (5)O9—H5W0.840
C9—C101.382 (6)O9—H6W0.840
C9—H9A0.930O10—H7W0.840
C10—C111.350 (7)O10—H8W0.840
C10—H10A0.930
O6—Zn1—O788.46 (11)C10—C11—C12119.8 (4)
O6—Zn1—N3170.99 (11)C10—C11—H11A120.1
O7—Zn1—N389.04 (11)C12—C11—H11A120.1
O6—Zn1—O889.13 (10)C11—C12—C13119.3 (4)
O7—Zn1—O8174.03 (10)C11—C12—H12A120.4
N3—Zn1—O894.16 (11)C13—C12—H12A120.4
O6—Zn1—N294.11 (11)N2—C13—C12121.2 (4)
O7—Zn1—N289.58 (11)N2—C13—C14115.1 (3)
N3—Zn1—N277.22 (11)C12—C13—C14123.6 (3)
O8—Zn1—N296.04 (11)N3—C14—C15121.4 (3)
O6—Zn1—O993.40 (11)N3—C14—C13115.7 (3)
O7—Zn1—O987.99 (12)C15—C14—C13122.8 (3)
N3—Zn1—O995.16 (11)C14—C15—C16118.2 (4)
O8—Zn1—O986.70 (12)C14—C15—H15A120.9
N2—Zn1—O9172.05 (11)C16—C15—H15A120.9
C2—C1—C7122.4 (3)C17—C16—C15120.4 (4)
C2—C1—N1118.8 (3)C17—C16—H16A119.8
C7—C1—N1118.8 (3)C15—C16—H16A119.8
C1—C2—C3119.0 (3)C18—C17—C16118.4 (4)
C1—C2—H2A120.5C18—C17—H17A120.8
C3—C2—H2A120.5C16—C17—H17A120.8
C5—C3—C2119.6 (3)N3—C18—C17122.5 (4)
C5—C3—C4119.0 (3)N3—C18—H18A118.8
C2—C3—C4121.3 (3)C17—C18—H18A118.8
O4—C4—O3124.6 (3)O2—N1—O1122.8 (3)
O4—C4—C3118.5 (3)O2—N1—C1118.3 (3)
O3—C4—C3117.0 (3)O1—N1—C1118.9 (3)
C3—C5—C6120.6 (3)C13—N2—C9118.5 (3)
C3—C5—H5A119.7C13—N2—Zn1115.1 (2)
C6—C5—H5A119.7C9—N2—Zn1126.0 (3)
C5—C6—C7120.3 (3)C18—N3—C14119.1 (3)
C5—C6—C8119.9 (3)C18—N3—Zn1126.6 (2)
C7—C6—C8119.8 (3)C14—N3—Zn1114.2 (2)
C1—C7—C6118.0 (3)C8—O6—Zn1125.6 (2)
C1—C7—H7A121.0Zn1—O7—H1W110.4
C6—C7—H7A121.0Zn1—O7—H2W116.7
O6—C8—O5125.9 (3)H1W—O7—H2W105.6
O6—C8—C6117.0 (3)Zn1—O8—H3W102.2
O5—C8—C6117.1 (3)Zn1—O8—H4W124.1
N2—C9—C10123.2 (4)H3W—O8—H4W104.6
N2—C9—H9A118.4Zn1—O9—H5W118.6
C10—C9—H9A118.4Zn1—O9—H6W129.1
C11—C10—C9117.9 (4)H5W—O9—H6W112.3
C11—C10—H10A121.1H7W—O10—H8W126.1
C9—C10—H10A121.1
C7—C1—C2—C30.1 (5)C2—C1—N1—O1163.3 (3)
N1—C1—C2—C3179.8 (3)C7—C1—N1—O116.8 (5)
C1—C2—C3—C52.6 (5)C12—C13—N2—C93.2 (6)
C1—C2—C3—C4179.0 (3)C14—C13—N2—C9173.9 (3)
C5—C3—C4—O44.9 (5)C12—C13—N2—Zn1169.7 (3)
C2—C3—C4—O4173.6 (3)C14—C13—N2—Zn113.2 (4)
C5—C3—C4—O3175.8 (3)C10—C9—N2—C130.4 (6)
C2—C3—C4—O35.7 (5)C10—C9—N2—Zn1171.7 (3)
C2—C3—C5—C62.4 (5)O6—Zn1—N2—C13163.0 (3)
C4—C3—C5—C6179.1 (3)O7—Zn1—N2—C1374.6 (3)
C3—C5—C6—C70.4 (6)N3—Zn1—N2—C1314.5 (3)
C3—C5—C6—C8177.6 (3)O8—Zn1—N2—C13107.4 (3)
C2—C1—C7—C62.9 (5)O6—Zn1—N2—C99.2 (3)
N1—C1—C7—C6177.0 (3)O7—Zn1—N2—C997.7 (3)
C5—C6—C7—C13.0 (5)N3—Zn1—N2—C9173.2 (3)
C8—C6—C7—C1175.0 (3)O8—Zn1—N2—C980.3 (3)
C5—C6—C8—O6152.1 (4)C17—C18—N3—C140.1 (6)
C7—C6—C8—O629.9 (5)C17—C18—N3—Zn1176.3 (3)
C5—C6—C8—O527.7 (6)C15—C14—N3—C182.6 (5)
C7—C6—C8—O5150.3 (4)C13—C14—N3—C18172.7 (3)
N2—C9—C10—C112.1 (7)C15—C14—N3—Zn1174.0 (3)
C9—C10—C11—C121.6 (8)C13—C14—N3—Zn110.7 (4)
C10—C11—C12—C131.0 (8)O7—Zn1—N3—C1899.8 (3)
C11—C12—C13—N23.6 (7)O8—Zn1—N3—C1875.2 (3)
C11—C12—C13—C14173.2 (4)N2—Zn1—N3—C18170.4 (3)
N2—C13—C14—N31.7 (5)O9—Zn1—N3—C1811.9 (3)
C12—C13—C14—N3178.7 (4)O7—Zn1—N3—C1476.5 (2)
N2—C13—C14—C15173.5 (3)O8—Zn1—N3—C14108.5 (2)
C12—C13—C14—C153.5 (6)N2—Zn1—N3—C1413.3 (2)
N3—C14—C15—C163.0 (6)O9—Zn1—N3—C14164.4 (2)
C13—C14—C15—C16171.9 (4)O5—C8—O6—Zn15.3 (6)
C14—C15—C16—C170.7 (6)C6—C8—O6—Zn1174.5 (2)
C15—C16—C17—C181.9 (6)O7—Zn1—O6—C8135.1 (3)
C16—C17—C18—N32.4 (6)O8—Zn1—O6—C839.5 (3)
C2—C1—N1—O216.1 (5)N2—Zn1—O6—C8135.5 (3)
C7—C1—N1—O2163.8 (4)O9—Zn1—O6—C847.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H2W···O3i0.841.962.776 (4)165
O7—H1W···O10ii0.841.782.607 (4)168
O8—H3W···O50.841.942.715 (4)153
O8—H4W···O3iii0.841.892.721 (4)172
O9—H5W···O3iv0.841.942.727 (4)156
O9—H6W···O5v0.842.573.414 (4)180
O10—H8W···O4vi0.841.792.631 (4)180
O10—H7W···O50.841.872.713 (5)180
Symmetry codes: (i) x+1, y1, z; (ii) x+1, y, z; (iii) x, y1, z; (iv) x+1, y+2, z+2; (v) x+1, y+1, z+2; (vi) x, y+2, z+2.

Experimental details

Crystal data
Chemical formula[Zn(C8H3NO6)(C10H8N2)(H2O)3]·H2O
Mr502.73
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.520 (1), 10.6700 (15), 12.8300 (15)
α, β, γ (°)90.024 (10), 87.67 (1), 74.72 (1)
V3)992.2 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.30
Crystal size (mm)0.32 × 0.28 × 0.22
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.592, 0.747
No. of measured, independent and
observed [I > 2σ(I)] reflections
5594, 3801, 3240
Rint0.016
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.147, 1.06
No. of reflections3801
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.13, 0.72

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H2W···O3i0.841.962.776 (4)165.2
O7—H1W···O10ii0.841.782.607 (4)167.8
O8—H3W···O50.841.942.715 (4)153.1
O8—H4W···O3iii0.841.892.721 (4)171.9
O9—H5W···O3iv0.841.942.727 (4)156.2
O9—H6W···O5v0.842.573.414 (4)179.9
O10—H8W···O4vi0.841.792.631 (4)179.9
O10—H7W···O50.841.872.713 (5)179.8
Symmetry codes: (i) x+1, y1, z; (ii) x+1, y, z; (iii) x, y1, z; (iv) x+1, y+2, z+2; (v) x+1, y+1, z+2; (vi) x, y+2, z+2.
 

Acknowledgements

This work is supported by the Natural Science Foundation of Shandong Province (grant No. Y2007D39).

References

First citationBruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKim, Y., Lee, E. & Jung, D. Y. (2001). Chem. Mater. 13, 2684–2690.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, H. P., Li, X.-H. & Cheng, Y.-Q. (2005). Acta Cryst. E61, m158–m159.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXie, G., Zeng, M.-H., Chen, S.-P. & Gao, S.-L. (2005). Acta Cryst. E61, m2273–m2275.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXie, G., Zeng, M.-H., Chen, S.-P. & Gao, S.-L. (2006). Acta Cryst. E62, m397–m399.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds