metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­azido­[tris­­(2-pyridyl-κN)methyl­amine]cobalt(III)

aCollege of Food and Biological Engineering, Shandong Institute of Light Industry, Jinan 250353, People's Republic of China, and bMaize Research Institute, Shandong Academy of Agricultural Science, Jinan 250100, People's Republic of China
*Correspondence e-mail: lujianghao001@yahoo.com.cn

(Received 29 September 2008; accepted 28 October 2008; online 8 November 2008)

The title compound, [Co(N3)3(C16H14N4)], was synthesized by hydro­thermal reaction of [Co(NH3)6](NO3)3, NaN3 and tris­(2-pyrid­yl)methyl­amine. The structure contains two independent complexes in the asymmetric unit, with closely comparable geometry. The CoIII atoms are hexa­coordinated by three N atoms from the tridentate tris­(2-pyrid­yl)methyl­amine ligands and three azide ions in a fac arrangement. N—H⋯N hydrogen bonds are formed between the amino group and the uncoordinated terminal N atoms of the azide ligands.

Related literature

For other complexes containing the tris­(2-pyrid­yl)methyl­amine ligand, see: Arnold et al. (2001[Arnold, P. J., Davies, S. C., Dilworth, J. R., Durrant, M. C., Griffiths, D. V., Hughes, D. L., Richards, R. L. & Sharpe, P. C. (2001). J. Chem. Soc. Dalton Trans. pp. 736-746.]). For related CoIII triazide complexes, see: Ma et al. (2000[Ma, D.-Q., Hikichi, S., Akita, M. & Morooka, Y. (2000). J. Chem. Soc. Dalton Trans. pp. 1123-1134.]); Chun & Bernal (2000[Chun, H. & Bernal, I. (2000). Acta Cryst. C56, 1326-1329.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(N3)3(C16H14N4)]

  • Mr = 447.33

  • Triclinic, [P \overline 1]

  • a = 10.2063 (3) Å

  • b = 13.6760 (6) Å

  • c = 14.4735 (2) Å

  • α = 68.150 (3)°

  • β = 77.114 (2)°

  • γ = 80.249 (2)°

  • V = 1819.53 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.98 mm−1

  • T = 295 (2) K

  • 0.20 × 0.14 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.828, Tmax = 0.892

  • 18878 measured reflections

  • 6655 independent reflections

  • 5825 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.086

  • S = 1.00

  • 6655 reflections

  • 557 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯N6′i 0.86 (4) 2.68 (4) 3.463 (3) 154 (3)
N4—H4A⋯N5′i 0.86 (4) 2.69 (4) 3.514 (3) 163 (3)
N4′—H4C⋯N10ii 0.92 (3) 2.44 (2) 3.065 (3) 124.7 (18)
N4′—H4D⋯N13′iii 0.86 (3) 2.38 (3) 3.213 (3) 162 (2)
Symmetry codes: (i) x, y, z-1; (ii) -x+1, -y+1, -z+1; (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyridine-based ligands have been widely in materials science as ligands that can coordinate to transition-metal or rare-earth cations. The title compound is a CoIII triazide complex with the tridentate tris(2-pyridyl)methylamine ligand.

Related literature top

For other complexes containing the tris(2-pyridyl)methylamine ligand, see: Arnold et al. (2001). For related CoIII triazide complexes, see: Ma et al. (2000); Chun & Bernal (2000).

Experimental top

A mixture of hexaamminecobalt(III) nitrate (0.5 mmol), sodium azide (0.5 mmol), tris(2-pyridyl)methylamine (0.5 mmol), H2O (8 ml) and ethanol (8 ml) in a 25 ml Teflon-lined stainless steel autoclave was kept at 433 K for three days. Brown crystals were obtained after cooling to room temperature with a yield of 12 %. Elemental analysis calculated: C 42.92, H 3.13, N 40.69 %; found: C 42.88, H 3.06, N 40.55 %.

Refinement top

H atoms bound to C atoms were placed in calculated positions with C—H = 0.93 Å and refined as riding with Uiso(H) = 1.2Ueq(C). The H atoms of the amine groups were located in difference Fourier maps and refined without restraint.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Two molecules in the asymmetric unit of the title compound with displacement ellipsoids shown at 30 % probability for non-H atoms.
Triazido[tris(2-pyridyl-κN)methylamine]cobalt(III) top
Crystal data top
[Co(N3)3(C16H14N4)]Z = 4
Mr = 447.33F(000) = 912
Triclinic, P1Dx = 1.633 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.2063 (3) ÅCell parameters from 6655 reflections
b = 13.6760 (6) Åθ = 1.5–25.5°
c = 14.4735 (2) ŵ = 0.98 mm1
α = 68.150 (3)°T = 295 K
β = 77.114 (2)°Block, brown
γ = 80.249 (2)°0.20 × 0.14 × 0.12 mm
V = 1819.53 (10) Å3
Data collection top
Bruker APEXII CCD
diffractometer
6655 independent reflections
Radiation source: fine-focus sealed tube5825 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 25.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1212
Tmin = 0.828, Tmax = 0.892k = 1616
18878 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.056P)2 + 0.548P]
where P = (Fo2 + 2Fc2)/3
6655 reflections(Δ/σ)max = 0.033
557 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
[Co(N3)3(C16H14N4)]γ = 80.249 (2)°
Mr = 447.33V = 1819.53 (10) Å3
Triclinic, P1Z = 4
a = 10.2063 (3) ÅMo Kα radiation
b = 13.6760 (6) ŵ = 0.98 mm1
c = 14.4735 (2) ÅT = 295 K
α = 68.150 (3)°0.20 × 0.14 × 0.12 mm
β = 77.114 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
6655 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
5825 reflections with I > 2σ(I)
Tmin = 0.828, Tmax = 0.892Rint = 0.018
18878 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.31 e Å3
6655 reflectionsΔρmin = 0.22 e Å3
557 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co1'0.08066 (2)0.308970 (19)0.810308 (17)0.02644 (8)
Co10.26516 (3)0.20548 (2)0.299922 (19)0.03377 (9)
C10.2380 (3)0.0073 (2)0.46611 (17)0.0542 (6)
H10.28140.03900.49620.065*
C20.1936 (3)0.0916 (2)0.5212 (2)0.0685 (8)
H20.20900.12690.58710.082*
C30.1266 (3)0.1370 (2)0.4774 (2)0.0690 (8)
H30.09230.20190.51460.083*
C40.1102 (3)0.08588 (18)0.37784 (19)0.0530 (6)
H40.06670.11640.34670.064*
C50.1600 (2)0.01205 (16)0.32530 (16)0.0390 (5)
C60.1434 (2)0.07501 (15)0.21526 (15)0.0349 (4)
C70.04845 (18)0.17351 (15)0.21651 (14)0.0313 (4)
C80.0757 (2)0.19521 (17)0.18453 (15)0.0404 (5)
H80.10400.14880.16130.048*
C90.1558 (2)0.28565 (19)0.18759 (17)0.0471 (5)
H90.23920.30110.16680.057*
C100.1112 (2)0.35281 (18)0.22176 (17)0.0471 (5)
H100.16370.41470.22400.056*
C110.0128 (2)0.32761 (16)0.25290 (15)0.0387 (5)
H110.04260.37340.27620.046*
C120.28077 (19)0.11126 (15)0.14989 (15)0.0340 (4)
C130.3317 (2)0.08941 (18)0.06194 (17)0.0454 (5)
H130.28490.05070.04130.054*
C140.4534 (3)0.12597 (19)0.00521 (18)0.0529 (6)
H140.48840.11310.05470.064*
C150.5216 (2)0.18087 (19)0.03765 (19)0.0537 (6)
H150.60480.20390.00140.064*
C160.4654 (2)0.20184 (18)0.12520 (17)0.0453 (5)
H160.51090.24070.14660.054*
C1'0.2190 (2)0.11662 (17)0.78384 (17)0.0435 (5)
H1'0.13460.09180.81270.052*
C2'0.3226 (2)0.05019 (19)0.7545 (2)0.0562 (6)
H2'0.30880.01850.76350.067*
C3'0.4475 (2)0.0874 (2)0.7115 (2)0.0571 (6)
H3'0.51920.04430.69040.069*
C4'0.4649 (2)0.18962 (18)0.70021 (18)0.0453 (5)
H4'0.54870.21570.67170.054*
C5'0.35712 (18)0.25276 (16)0.73144 (14)0.0317 (4)
C6'0.36740 (17)0.36699 (16)0.71976 (14)0.0312 (4)
C7'0.26982 (18)0.44037 (15)0.65124 (13)0.0292 (4)
C8'0.3112 (2)0.52144 (17)0.56277 (15)0.0404 (5)
H8'0.40200.53300.54160.048*
C9'0.2168 (2)0.58487 (18)0.50625 (16)0.0466 (5)
H9'0.24340.63940.44620.056*
C10'0.0833 (2)0.56725 (17)0.53900 (15)0.0410 (5)
H10'0.01810.61020.50220.049*
C11'0.0474 (2)0.48495 (16)0.62732 (14)0.0341 (4)
H11'0.04300.47220.64900.041*
C12'0.32219 (18)0.38099 (15)0.82358 (14)0.0306 (4)
C13'0.4033 (2)0.41939 (18)0.86443 (16)0.0428 (5)
H13'0.49060.43440.83110.051*
C14'0.3538 (2)0.4352 (2)0.95506 (18)0.0505 (6)
H14'0.40680.46200.98290.061*
C15'0.2253 (2)0.41100 (18)1.00387 (16)0.0455 (5)
H15'0.19030.42111.06510.055*
C16'0.1495 (2)0.37165 (16)0.96077 (14)0.0370 (4)
H16'0.06290.35450.99410.044*
H4A0.077 (3)0.046 (3)0.116 (3)0.088 (12)*
H4B0.133 (3)0.039 (2)0.180 (2)0.053 (8)*
H4C0.510 (2)0.463 (2)0.6662 (17)0.041 (6)*
H4D0.556 (3)0.354 (2)0.715 (2)0.054 (8)*
N10.21948 (17)0.05876 (14)0.36963 (13)0.0397 (4)
N20.09126 (15)0.23921 (12)0.25047 (11)0.0311 (3)
N30.34651 (16)0.16761 (13)0.18047 (12)0.0350 (4)
N40.0822 (2)0.01220 (19)0.17793 (18)0.0477 (5)
N50.4350 (2)0.16394 (19)0.34980 (17)0.0590 (5)
N60.4967 (2)0.2294 (2)0.35298 (19)0.0679 (7)
N70.5618 (3)0.2892 (3)0.3565 (3)0.1143 (12)
N80.31082 (19)0.34925 (15)0.22377 (14)0.0442 (4)
N90.30464 (17)0.41107 (15)0.26644 (14)0.0437 (4)
N100.2999 (2)0.47478 (18)0.30208 (18)0.0608 (6)
N110.1681 (2)0.24176 (17)0.41551 (14)0.0497 (5)
N120.2200 (2)0.25807 (19)0.47283 (15)0.0576 (5)
N130.2617 (3)0.2758 (3)0.5315 (2)0.1140 (13)
N1'0.23509 (15)0.21628 (12)0.77228 (12)0.0309 (3)
N2'0.13866 (14)0.42244 (12)0.68322 (11)0.0276 (3)
N3'0.19653 (15)0.35702 (12)0.87168 (11)0.0295 (3)
N4'0.50443 (17)0.39349 (18)0.67291 (15)0.0407 (4)
N5'0.03456 (17)0.19858 (14)0.94046 (13)0.0391 (4)
N6'0.05808 (16)0.14639 (13)0.96236 (12)0.0347 (4)
N7'0.1435 (2)0.09138 (17)0.99093 (16)0.0543 (5)
N8'0.06488 (16)0.40910 (13)0.84197 (13)0.0365 (4)
N9'0.16651 (16)0.38260 (14)0.90016 (13)0.0382 (4)
N10'0.2668 (2)0.36471 (19)0.95508 (19)0.0677 (7)
N11'0.02658 (16)0.26267 (15)0.74183 (13)0.0393 (4)
N12'0.14505 (16)0.25427 (13)0.76507 (13)0.0356 (4)
N13'0.25777 (19)0.23998 (19)0.78241 (18)0.0588 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co1'0.02280 (13)0.02834 (15)0.02953 (14)0.00705 (10)0.00219 (9)0.01100 (11)
Co10.03571 (15)0.03377 (16)0.03405 (15)0.00451 (11)0.00721 (11)0.01317 (12)
C10.0648 (15)0.0494 (14)0.0385 (12)0.0027 (12)0.0097 (10)0.0072 (11)
C20.0843 (19)0.0540 (16)0.0415 (13)0.0070 (15)0.0040 (13)0.0027 (12)
C30.085 (2)0.0351 (13)0.0598 (16)0.0063 (13)0.0103 (14)0.0011 (12)
C40.0591 (14)0.0327 (12)0.0578 (14)0.0083 (10)0.0051 (11)0.0124 (11)
C50.0373 (10)0.0291 (10)0.0439 (11)0.0003 (8)0.0029 (8)0.0122 (9)
C60.0367 (10)0.0284 (10)0.0399 (10)0.0074 (8)0.0007 (8)0.0140 (8)
C70.0335 (9)0.0297 (10)0.0295 (9)0.0093 (8)0.0014 (7)0.0102 (8)
C80.0386 (11)0.0469 (13)0.0390 (11)0.0096 (9)0.0050 (8)0.0175 (10)
C90.0364 (11)0.0547 (14)0.0476 (12)0.0022 (10)0.0100 (9)0.0161 (11)
C100.0443 (12)0.0408 (12)0.0500 (12)0.0088 (10)0.0074 (10)0.0150 (10)
C110.0452 (11)0.0312 (10)0.0398 (10)0.0024 (9)0.0027 (9)0.0157 (9)
C120.0346 (10)0.0269 (10)0.0379 (10)0.0005 (8)0.0024 (8)0.0117 (8)
C130.0518 (13)0.0403 (12)0.0457 (12)0.0014 (10)0.0021 (10)0.0219 (10)
C140.0590 (14)0.0443 (13)0.0473 (13)0.0017 (11)0.0119 (11)0.0201 (11)
C150.0415 (12)0.0458 (13)0.0599 (14)0.0057 (10)0.0147 (10)0.0155 (11)
C160.0351 (10)0.0434 (12)0.0553 (13)0.0087 (9)0.0005 (9)0.0169 (10)
C1'0.0404 (11)0.0338 (11)0.0566 (13)0.0077 (9)0.0040 (9)0.0167 (10)
C2'0.0507 (13)0.0350 (12)0.0838 (18)0.0008 (10)0.0073 (12)0.0257 (12)
C3'0.0418 (12)0.0473 (14)0.0804 (17)0.0102 (11)0.0055 (12)0.0294 (13)
C4'0.0284 (10)0.0500 (13)0.0571 (13)0.0000 (9)0.0034 (9)0.0221 (11)
C5'0.0274 (9)0.0366 (11)0.0323 (9)0.0027 (8)0.0065 (7)0.0129 (8)
C6'0.0229 (8)0.0376 (11)0.0338 (9)0.0092 (8)0.0004 (7)0.0136 (8)
C7'0.0295 (9)0.0317 (10)0.0296 (9)0.0069 (7)0.0002 (7)0.0155 (8)
C8'0.0375 (10)0.0395 (12)0.0387 (11)0.0072 (9)0.0058 (8)0.0131 (9)
C9'0.0581 (13)0.0367 (12)0.0339 (10)0.0020 (10)0.0019 (9)0.0064 (9)
C10'0.0502 (12)0.0374 (11)0.0347 (10)0.0052 (9)0.0120 (9)0.0132 (9)
C11'0.0351 (10)0.0372 (11)0.0352 (10)0.0006 (8)0.0083 (8)0.0184 (9)
C12'0.0294 (9)0.0312 (10)0.0317 (9)0.0070 (8)0.0065 (7)0.0092 (8)
C13'0.0360 (10)0.0532 (13)0.0463 (12)0.0177 (10)0.0067 (9)0.0200 (10)
C14'0.0542 (13)0.0613 (15)0.0495 (13)0.0175 (11)0.0167 (10)0.0251 (12)
C15'0.0604 (14)0.0508 (13)0.0315 (10)0.0156 (11)0.0070 (9)0.0175 (10)
C16'0.0419 (11)0.0407 (11)0.0286 (9)0.0135 (9)0.0006 (8)0.0115 (8)
N10.0420 (9)0.0341 (9)0.0351 (9)0.0013 (7)0.0038 (7)0.0069 (7)
N20.0336 (8)0.0272 (8)0.0316 (8)0.0034 (6)0.0020 (6)0.0114 (7)
N30.0330 (8)0.0321 (9)0.0385 (9)0.0029 (7)0.0029 (7)0.0128 (7)
N40.0523 (12)0.0377 (11)0.0613 (14)0.0110 (10)0.0061 (10)0.0259 (11)
N50.0521 (12)0.0670 (14)0.0663 (13)0.0004 (11)0.0281 (10)0.0250 (11)
N60.0386 (11)0.100 (2)0.0765 (16)0.0055 (12)0.0177 (10)0.0401 (15)
N70.0655 (17)0.139 (3)0.168 (3)0.0211 (19)0.043 (2)0.069 (3)
N80.0550 (11)0.0400 (10)0.0442 (10)0.0146 (8)0.0085 (8)0.0178 (9)
N90.0397 (10)0.0428 (11)0.0520 (11)0.0139 (8)0.0090 (8)0.0154 (9)
N100.0627 (13)0.0567 (13)0.0775 (15)0.0207 (11)0.0087 (11)0.0352 (12)
N110.0538 (11)0.0620 (13)0.0423 (10)0.0063 (9)0.0073 (8)0.0286 (9)
N120.0605 (12)0.0751 (15)0.0439 (11)0.0040 (11)0.0146 (10)0.0297 (11)
N130.107 (2)0.188 (4)0.086 (2)0.003 (2)0.0369 (18)0.088 (2)
N1'0.0264 (7)0.0304 (8)0.0365 (8)0.0039 (6)0.0047 (6)0.0123 (7)
N2'0.0273 (7)0.0304 (8)0.0282 (7)0.0045 (6)0.0034 (6)0.0138 (6)
N3'0.0302 (8)0.0315 (8)0.0268 (7)0.0087 (6)0.0034 (6)0.0086 (6)
N4'0.0257 (8)0.0520 (12)0.0453 (10)0.0134 (8)0.0011 (7)0.0177 (9)
N5'0.0377 (9)0.0398 (10)0.0368 (9)0.0163 (8)0.0025 (7)0.0069 (8)
N6'0.0352 (9)0.0331 (9)0.0335 (8)0.0065 (8)0.0016 (7)0.0102 (7)
N7'0.0510 (11)0.0525 (12)0.0569 (12)0.0245 (10)0.0030 (9)0.0115 (10)
N8'0.0291 (8)0.0353 (9)0.0429 (9)0.0045 (7)0.0024 (7)0.0152 (8)
N9'0.0342 (9)0.0373 (10)0.0487 (10)0.0061 (7)0.0017 (8)0.0234 (8)
N10'0.0462 (11)0.0675 (15)0.0875 (16)0.0213 (11)0.0271 (11)0.0402 (13)
N11'0.0323 (9)0.0476 (11)0.0482 (10)0.0111 (8)0.0065 (7)0.0255 (8)
N12'0.0356 (9)0.0318 (9)0.0439 (9)0.0032 (7)0.0140 (7)0.0145 (7)
N13'0.0329 (10)0.0718 (15)0.0788 (14)0.0106 (9)0.0164 (9)0.0281 (12)
Geometric parameters (Å, º) top
Co1'—N11'1.9408 (17)C1'—H1'0.930
Co1'—N8'1.9407 (16)C2'—C3'1.379 (4)
Co1'—N5'1.9436 (16)C2'—H2'0.930
Co1'—N3'1.9456 (16)C3'—C4'1.383 (3)
Co1'—N2'1.9603 (15)C3'—H3'0.930
Co1'—N1'1.9621 (15)C4'—C5'1.381 (3)
Co1—N111.9335 (18)C4'—H4'0.930
Co1—N81.9406 (18)C5'—N1'1.346 (2)
Co1—N51.941 (2)C5'—C6'1.527 (3)
Co1—N31.9563 (17)C6'—N4'1.454 (2)
Co1—N11.9651 (18)C6'—C7'1.531 (3)
Co1—N21.9796 (16)C6'—C12'1.544 (3)
C1—N11.350 (3)C7'—N2'1.348 (2)
C1—C21.384 (4)C7'—C8'1.381 (3)
C1—H10.930C8'—C9'1.375 (3)
C2—C31.374 (4)C8'—H8'0.930
C2—H20.930C9'—C10'1.370 (3)
C3—C41.382 (4)C9'—H9'0.930
C3—H30.930C10'—C11'1.377 (3)
C4—C51.390 (3)C10'—H10'0.930
C4—H40.930C11'—N2'1.344 (2)
C5—N11.341 (3)C11'—H11'0.930
C5—C61.535 (3)C12'—N3'1.346 (2)
C6—N41.448 (3)C12'—C13'1.381 (3)
C6—C71.524 (3)C13'—C14'1.379 (3)
C6—C121.550 (3)C13'—H13'0.930
C7—N21.341 (3)C14'—C15'1.374 (3)
C7—C81.392 (3)C14'—H14'0.930
C8—C91.372 (3)C15'—C16'1.372 (3)
C8—H80.930C15'—H15'0.930
C9—C101.370 (3)C16'—N3'1.348 (2)
C9—H90.930C16'—H16'0.930
C10—C111.384 (3)N4—H4A0.86 (4)
C10—H100.930N4—H4B0.79 (3)
C11—N21.340 (2)N5—N61.198 (3)
C11—H110.930N6—N71.159 (4)
C12—N31.342 (3)N8—N91.206 (3)
C12—C131.384 (3)N9—N101.156 (3)
C13—C141.385 (3)N11—N121.180 (3)
C13—H130.930N12—N131.145 (3)
C14—C151.361 (4)N4'—H4C0.92 (3)
C14—H140.930N4'—H4D0.86 (3)
C15—C161.381 (3)N5'—N6'1.196 (2)
C15—H150.930N6'—N7'1.152 (2)
C16—N31.346 (3)N8'—N9'1.195 (2)
C16—H160.930N9'—N10'1.147 (2)
C1'—N1'1.344 (3)N11'—N12'1.194 (2)
C1'—C2'1.373 (3)N12'—N13'1.156 (2)
N11'—Co1'—N8'92.84 (7)C3'—C2'—C1'118.7 (2)
N11'—Co1'—N5'94.69 (7)C3'—C2'—H2'120.7
N8'—Co1'—N5'93.10 (7)C1'—C2'—H2'120.7
N11'—Co1'—N3'176.55 (7)C2'—C3'—C4'119.2 (2)
N8'—Co1'—N3'89.23 (7)C2'—C3'—H3'120.4
N5'—Co1'—N3'87.95 (7)C4'—C3'—H3'120.4
N11'—Co1'—N2'89.69 (7)C5'—C4'—C3'119.6 (2)
N8'—Co1'—N2'87.79 (7)C5'—C4'—H4'120.2
N5'—Co1'—N2'175.48 (7)C3'—C4'—H4'120.2
N3'—Co1'—N2'87.63 (6)N1'—C5'—C4'120.82 (19)
N11'—Co1'—N1'88.91 (7)N1'—C5'—C6'116.36 (15)
N8'—Co1'—N1'175.94 (7)C4'—C5'—C6'122.80 (17)
N5'—Co1'—N1'90.40 (7)N4'—C6'—C5'108.89 (16)
N3'—Co1'—N1'88.84 (7)N4'—C6'—C7'109.04 (16)
N2'—Co1'—N1'88.57 (6)C5'—C6'—C7'108.97 (15)
N11—Co1—N892.79 (9)N4'—C6'—C12'113.23 (16)
N11—Co1—N594.33 (9)C5'—C6'—C12'109.64 (15)
N8—Co1—N592.47 (9)C7'—C6'—C12'106.98 (15)
N11—Co1—N3174.49 (8)N2'—C7'—C8'121.22 (17)
N8—Co1—N388.90 (7)N2'—C7'—C6'115.82 (15)
N5—Co1—N390.83 (8)C8'—C7'—C6'122.96 (16)
N11—Co1—N190.12 (8)C9'—C8'—C7'119.35 (19)
N8—Co1—N1176.71 (8)C9'—C8'—H8'120.3
N5—Co1—N188.82 (9)C7'—C8'—H8'120.3
N3—Co1—N188.06 (7)C10'—C9'—C8'119.51 (19)
N11—Co1—N286.79 (7)C10'—C9'—H9'120.2
N8—Co1—N290.55 (7)C8'—C9'—H9'120.2
N5—Co1—N2176.72 (8)C9'—C10'—C11'118.90 (19)
N3—Co1—N287.95 (7)C9'—C10'—H10'120.5
N1—Co1—N288.10 (7)C11'—C10'—H10'120.5
N1—C1—C2121.4 (3)N2'—C11'—C10'122.12 (18)
N1—C1—H1119.3N2'—C11'—H11'118.9
C2—C1—H1119.3C10'—C11'—H11'118.9
C3—C2—C1119.1 (2)N3'—C12'—C13'121.07 (18)
C3—C2—H2120.4N3'—C12'—C6'116.41 (16)
C1—C2—H2120.4C13'—C12'—C6'122.49 (16)
C2—C3—C4119.8 (2)C14'—C13'—C12'119.39 (19)
C2—C3—H3120.1C14'—C13'—H13'120.3
C4—C3—H3120.1C12'—C13'—H13'120.3
C3—C4—C5118.5 (3)C15'—C14'—C13'119.4 (2)
C3—C4—H4120.7C15'—C14'—H14'120.3
C5—C4—H4120.7C13'—C14'—H14'120.3
N1—C5—C4121.7 (2)C16'—C15'—C14'118.86 (19)
N1—C5—C6116.48 (17)C16'—C15'—H15'120.6
C4—C5—C6121.8 (2)C14'—C15'—H15'120.6
N4—C6—C7109.19 (18)N3'—C16'—C15'122.15 (18)
N4—C6—C5109.42 (18)N3'—C16'—H16'118.9
C7—C6—C5106.55 (16)C15'—C16'—H16'118.9
N4—C6—C12113.13 (17)C5—N1—C1119.4 (2)
C7—C6—C12108.01 (15)C5—N1—Co1120.66 (14)
C5—C6—C12110.32 (16)C1—N1—Co1119.71 (17)
N2—C7—C8121.29 (18)C11—N2—C7118.97 (17)
N2—C7—C6116.02 (17)C11—N2—Co1119.98 (14)
C8—C7—C6122.69 (18)C7—N2—Co1121.03 (13)
C9—C8—C7119.5 (2)C16—N3—C12119.15 (18)
C9—C8—H8120.3C16—N3—Co1120.69 (15)
C7—C8—H8120.3C12—N3—Co1120.07 (12)
C10—C9—C8119.0 (2)C6—N4—H4A109 (2)
C10—C9—H9120.5C6—N4—H4B107 (2)
C8—C9—H9120.5H4A—N4—H4B107 (3)
C9—C10—C11119.4 (2)N6—N5—Co1120.19 (19)
C9—C10—H10120.3N7—N6—N5176.7 (3)
C11—C10—H10120.3N9—N8—Co1120.37 (15)
N2—C11—C10121.9 (2)N10—N9—N8176.1 (2)
N2—C11—H11119.0N12—N11—Co1124.36 (17)
C10—C11—H11119.0N13—N12—N11175.3 (3)
N3—C12—C13121.27 (18)C5'—N1'—C1'119.33 (17)
N3—C12—C6117.20 (16)C5'—N1'—Co1'120.43 (13)
C13—C12—C6121.50 (19)C1'—N1'—Co1'120.21 (13)
C14—C13—C12119.0 (2)C11'—N2'—C7'118.88 (16)
C14—C13—H13120.5C11'—N2'—Co1'120.25 (12)
C12—C13—H13120.5C7'—N2'—Co1'120.86 (12)
C15—C14—C13119.6 (2)C12'—N3'—C16'119.08 (16)
C15—C14—H14120.2C12'—N3'—Co1'120.54 (12)
C13—C14—H14120.2C16'—N3'—Co1'120.30 (13)
C14—C15—C16119.1 (2)C6'—N4'—H4C108.3 (14)
C14—C15—H15120.5C6'—N4'—H4D106.8 (17)
C16—C15—H15120.5H4C—N4'—H4D107 (2)
N3—C16—C15121.9 (2)N6'—N5'—Co1'124.28 (14)
N3—C16—H16119.1N7'—N6'—N5'174.3 (2)
C15—C16—H16119.1N9'—N8'—Co1'123.02 (14)
N1'—C1'—C2'122.4 (2)N10'—N9'—N8'175.1 (2)
N1'—C1'—H1'118.8N12'—N11'—Co1'126.01 (14)
C2'—C1'—H1'118.8N13'—N12'—N11'173.6 (2)
N1—C1—C2—C31.5 (4)N8—Co1—N2—C1146.96 (15)
C1—C2—C3—C43.1 (4)N3—Co1—N2—C11135.84 (15)
C2—C3—C4—C51.4 (4)N1—Co1—N2—C11136.03 (15)
C3—C4—C5—N12.0 (3)N11—Co1—N2—C7132.58 (15)
C3—C4—C5—C6178.7 (2)N8—Co1—N2—C7134.66 (14)
N1—C5—C6—N4178.02 (17)N3—Co1—N2—C745.78 (14)
C4—C5—C6—N45.1 (3)N1—Co1—N2—C742.35 (14)
N1—C5—C6—C764.1 (2)C13—C12—N3—C161.1 (3)
C4—C5—C6—C7112.9 (2)C6—C12—N3—C16179.17 (18)
N1—C5—C6—C1252.9 (2)C13—C12—N3—Co1175.64 (15)
C4—C5—C6—C12130.1 (2)C6—C12—N3—Co12.4 (2)
N4—C6—C7—N2179.37 (17)C15—C16—N3—C120.2 (3)
C5—C6—C7—N261.3 (2)C15—C16—N3—Co1176.57 (17)
C12—C6—C7—N257.2 (2)N8—Co1—N3—C12133.04 (15)
N4—C6—C7—C80.6 (3)N5—Co1—N3—C12134.50 (16)
C5—C6—C7—C8118.7 (2)N1—Co1—N3—C1245.72 (15)
C12—C6—C7—C8122.74 (19)N2—Co1—N3—C1242.45 (15)
N2—C7—C8—C90.1 (3)N8—Co1—N3—C1643.67 (17)
C6—C7—C8—C9179.86 (18)N5—Co1—N3—C1648.78 (17)
C7—C8—C9—C100.3 (3)N1—Co1—N3—C16137.57 (16)
C8—C9—C10—C110.4 (3)N2—Co1—N3—C16134.27 (16)
C9—C10—C11—N20.1 (3)N11—Co1—N5—N670.1 (2)
N4—C6—C12—N3178.29 (19)N8—Co1—N5—N622.9 (2)
C7—C6—C12—N360.7 (2)N3—Co1—N5—N6111.8 (2)
C5—C6—C12—N355.3 (2)N1—Co1—N5—N6160.2 (2)
N4—C6—C12—C133.7 (3)N11—Co1—N8—N918.42 (18)
C7—C6—C12—C13117.3 (2)N5—Co1—N8—N976.04 (19)
C5—C6—C12—C13126.6 (2)N3—Co1—N8—N9166.82 (18)
N3—C12—C13—C140.5 (3)N2—Co1—N8—N9105.24 (18)
C6—C12—C13—C14178.5 (2)N8—Co1—N11—N1274.7 (2)
C12—C13—C14—C151.1 (3)N5—Co1—N11—N1218.0 (2)
C13—C14—C15—C162.0 (4)N1—Co1—N11—N12106.8 (2)
C14—C15—C16—N31.4 (4)N2—Co1—N11—N12165.1 (2)
N1'—C1'—C2'—C3'0.1 (4)C2'—C1'—N1'—C5'0.6 (3)
C1'—C2'—C3'—C4'0.6 (4)C2'—C1'—N1'—Co1'177.29 (19)
C2'—C3'—C4'—C5'0.4 (4)C4'—C5'—N1'—C1'0.9 (3)
C3'—C4'—C5'—N1'0.4 (3)C6'—C5'—N1'—C1'179.44 (18)
C3'—C4'—C5'—C6'178.8 (2)C4'—C5'—N1'—Co1'177.02 (15)
N1'—C5'—C6'—N4'178.84 (16)C6'—C5'—N1'—Co1'1.5 (2)
C4'—C5'—C6'—N4'0.3 (3)N11'—Co1'—N1'—C1'45.45 (16)
N1'—C5'—C6'—C7'60.0 (2)N5'—Co1'—N1'—C1'49.24 (17)
C4'—C5'—C6'—C7'118.5 (2)N3'—Co1'—N1'—C1'137.18 (16)
N1'—C5'—C6'—C12'56.8 (2)N2'—Co1'—N1'—C1'135.16 (16)
C4'—C5'—C6'—C12'124.7 (2)N11'—Co1'—N1'—C5'132.45 (15)
N4'—C6'—C7'—N2'177.58 (16)N5'—Co1'—N1'—C5'132.86 (15)
C5'—C6'—C7'—N2'58.9 (2)N3'—Co1'—N1'—C5'44.92 (14)
C12'—C6'—C7'—N2'59.6 (2)N2'—Co1'—N1'—C5'42.74 (14)
N4'—C6'—C7'—C8'3.4 (3)C10'—C11'—N2'—C7'0.6 (3)
C5'—C6'—C7'—C8'122.16 (19)C10'—C11'—N2'—Co1'178.25 (15)
C12'—C6'—C7'—C8'119.37 (19)C8'—C7'—N2'—C11'0.1 (3)
N2'—C7'—C8'—C9'0.1 (3)C6'—C7'—N2'—C11'179.11 (16)
C6'—C7'—C8'—C9'179.01 (19)C8'—C7'—N2'—Co1'178.76 (15)
C7'—C8'—C9'—C10'0.5 (3)C6'—C7'—N2'—Co1'0.2 (2)
C8'—C9'—C10'—C11'1.0 (3)N8'—Co1'—N2'—C11'44.40 (15)
C9'—C10'—C11'—N2'1.1 (3)N11'—Co1'—N2'—C11'48.46 (15)
N4'—C6'—C12'—N3'179.50 (17)N3'—Co1'—N2'—C11'133.72 (15)
C5'—C6'—C12'—N3'57.7 (2)N1'—Co1'—N2'—C11'137.38 (14)
C7'—C6'—C12'—N3'60.4 (2)N8'—Co1'—N2'—C7'134.45 (14)
N4'—C6'—C12'—C13'2.7 (3)N11'—Co1'—N2'—C7'132.69 (14)
C5'—C6'—C12'—C13'124.5 (2)N3'—Co1'—N2'—C7'45.13 (14)
C7'—C6'—C12'—C13'117.5 (2)N1'—Co1'—N2'—C7'43.77 (14)
N3'—C12'—C13'—C14'1.2 (3)C13'—C12'—N3'—C16'0.5 (3)
C6'—C12'—C13'—C14'176.6 (2)C6'—C12'—N3'—C16'177.43 (17)
C12'—C13'—C14'—C15'1.0 (4)C13'—C12'—N3'—Co1'177.26 (16)
C13'—C14'—C15'—C16'0.0 (4)C6'—C12'—N3'—Co1'0.6 (2)
C14'—C15'—C16'—N3'0.7 (3)C15'—C16'—N3'—C12'0.5 (3)
C4—C5—N1—C13.5 (3)C15'—C16'—N3'—Co1'176.31 (16)
C6—C5—N1—C1179.55 (18)N8'—Co1'—N3'—C12'132.36 (15)
C4—C5—N1—Co1171.08 (16)N5'—Co1'—N3'—C12'134.51 (15)
C6—C5—N1—Co15.8 (2)N2'—Co1'—N3'—C12'44.53 (14)
C2—C1—N1—C51.8 (3)N1'—Co1'—N3'—C12'44.08 (15)
C2—C1—N1—Co1172.90 (19)N8'—Co1'—N3'—C16'44.41 (15)
N11—Co1—N1—C5126.64 (16)N5'—Co1'—N3'—C16'48.72 (15)
N5—Co1—N1—C5139.03 (16)N2'—Co1'—N3'—C16'132.23 (15)
N3—Co1—N1—C548.16 (15)N1'—Co1'—N3'—C16'139.16 (15)
N2—Co1—N1—C539.85 (15)N8'—Co1'—N5'—N6'76.66 (18)
N11—Co1—N1—C147.94 (17)N11'—Co1'—N5'—N6'16.46 (18)
N5—Co1—N1—C146.39 (18)N3'—Co1'—N5'—N6'165.77 (18)
N3—Co1—N1—C1137.25 (17)N1'—Co1'—N5'—N6'105.40 (18)
N2—Co1—N1—C1134.73 (17)N11'—Co1'—N8'—N9'67.91 (18)
C10—C11—N2—C70.3 (3)N5'—Co1'—N8'—N9'26.95 (18)
C10—C11—N2—Co1178.16 (16)N3'—Co1'—N8'—N9'114.85 (18)
C8—C7—N2—C110.4 (3)N2'—Co1'—N8'—N9'157.49 (18)
C6—C7—N2—C11179.59 (16)N8'—Co1'—N11'—N12'35.41 (19)
C8—C7—N2—Co1178.01 (14)N5'—Co1'—N11'—N12'57.94 (19)
C6—C7—N2—Co12.0 (2)N2'—Co1'—N11'—N12'123.19 (18)
N11—Co1—N2—C1145.80 (15)N1'—Co1'—N11'—N12'148.24 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N6i0.86 (4)2.68 (4)3.463 (3)154 (3)
N4—H4A···N5i0.86 (4)2.69 (4)3.514 (3)163 (3)
N4—H4C···N10ii0.92 (3)2.44 (2)3.065 (3)124.7 (18)
N4—H4D···N13iii0.86 (3)2.38 (3)3.213 (3)162 (2)
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1, z+1; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Co(N3)3(C16H14N4)]
Mr447.33
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)10.2063 (3), 13.6760 (6), 14.4735 (2)
α, β, γ (°)68.150 (3), 77.114 (2), 80.249 (2)
V3)1819.53 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.98
Crystal size (mm)0.20 × 0.14 × 0.12
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.828, 0.892
No. of measured, independent and
observed [I > 2σ(I)] reflections
18878, 6655, 5825
Rint0.018
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.087, 1.00
No. of reflections6655
No. of parameters557
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.22

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N6'i0.86 (4)2.68 (4)3.463 (3)154 (3)
N4—H4A···N5'i0.86 (4)2.69 (4)3.514 (3)163 (3)
N4'—H4C···N10ii0.92 (3)2.44 (2)3.065 (3)124.7 (18)
N4'—H4D···N13'iii0.86 (3)2.38 (3)3.213 (3)162 (2)
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1, z+1; (iii) x+1, y, z.
 

Acknowledgements

This work is supported by the Natural Science Foundation of Shandong Province (grant No. Y2007D39).

References

First citationArnold, P. J., Davies, S. C., Dilworth, J. R., Durrant, M. C., Griffiths, D. V., Hughes, D. L., Richards, R. L. & Sharpe, P. C. (2001). J. Chem. Soc. Dalton Trans. pp. 736–746.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChun, H. & Bernal, I. (2000). Acta Cryst. C56, 1326–1329.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMa, D.-Q., Hikichi, S., Akita, M. & Morooka, Y. (2000). J. Chem. Soc. Dalton Trans. pp. 1123–1134.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds