organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzaldehyde thio­semicarbazone

aDongchang College, Liaocheng University, Liaocheng 250059, People's Republic of China
*Correspondence e-mail: konglingqian08@163.com

(Received 5 October 2008; accepted 17 November 2008; online 22 November 2008)

The title compound, C8H9N3S, contains two mol­ecules in the asymmetric unit. One mol­ecule is close to being planar (r.m.s. deviation from the mean plane = 0.06 Å for the non-H atoms), while the other exhibits a dihedral angle of 21.7 (1)° between the benzene ring and the mean plane of the thio­semicarbazone unit. Inter­molecular N—H⋯S hydrogen bonds link the mol­ecules into layers parallel to the (010) plane.

Related literature

For background literature concerning aryl­hydrazone compounds, see: Beraldo & Gambino (2004[Beraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem. 4, 31-39.]); Bondock et al. (2007[Bondock, S., Khalifa, W. & Fadda, A. A. (2007). Eur. J. Med. Chem. 42, 948-954.]). For the related 2,4-dichloro­benzyl­idene compound, see: Jing et al. (2006[Jing, Z.-L., Zhang, Q.-Z., Yu, M. & Chen, X. (2006). Acta Cryst. E62, o4489-o4490.]).

[Scheme 1]

Experimental

Crystal data
  • C8H9N3S

  • Mr = 179.24

  • Triclinic, [P \overline 1]

  • a = 5.8692 (13) Å

  • b = 12.513 (2) Å

  • c = 13.519 (2) Å

  • α = 112.735 (3)°

  • β = 95.384 (2)°

  • γ = 96.153 (2)°

  • V = 900.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 298 (2) K

  • 0.24 × 0.13 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.930, Tmax = 0.970

  • 4740 measured reflections

  • 3124 independent reflections

  • 1846 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.162

  • S = 0.95

  • 3124 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯S1i 0.86 2.64 3.443 (3) 155
N3—H3A⋯S1ii 0.86 2.98 3.488 (3) 120
N5—H5⋯S1ii 0.86 2.61 3.441 (3) 162
N6—H6B⋯S2iii 0.86 2.51 3.368 (3) 173
Symmetry codes: (i) -x+3, -y+2, -z+2; (ii) x-1, y, z; (iii) -x+2, -y+2, -z+1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Aryl-hydrazones, such as semicarbazones, thiosemicarbazones and guanyl hydrazones, often exhibit strong biological activity and are important compounds for drug design (Beraldo & Gambino, 2004), organocatalysis and the preparation of heterocyclic rings (Bondock et al., 2007).

Related literature top

For background literature concerning arylhydrazone compounds, see: Beraldo & Gambino (2004); Bondock et al. (2007). For the related 2,4-dichlorobenzylidene compound, see: Jing et al. (2006).

Experimental top

Benzaldehyde (0.3 mmol), thiosemicarbazide (0.3 mmol) and 10 ml water were mixed in a 50 ml flask. After stirring for 30 min at 373 K, the resulting mixture was recrystallized from ethanol, affording the title compound as colourless crystals. Elemental analysis: calculated C 53.61, H 5.06, N 23.44%; found: C 53.58, H 5.55, N 23.51%.

Refinement top

H atoms were placed in geometrically idealized positions (N—H = 0.86, C—H = 0.93 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(C/N).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Two molecules in the asymmetric unit of the title compound with displacement ellipsoids shown at 30% probability for non-H atoms.
Benzaldehyde thiosemicarbazone top
Crystal data top
C8H9N3SZ = 4
Mr = 179.24F(000) = 376
Triclinic, P1Dx = 1.322 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.8692 (13) ÅCell parameters from 1310 reflections
b = 12.513 (2) Åθ = 2.9–25.0°
c = 13.519 (2) ŵ = 0.31 mm1
α = 112.735 (3)°T = 298 K
β = 95.384 (2)°Block, orange
γ = 96.153 (2)°0.24 × 0.13 × 0.10 mm
V = 900.4 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3124 independent reflections
Radiation source: fine-focus sealed tube1846 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 66
Tmin = 0.930, Tmax = 0.970k = 1214
4740 measured reflectionsl = 1614
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0856P)2]
where P = (Fo2 + 2Fc2)/3
3124 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C8H9N3Sγ = 96.153 (2)°
Mr = 179.24V = 900.4 (3) Å3
Triclinic, P1Z = 4
a = 5.8692 (13) ÅMo Kα radiation
b = 12.513 (2) ŵ = 0.31 mm1
c = 13.519 (2) ÅT = 298 K
α = 112.735 (3)°0.24 × 0.13 × 0.10 mm
β = 95.384 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3124 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1846 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.970Rint = 0.039
4740 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 0.95Δρmax = 0.31 e Å3
3124 reflectionsΔρmin = 0.27 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.9674 (5)0.8260 (3)0.9684 (2)0.0484 (8)
N21.1667 (5)0.8822 (3)0.9512 (2)0.0504 (8)
H21.29340.89990.99560.061*
N30.9536 (5)0.8863 (3)0.8034 (2)0.0550 (9)
H3A0.83310.85630.82080.066*
H3B0.94140.90200.74670.066*
N40.3374 (5)0.7659 (3)0.4823 (2)0.0486 (8)
N50.4649 (5)0.8653 (3)0.5625 (2)0.0518 (8)
H50.42000.89500.62490.062*
N60.7036 (6)0.8737 (3)0.4423 (3)0.0612 (10)
H6A0.60920.81660.39300.073*
H6B0.82620.90310.42590.073*
S11.40293 (17)0.96409 (10)0.83250 (8)0.0561 (3)
S20.83277 (19)1.02721 (9)0.64490 (8)0.0610 (4)
C10.9813 (7)0.8063 (3)1.0543 (3)0.0500 (9)
H11.11690.83411.10400.060*
C20.7837 (7)0.7398 (3)1.0749 (3)0.0493 (10)
C30.5747 (7)0.7039 (3)1.0076 (3)0.0569 (10)
H30.55660.72290.94750.068*
C40.3920 (8)0.6403 (4)1.0277 (4)0.0660 (12)
H40.25160.61670.98140.079*
C50.4178 (9)0.6118 (4)1.1169 (4)0.0700 (13)
H5A0.29500.56901.13090.084*
C60.6255 (9)0.6472 (4)1.1845 (4)0.0675 (12)
H60.64310.62831.24470.081*
C70.8081 (8)0.7104 (3)1.1640 (3)0.0584 (11)
H70.94860.73361.21000.070*
C81.1574 (6)0.9084 (3)0.8637 (3)0.0438 (9)
C90.1484 (7)0.7251 (3)0.5034 (3)0.0484 (9)
H90.09690.76580.56870.058*
C100.0129 (6)0.6152 (3)0.4263 (3)0.0455 (9)
C110.2018 (7)0.5775 (4)0.4462 (4)0.0607 (11)
H110.26220.62460.50650.073*
C120.3267 (8)0.4700 (4)0.3766 (4)0.0695 (13)
H120.47160.44530.38980.083*
C130.2378 (9)0.4002 (4)0.2889 (4)0.0736 (13)
H130.32050.32700.24350.088*
C140.0287 (9)0.4368 (4)0.2671 (4)0.0730 (13)
H140.02870.38930.20600.088*
C150.0981 (7)0.5436 (3)0.3350 (3)0.0576 (11)
H150.24100.56800.31980.069*
C160.6604 (6)0.9162 (3)0.5434 (3)0.0443 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0460 (19)0.0479 (18)0.0522 (19)0.0088 (15)0.0119 (15)0.0195 (15)
N20.0434 (18)0.056 (2)0.0511 (19)0.0056 (15)0.0037 (15)0.0225 (16)
N30.0415 (19)0.072 (2)0.0521 (19)0.0021 (16)0.0018 (16)0.0296 (17)
N40.0452 (19)0.0479 (18)0.0471 (18)0.0024 (15)0.0008 (15)0.0170 (15)
N50.048 (2)0.0513 (19)0.0488 (19)0.0080 (15)0.0049 (15)0.0170 (15)
N60.055 (2)0.063 (2)0.055 (2)0.0165 (17)0.0107 (17)0.0171 (17)
S10.0434 (6)0.0700 (7)0.0494 (6)0.0008 (5)0.0081 (5)0.0196 (5)
S20.0595 (7)0.0634 (7)0.0504 (6)0.0189 (5)0.0037 (5)0.0224 (5)
C10.054 (2)0.046 (2)0.049 (2)0.0123 (19)0.0080 (19)0.0165 (18)
C20.060 (3)0.039 (2)0.047 (2)0.0102 (19)0.014 (2)0.0133 (17)
C30.058 (3)0.057 (3)0.056 (2)0.012 (2)0.004 (2)0.023 (2)
C40.054 (3)0.060 (3)0.082 (3)0.013 (2)0.011 (2)0.024 (2)
C50.078 (3)0.053 (3)0.083 (3)0.010 (2)0.033 (3)0.028 (2)
C60.088 (4)0.058 (3)0.060 (3)0.011 (3)0.021 (3)0.026 (2)
C70.071 (3)0.048 (2)0.050 (2)0.004 (2)0.006 (2)0.0163 (19)
C80.044 (2)0.043 (2)0.040 (2)0.0094 (17)0.0079 (18)0.0112 (17)
C90.044 (2)0.050 (2)0.051 (2)0.0031 (18)0.0108 (18)0.0215 (18)
C100.039 (2)0.044 (2)0.054 (2)0.0005 (16)0.0022 (17)0.0224 (18)
C110.049 (2)0.062 (3)0.074 (3)0.001 (2)0.013 (2)0.032 (2)
C120.047 (3)0.070 (3)0.094 (4)0.012 (2)0.001 (2)0.043 (3)
C130.078 (3)0.048 (3)0.081 (3)0.012 (2)0.015 (3)0.022 (2)
C140.078 (3)0.062 (3)0.066 (3)0.002 (3)0.005 (3)0.015 (2)
C150.052 (2)0.053 (2)0.063 (3)0.000 (2)0.007 (2)0.020 (2)
C160.044 (2)0.044 (2)0.048 (2)0.0003 (17)0.0004 (18)0.0248 (18)
Geometric parameters (Å, º) top
N1—C11.274 (5)C3—H30.930
N1—N21.385 (4)C4—C51.384 (6)
N2—C81.342 (5)C4—H40.930
N2—H20.860C5—C61.371 (7)
N3—C81.320 (5)C5—H5A0.930
N3—H3A0.860C6—C71.377 (6)
N3—H3B0.860C6—H60.930
N4—C91.274 (5)C7—H70.930
N4—N51.375 (4)C9—C101.453 (5)
N5—C161.347 (4)C9—H90.930
N5—H50.860C10—C111.385 (5)
N6—C161.321 (4)C10—C151.390 (5)
N6—H6A0.860C11—C121.383 (6)
N6—H6B0.860C11—H110.930
S1—C81.693 (4)C12—C131.362 (6)
S2—C161.674 (4)C12—H120.930
C1—C21.466 (5)C13—C141.362 (6)
C1—H10.930C13—H130.930
C2—C31.375 (5)C14—C151.376 (6)
C2—C71.388 (5)C14—H140.930
C3—C41.377 (6)C15—H150.930
C1—N1—N2116.5 (3)C7—C6—H6119.8
C8—N2—N1118.4 (3)C6—C7—C2120.4 (4)
C8—N2—H2120.8C6—C7—H7119.8
N1—N2—H2120.8C2—C7—H7119.8
C8—N3—H3A120.0N3—C8—N2117.6 (3)
C8—N3—H3B120.0N3—C8—S1122.5 (3)
H3A—N3—H3B120.0N2—C8—S1119.9 (3)
C9—N4—N5117.1 (3)N4—C9—C10120.4 (4)
C16—N5—N4120.0 (3)N4—C9—H9119.8
C16—N5—H5120.0C10—C9—H9119.8
N4—N5—H5120.0C11—C10—C15118.8 (4)
C16—N6—H6A120.0C11—C10—C9119.6 (4)
C16—N6—H6B120.0C15—C10—C9121.6 (3)
H6A—N6—H6B120.0C12—C11—C10120.1 (4)
N1—C1—C2120.0 (4)C12—C11—H11119.9
N1—C1—H1120.0C10—C11—H11119.9
C2—C1—H1120.0C13—C12—C11120.1 (4)
C3—C2—C7118.8 (4)C13—C12—H12119.9
C3—C2—C1121.9 (4)C11—C12—H12119.9
C7—C2—C1119.3 (4)C14—C13—C12120.5 (4)
C2—C3—C4121.0 (4)C14—C13—H13119.8
C2—C3—H3119.5C12—C13—H13119.8
C4—C3—H3119.5C13—C14—C15120.4 (5)
C3—C4—C5119.8 (5)C13—C14—H14119.8
C3—C4—H4120.1C15—C14—H14119.8
C5—C4—H4120.1C14—C15—C10120.1 (4)
C6—C5—C4119.7 (4)C14—C15—H15119.9
C6—C5—H5A120.2C10—C15—H15119.9
C4—C5—H5A120.2N6—C16—N5116.4 (3)
C5—C6—C7120.4 (4)N6—C16—S2123.6 (3)
C5—C6—H6119.8N5—C16—S2120.0 (3)
C1—N1—N2—C8177.7 (3)N1—N2—C8—S1173.6 (2)
C9—N4—N5—C16176.7 (3)N5—N4—C9—C10175.1 (3)
N2—N1—C1—C2175.6 (3)N4—C9—C10—C11174.2 (4)
N1—C1—C2—C34.5 (6)N4—C9—C10—C158.9 (6)
N1—C1—C2—C7174.5 (4)C15—C10—C11—C120.6 (6)
C7—C2—C3—C40.2 (6)C9—C10—C11—C12176.4 (4)
C1—C2—C3—C4179.3 (4)C10—C11—C12—C130.8 (7)
C2—C3—C4—C50.0 (6)C11—C12—C13—C141.9 (7)
C3—C4—C5—C60.0 (6)C12—C13—C14—C151.7 (7)
C4—C5—C6—C70.2 (7)C13—C14—C15—C100.2 (7)
C5—C6—C7—C20.4 (6)C11—C10—C15—C140.9 (6)
C3—C2—C7—C60.4 (6)C9—C10—C15—C14176.0 (4)
C1—C2—C7—C6179.5 (3)N4—N5—C16—N67.6 (5)
N1—N2—C8—N34.7 (5)N4—N5—C16—S2172.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S1i0.862.643.443 (3)155
N3—H3A···S1ii0.862.983.488 (3)120
N5—H5···S1ii0.862.613.441 (3)162
N6—H6B···S2iii0.862.513.368 (3)173
Symmetry codes: (i) x+3, y+2, z+2; (ii) x1, y, z; (iii) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC8H9N3S
Mr179.24
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)5.8692 (13), 12.513 (2), 13.519 (2)
α, β, γ (°)112.735 (3), 95.384 (2), 96.153 (2)
V3)900.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.24 × 0.13 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.930, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
4740, 3124, 1846
Rint0.039
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.162, 0.95
No. of reflections3124
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.27

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S1i0.862.643.443 (3)155.1
N3—H3A···S1ii0.862.983.488 (3)120.1
N5—H5···S1ii0.862.613.441 (3)161.9
N6—H6B···S2iii0.862.513.368 (3)173.3
Symmetry codes: (i) x+3, y+2, z+2; (ii) x1, y, z; (iii) x+2, y+2, z+1.
 

Acknowledgements

This project was supported by the Foundation of Dongchang College, Liaocheng University (grant No. DCLG2008002).

References

First citationBeraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem. 4, 31–39.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBondock, S., Khalifa, W. & Fadda, A. A. (2007). Eur. J. Med. Chem. 42, 948–954.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJing, Z.-L., Zhang, Q.-Z., Yu, M. & Chen, X. (2006). Acta Cryst. E62, o4489–o4490.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds