metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{N,N′-Bis[(E)-3-phenyl­allyl­­idene]ethane-1,2-di­amine}di­chloridozinc(II)

aSchool of Chemistry and Materials Science, Ludong University, Shandong 264025, People's Republic of China, and bSchool of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430073, People's Republic of China
*Correspondence e-mail: honglancai74@126.com

(Received 11 October 2008; accepted 14 November 2008; online 22 November 2008)

In the title compound, [ZnCl2(C20H20N2)], the ZnII atom is four coordinated in a distorted tetra­hedral geometry by two N atoms of the Schiff base ligand and by two Cl atoms. Edge-to-face C—H⋯π inter­actions exist between mol­ecules, with a dihedral angle of 37.8 (1)° between the benzene ring planes and a shortest H⋯centroid distance of 3.62 (5) Å.

Related literature

For related literature on transition metal complexes of Schiff base ligands, see: Bhatia et al. (1981[Bhatia, S. C., Bindlish, J. M., Saini, A. R. & Jain, P. C. (1981). J. Chem. Soc. Dalton Trans. pp. 1773-1779.]); Costamagna et al. (1992[Costamagna, J., Vargas, J., Latorre, R., Alvarado, A. & Mena, G. (1992). Coord. Chem. Rev. 119, 67-88.]). For related complexes of ZnCl2 with bidentate ligands, see: Tolman et al. (1991[Tolman, W. B., Liu, S., Bentsen, J. G. & Lippard, S. J. (1991). J. Am. Chem. Soc. 113, 152-164.]); Wang et al. (2007[Wang, F.-W., Wei, Y.-J. & Zhu, Q.-Y. (2007). Acta Cryst. E63, m1084-m1085.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C20H20N2)]

  • Mr = 424.65

  • Monoclinic, P 21 /c

  • a = 7.2140 (8) Å

  • b = 20.265 (2) Å

  • c = 14.0906 (16) Å

  • β = 94.913 (2)°

  • V = 2052.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.46 mm−1

  • T = 300 (2) K

  • 0.23 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.730, Tmax = 0.868

  • 15814 measured reflections

  • 4458 independent reflections

  • 3027 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.132

  • S = 0.99

  • 4458 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Transition-metal compounds containing Schiff-base ligands play an important role in the development of coordination chemistry related to catalysis and enzymatic reactions, magnetism and molecular architectures (Costamagna et al., 1992; Bhatia et al., 1981). In the title compound (Fig. 1), the ZnII atom is coordinated by a bidentate Schiff-base ligand and two Cl atoms in a slightly distorted tetrahedral geometry. The Zn—Cl bond distances are comparable to those observed in the related compounds [ZnCl2(C12H16BrClN2O)] (Wang et al., 2007) and [ZnCl2(C16H18N4O)] (Tolman et al., 1991).

Related literature top

For related literature on transition metal complexes of Schiff base ligands, see: Bhatia et al. (1981); Costamagna et al. (1992). For related complexes of ZnCl2 with bidentate ligands, see: Tolman et al. (1991); Wang et al. (2007).

Experimental top

Cinnamaldehyde (0.2 mmol, 26.4 mg), ZnCl2.6H2O (0.1 mmol, 24 mg) and ethylenediamine (0.1 mmol, 6.4 mg) were dissolved in methanol (10 ml). The mixture was stirred for 30 min at room temperature to give a clear yellow solution, which was left in air for a few days to give yellow crystals of the title compound (yield 79%). Elemental analysis calculated: C 56.56, H 4.75, N 6.60%; found: C 56.79, H 4.49, N 6.31%.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 or 0.97 Å for aromatic and ethyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure with displacement ellipsoids drawn at 50% probability for non-H atoms.
[Figure 2] Fig. 2. Packing diagram viewed along the a axis.
{N,N'-Bis[(E)-3-phenylallylidene]ethane-1,2-diamine} dichloridozinc(II) top
Crystal data top
[ZnCl2(C20H20N2)]F(000) = 872
Mr = 424.65Dx = 1.374 Mg m3
Monoclinic, P21/cMelting point: 553 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.2140 (8) ÅCell parameters from 2760 reflections
b = 20.265 (2) Åθ = 2.1–28.1°
c = 14.0906 (16) ŵ = 1.46 mm1
β = 94.913 (2)°T = 300 K
V = 2052.4 (4) Å3Block, yellow
Z = 40.23 × 0.20 × 0.10 mm
Data collection top
Bruker SMART CCD
diffractometer
4458 independent reflections
Radiation source: fine-focus sealed tube3027 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan
SADABS (Sheldrick, 1996)
h = 99
Tmin = 0.730, Tmax = 0.868k = 2524
15814 measured reflectionsl = 1712
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0805P)2]
where P = (Fo2 + 2Fc2)/3
4458 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[ZnCl2(C20H20N2)]V = 2052.4 (4) Å3
Mr = 424.65Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.2140 (8) ŵ = 1.46 mm1
b = 20.265 (2) ÅT = 300 K
c = 14.0906 (16) Å0.23 × 0.20 × 0.10 mm
β = 94.913 (2)°
Data collection top
Bruker SMART CCD
diffractometer
4458 independent reflections
Absorption correction: multi-scan
SADABS (Sheldrick, 1996)
3027 reflections with I > 2σ(I)
Tmin = 0.730, Tmax = 0.868Rint = 0.030
15814 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 0.99Δρmax = 0.50 e Å3
4458 reflectionsΔρmin = 0.29 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.09704 (4)0.575283 (15)0.83248 (3)0.06115 (16)
C10.2380 (5)0.84830 (15)0.8767 (2)0.0731 (8)
C20.2309 (7)0.91286 (17)0.9108 (3)0.0965 (13)
H20.12600.92740.93870.116*
C30.3789 (9)0.9553 (2)0.9034 (4)0.1214 (18)
H30.37360.99820.92640.146*
C40.5311 (10)0.9345 (3)0.8629 (4)0.1234 (19)
H40.63030.96330.85850.148*
C50.5423 (6)0.8711 (2)0.8278 (3)0.1013 (12)
H50.64820.85740.80000.122*
C60.3962 (5)0.82863 (17)0.8343 (2)0.0822 (9)
H60.40290.78610.81000.099*
C70.0772 (4)0.80522 (15)0.8855 (2)0.0706 (8)
H70.02860.82500.90600.085*
C80.0665 (4)0.74079 (14)0.8672 (2)0.0674 (8)
H80.17050.71950.84710.081*
C90.0972 (4)0.70302 (14)0.8772 (2)0.0637 (7)
H90.20260.72480.89470.076*
C100.2802 (4)0.60569 (14)0.8766 (2)0.0694 (8)
H10A0.38570.63480.86260.083*
H10B0.28030.59120.94220.083*
C110.2957 (4)0.54701 (14)0.8112 (2)0.0673 (8)
H11A0.39800.51900.82670.081*
H11B0.31940.56150.74570.081*
C120.1214 (4)0.44778 (15)0.8336 (2)0.0630 (7)
H120.23640.42680.83000.076*
C130.0416 (4)0.40785 (14)0.8503 (2)0.0624 (7)
H130.15780.42800.85370.075*
C140.0320 (4)0.34316 (14)0.8611 (2)0.0661 (7)
H140.08740.32550.85440.079*
C150.1802 (5)0.29590 (14)0.8818 (2)0.0685 (8)
C160.1377 (6)0.22894 (16)0.8800 (2)0.0884 (10)
H160.01540.21520.86600.106*
C170.2773 (10)0.1826 (2)0.8991 (3)0.1219 (18)
H170.24770.13800.89770.146*
C180.4567 (9)0.2015 (3)0.9198 (3)0.131 (2)
H180.54960.17000.93070.158*
C190.5004 (6)0.2675 (3)0.9245 (3)0.1094 (14)
H190.62280.28030.94050.131*
C200.3652 (5)0.31469 (18)0.9059 (2)0.0784 (9)
H200.39670.35920.90930.094*
Cl10.20858 (16)0.59354 (5)0.69366 (8)0.1081 (4)
Cl20.30022 (11)0.55861 (5)0.95630 (7)0.0897 (3)
N10.1064 (3)0.64122 (11)0.86341 (17)0.0614 (6)
N20.1194 (3)0.51002 (10)0.82321 (16)0.0593 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0504 (2)0.0597 (2)0.0751 (3)0.00295 (13)0.01574 (16)0.00885 (15)
C10.096 (2)0.0645 (18)0.0562 (18)0.0083 (16)0.0095 (16)0.0046 (14)
C20.141 (4)0.070 (2)0.074 (3)0.011 (2)0.012 (2)0.0016 (17)
C30.186 (6)0.079 (3)0.091 (3)0.042 (3)0.033 (3)0.002 (2)
C40.158 (5)0.115 (4)0.088 (3)0.066 (3)0.040 (3)0.030 (3)
C50.104 (3)0.116 (3)0.081 (3)0.037 (2)0.015 (2)0.021 (2)
C60.088 (2)0.084 (2)0.073 (2)0.0153 (19)0.0024 (18)0.0062 (18)
C70.079 (2)0.0661 (18)0.066 (2)0.0042 (15)0.0032 (15)0.0019 (15)
C80.0682 (18)0.0607 (18)0.074 (2)0.0033 (13)0.0079 (15)0.0016 (15)
C90.0599 (17)0.0656 (18)0.066 (2)0.0055 (13)0.0109 (14)0.0036 (14)
C100.0510 (16)0.0672 (17)0.093 (2)0.0010 (13)0.0202 (15)0.0057 (16)
C110.0497 (15)0.0717 (18)0.080 (2)0.0018 (13)0.0009 (14)0.0018 (16)
C120.0601 (17)0.0664 (17)0.0626 (19)0.0061 (13)0.0053 (14)0.0033 (14)
C130.0569 (16)0.0596 (16)0.070 (2)0.0013 (12)0.0027 (14)0.0044 (14)
C140.0681 (18)0.0637 (18)0.0661 (19)0.0057 (14)0.0036 (14)0.0026 (14)
C150.089 (2)0.0611 (18)0.0550 (18)0.0098 (15)0.0066 (16)0.0031 (14)
C160.132 (3)0.067 (2)0.064 (2)0.006 (2)0.010 (2)0.0051 (16)
C170.213 (6)0.073 (2)0.075 (3)0.047 (3)0.016 (3)0.0095 (19)
C180.164 (5)0.140 (4)0.088 (3)0.091 (4)0.003 (3)0.008 (3)
C190.093 (3)0.159 (4)0.076 (3)0.046 (3)0.006 (2)0.003 (3)
C200.075 (2)0.091 (2)0.070 (2)0.0096 (18)0.0065 (16)0.0062 (17)
Cl10.1177 (8)0.1124 (7)0.1025 (8)0.0353 (6)0.0584 (6)0.0377 (6)
Cl20.0556 (5)0.1233 (7)0.0894 (6)0.0061 (4)0.0012 (4)0.0130 (5)
N10.0555 (13)0.0600 (14)0.0702 (16)0.0012 (10)0.0137 (11)0.0006 (11)
N20.0549 (13)0.0592 (14)0.0641 (15)0.0023 (10)0.0068 (11)0.0023 (11)
Geometric parameters (Å, º) top
Zn1—N22.042 (2)C10—H10A0.970
Zn1—N12.059 (2)C10—H10B0.970
Zn1—Cl22.2064 (10)C11—N21.473 (3)
Zn1—Cl12.2092 (10)C11—H11A0.970
C1—C61.391 (4)C11—H11B0.970
C1—C21.396 (5)C12—N21.270 (3)
C1—C71.465 (4)C12—C131.431 (4)
C2—C31.382 (6)C12—H120.930
C2—H20.930C13—C141.322 (4)
C3—C41.348 (7)C13—H130.930
C3—H30.930C14—C151.447 (4)
C4—C51.381 (7)C14—H140.930
C4—H40.930C15—C161.391 (4)
C5—C61.370 (5)C15—C201.402 (4)
C5—H50.930C16—C171.386 (6)
C6—H60.930C16—H160.930
C7—C81.332 (4)C17—C181.357 (7)
C7—H70.930C17—H170.930
C8—C91.424 (4)C18—C191.373 (7)
C8—H80.930C18—H180.930
C9—N11.268 (3)C19—C201.375 (5)
C9—H90.930C19—H190.930
C10—N11.471 (3)C20—H200.930
C10—C111.503 (4)
N2—Zn1—N183.04 (9)N2—C11—C10108.3 (2)
N2—Zn1—Cl2113.83 (7)N2—C11—H11A110.0
N1—Zn1—Cl2111.68 (7)C10—C11—H11A110.0
N2—Zn1—Cl1112.73 (8)N2—C11—H11B110.0
N1—Zn1—Cl1113.52 (7)C10—C11—H11B110.0
Cl2—Zn1—Cl1117.26 (4)H11A—C11—H11B108.4
C6—C1—C2118.2 (4)N2—C12—C13124.3 (3)
C6—C1—C7123.4 (3)N2—C12—H12117.8
C2—C1—C7118.5 (4)C13—C12—H12117.8
C3—C2—C1120.4 (5)C14—C13—C12121.9 (3)
C3—C2—H2119.8C14—C13—H13119.0
C1—C2—H2119.8C12—C13—H13119.0
C4—C3—C2120.0 (5)C13—C14—C15129.4 (3)
C4—C3—H3120.0C13—C14—H14115.3
C2—C3—H3120.0C15—C14—H14115.3
C3—C4—C5121.2 (5)C16—C15—C20118.2 (3)
C3—C4—H4119.4C16—C15—C14119.0 (3)
C5—C4—H4119.4C20—C15—C14122.8 (3)
C6—C5—C4119.4 (5)C17—C16—C15120.1 (4)
C6—C5—H5120.3C17—C16—H16119.9
C4—C5—H5120.3C15—C16—H16119.9
C5—C6—C1120.9 (4)C18—C17—C16121.0 (4)
C5—C6—H6119.6C18—C17—H17119.5
C1—C6—H6119.6C16—C17—H17119.5
C8—C7—C1126.9 (3)C17—C18—C19119.7 (4)
C8—C7—H7116.5C17—C18—H18120.1
C1—C7—H7116.5C19—C18—H18120.1
C7—C8—C9122.9 (3)C18—C19—C20120.8 (4)
C7—C8—H8118.6C18—C19—H19119.6
C9—C8—H8118.6C20—C19—H19119.6
N1—C9—C8123.3 (3)C19—C20—C15120.1 (4)
N1—C9—H9118.4C19—C20—H20119.9
C8—C9—H9118.4C15—C20—H20119.9
N1—C10—C11109.2 (2)C9—N1—C10119.9 (2)
N1—C10—H10A109.8C9—N1—Zn1130.1 (2)
C11—C10—H10A109.8C10—N1—Zn1109.86 (16)
N1—C10—H10B109.8C12—N2—C11120.0 (2)
C11—C10—H10B109.8C12—N2—Zn1130.7 (2)
H10A—C10—H10B108.3C11—N2—Zn1109.00 (16)
C6—C1—C2—C30.9 (5)C16—C15—C20—C191.8 (5)
C7—C1—C2—C3179.6 (3)C14—C15—C20—C19179.8 (3)
C1—C2—C3—C40.2 (7)C8—C9—N1—C10179.1 (3)
C2—C3—C4—C50.3 (7)C8—C9—N1—Zn14.1 (4)
C3—C4—C5—C60.0 (7)C11—C10—N1—C9150.3 (3)
C4—C5—C6—C10.8 (5)C11—C10—N1—Zn133.8 (3)
C2—C1—C6—C51.2 (5)N2—Zn1—N1—C9176.0 (3)
C7—C1—C6—C5179.8 (3)Cl2—Zn1—N1—C971.1 (3)
C6—C1—C7—C89.5 (5)Cl1—Zn1—N1—C964.2 (3)
C2—C1—C7—C8171.8 (3)N2—Zn1—N1—C108.69 (19)
C1—C7—C8—C9179.4 (3)Cl2—Zn1—N1—C10104.23 (19)
C7—C8—C9—N1177.3 (3)Cl1—Zn1—N1—C10120.48 (19)
N1—C10—C11—N250.0 (3)C13—C12—N2—C11176.8 (3)
N2—C12—C13—C14179.6 (3)C13—C12—N2—Zn13.6 (4)
C12—C13—C14—C15177.5 (3)C10—C11—N2—C12132.9 (3)
C13—C14—C15—C16173.3 (3)C10—C11—N2—Zn141.7 (3)
C13—C14—C15—C208.3 (5)N1—Zn1—N2—C12155.4 (3)
C20—C15—C16—C171.8 (5)Cl2—Zn1—N2—C1244.7 (3)
C14—C15—C16—C17179.7 (3)Cl1—Zn1—N2—C1292.0 (3)
C15—C16—C17—C180.1 (6)N1—Zn1—N2—C1118.43 (19)
C16—C17—C18—C191.8 (7)Cl2—Zn1—N2—C11129.09 (17)
C17—C18—C19—C201.9 (7)Cl1—Zn1—N2—C1194.19 (18)
C18—C19—C20—C150.0 (6)

Experimental details

Crystal data
Chemical formula[ZnCl2(C20H20N2)]
Mr424.65
Crystal system, space groupMonoclinic, P21/c
Temperature (K)300
a, b, c (Å)7.2140 (8), 20.265 (2), 14.0906 (16)
β (°) 94.913 (2)
V3)2052.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.46
Crystal size (mm)0.23 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
SADABS (Sheldrick, 1996)
Tmin, Tmax0.730, 0.868
No. of measured, independent and
observed [I > 2σ(I)] reflections
15814, 4458, 3027
Rint0.030
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.132, 0.99
No. of reflections4458
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.29

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank Dr Zhi-Dong Lin for assistance with the data.

References

First citationBhatia, S. C., Bindlish, J. M., Saini, A. R. & Jain, P. C. (1981). J. Chem. Soc. Dalton Trans. pp. 1773–1779.  CSD CrossRef Web of Science Google Scholar
First citationCostamagna, J., Vargas, J., Latorre, R., Alvarado, A. & Mena, G. (1992). Coord. Chem. Rev. 119, 67–88.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTolman, W. B., Liu, S., Bentsen, J. G. & Lippard, S. J. (1991). J. Am. Chem. Soc. 113, 152–164.  CSD CrossRef CAS Web of Science Google Scholar
First citationWang, F.-W., Wei, Y.-J. & Zhu, Q.-Y. (2007). Acta Cryst. E63, m1084–m1085.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds