organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(1,3-Benzodioxol-5-yl)-3-(3-bromo­phen­yl)prop-2-en-1-one

aKey Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, cDepartment of Chemistry, P. A. College of Engineering, Mangalore 574 153, India, and dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: hongqili@dhu.edu.cn

(Received 28 October 2008; accepted 12 November 2008; online 20 November 2008)

In the title compound, C16H11BrO3, the mol­ecules adopt an E configuration with respect to the C=C double bond of the propenone unit. The 13 non-H atoms of the benzodioxole and propenone units are approximately coplanar (r.m.s. deviation = 0.027 Å) and the bromo­benzene ring plane forms a dihedral angle of 10.8 (1)° to this plane. The structure is layered, with the mol­ecules forming a herring-bone arrangement within each layer.

Related literature

For the use of chalcones as starting materials in the preparation of various mol­ecules including fused heterocyclic compounds, see: Insuasty et al. (1997[Insuasty, B., Quiroga, J. & Meier, H. (1997). Trends Heterocycl. Chem. 5, 83-89.]). For related structures, see: Butcher et al. (2007a[Butcher, R. J., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007a). Acta Cryst. E63, o1005-o1007.],b[Butcher, R. J., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007b). Acta Cryst. E63, o1201-o1203.],c[Butcher, R. J., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007c). Acta Cryst. E63, o1430-o1431.]); Low et al. (2002[Low, J. N., Cobo, J., Nogueras, M., Sánchez, A., Albornoz, A. & Abonia, R. (2002). Acta Cryst. C58, o42-o45.]).

[Scheme 1]

Experimental

Crystal data
  • C16H11BrO3

  • Mr = 331.16

  • Monoclinic, P 21 /c

  • a = 14.237 (3) Å

  • b = 8.1811 (17) Å

  • c = 11.717 (2) Å

  • β = 100.658 (3)°

  • V = 1341.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.07 mm−1

  • T = 273 (2) K

  • 0.12 × 0.10 × 0.06 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS, SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.710, Tmax = 0.837

  • 6752 measured reflections

  • 2362 independent reflections

  • 1869 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.073

  • S = 1.04

  • 2362 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). SADABS, SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SADABS, SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Chalcones have been widely used as starting materials in preparation of various molecules including fused heterocyclic compounds (Insuasty et al., 1997). Chalcones are also finding application as organic nonlinear optical (NLO) materials because of their SHG conversion efficiency. The crystal structures of some benzodioxol- and bromo-substituted chalcones have been studied (Butcher et al., 2007a,b,c). In continuation of this theme, and also owing to the general importance of these flavanoid analogues, we report herein the synthesis and crystal structure of a new chalcone, namely (2E)-1-(1,3-benzodioxol-5-yl)- 3-(3-bromophenyl)prop-2-en-1-one.

Related literature top

For the use of chalcones as starting materials in the preparation of various molecules including fused heterocyclic compounds, see: Insuasty et al. (1997). For related structures, see: Butcher et al. (2007a,b,c); Low et al. (2002).

Experimental top

To a mixture of 1-(1,3-benzodioxol-5-yl)ethanone (1.64 g, 0.01 mol) and 3-bromobenzaldehyde (1.86 g, 0.01 mol) in 25 ml of ethanol, 50% KOH(aq) was added. The mixture was stirred for one hour at room temperature then the precipitate was collected by filtration and purified by recrystallization from ethanol. Single crystals were grown from toluene by slow evaporation. Yield: 82 %, m.p. 393–395 K. Elemental analysis calculated: C 58.03, H 3.35%; found: C 58.12, H 3.21%.

Refinement top

H atoms were placed at calculated positions and refined using a riding model, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level for non-H atoms.
(E)-1-(1,3-Benzodioxol-5-yl)-3-(3-bromophenyl)prop-2-en-1-one top
Crystal data top
C16H11BrO3F(000) = 664
Mr = 331.16Dx = 1.640 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3007 reflections
a = 14.237 (3) Åθ = 2.9–28.0°
b = 8.1811 (17) ŵ = 3.07 mm1
c = 11.717 (2) ÅT = 273 K
β = 100.658 (3)°Block, colorless
V = 1341.1 (5) Å30.12 × 0.10 × 0.06 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
2362 independent reflections
Radiation source: fine-focus sealed tube1869 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1616
Tmin = 0.710, Tmax = 0.837k = 99
6752 measured reflectionsl = 139
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0383P)2 + 0.3973P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2362 reflectionsΔρmax = 0.35 e Å3
182 parametersΔρmin = 0.30 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0063 (7)
Crystal data top
C16H11BrO3V = 1341.1 (5) Å3
Mr = 331.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.237 (3) ŵ = 3.07 mm1
b = 8.1811 (17) ÅT = 273 K
c = 11.717 (2) Å0.12 × 0.10 × 0.06 mm
β = 100.658 (3)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
2362 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1869 reflections with I > 2σ(I)
Tmin = 0.710, Tmax = 0.837Rint = 0.021
6752 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.04Δρmax = 0.35 e Å3
2362 reflectionsΔρmin = 0.30 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.489230 (17)1.25202 (3)0.29468 (2)0.05206 (13)
O10.93644 (14)0.7277 (2)0.27018 (16)0.0622 (6)
O21.29937 (12)0.4896 (2)0.61302 (13)0.0541 (5)
O31.26700 (12)0.4663 (3)0.41361 (14)0.0599 (5)
C10.58905 (15)1.1426 (3)0.39752 (18)0.0360 (5)
C20.65910 (15)1.0623 (3)0.35360 (18)0.0368 (5)
H20.65751.06080.27390.044*
C30.73304 (16)0.9827 (3)0.42861 (18)0.0370 (5)
C40.73303 (17)0.9887 (3)0.54787 (19)0.0433 (6)
H40.78190.93810.59940.052*
C50.66100 (17)1.0691 (3)0.58983 (19)0.0455 (6)
H50.66151.07090.66930.055*
C60.58831 (16)1.1468 (3)0.51479 (19)0.0427 (6)
H60.53991.20090.54300.051*
C70.80648 (16)0.8953 (3)0.3795 (2)0.0424 (6)
H70.79460.88190.29930.051*
C80.88707 (17)0.8340 (3)0.4361 (2)0.0464 (6)
H80.90180.84550.51640.056*
C90.95504 (19)0.7472 (3)0.3760 (2)0.0431 (6)
C101.04589 (16)0.6841 (3)0.44539 (18)0.0355 (5)
C111.11052 (16)0.6051 (3)0.38609 (19)0.0427 (6)
H111.09720.59280.30580.051*
C121.19286 (16)0.5475 (3)0.45046 (18)0.0386 (5)
C131.21294 (16)0.5615 (3)0.56996 (19)0.0394 (5)
C141.15146 (17)0.6343 (3)0.6304 (2)0.0493 (6)
H141.16500.64180.71090.059*
C151.06741 (18)0.6969 (3)0.5658 (2)0.0418 (6)
H151.02420.74890.60420.050*
C161.33689 (17)0.4360 (3)0.5143 (2)0.0473 (6)
H16A1.39520.49510.50980.057*
H16B1.35160.32030.52080.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03784 (17)0.0701 (2)0.04670 (18)0.00990 (12)0.00367 (11)0.00788 (12)
O10.0524 (12)0.0986 (16)0.0368 (11)0.0217 (10)0.0111 (8)0.0093 (9)
O20.0400 (10)0.0774 (12)0.0419 (9)0.0128 (9)0.0005 (7)0.0046 (9)
O30.0465 (10)0.0928 (14)0.0404 (9)0.0245 (10)0.0086 (8)0.0085 (9)
C10.0279 (11)0.0424 (13)0.0372 (12)0.0039 (9)0.0045 (9)0.0031 (9)
C20.0360 (12)0.0434 (13)0.0317 (11)0.0044 (10)0.0080 (9)0.0011 (9)
C30.0351 (12)0.0400 (12)0.0361 (12)0.0047 (10)0.0069 (9)0.0021 (10)
C40.0381 (13)0.0520 (14)0.0383 (12)0.0012 (11)0.0034 (10)0.0063 (11)
C50.0462 (14)0.0609 (16)0.0301 (12)0.0019 (12)0.0090 (10)0.0019 (11)
C60.0352 (13)0.0548 (15)0.0403 (13)0.0008 (11)0.0128 (10)0.0035 (11)
C70.0419 (14)0.0489 (14)0.0382 (13)0.0028 (11)0.0127 (10)0.0068 (10)
C80.0439 (14)0.0554 (15)0.0406 (13)0.0076 (12)0.0101 (11)0.0007 (11)
C90.0440 (14)0.0498 (14)0.0375 (14)0.0025 (11)0.0129 (10)0.0058 (10)
C100.0352 (12)0.0384 (11)0.0347 (12)0.0018 (10)0.0113 (9)0.0034 (10)
C110.0437 (14)0.0549 (15)0.0300 (12)0.0041 (11)0.0081 (10)0.0013 (10)
C120.0352 (12)0.0470 (13)0.0356 (12)0.0019 (10)0.0115 (10)0.0016 (10)
C130.0329 (12)0.0474 (13)0.0367 (12)0.0029 (10)0.0031 (9)0.0013 (10)
C140.0473 (15)0.0695 (17)0.0300 (12)0.0052 (13)0.0042 (11)0.0067 (11)
C150.0412 (14)0.0499 (13)0.0369 (13)0.0013 (11)0.0142 (10)0.0034 (10)
C160.0366 (13)0.0539 (15)0.0504 (14)0.0058 (11)0.0056 (11)0.0028 (11)
Geometric parameters (Å, º) top
Br1—C11.908 (2)C7—C81.314 (3)
O1—C91.230 (3)C7—H70.930
O2—C131.373 (3)C8—C91.479 (3)
O2—C161.429 (3)C8—H80.930
O3—C121.382 (3)C9—C101.487 (3)
O3—C161.418 (3)C10—C151.391 (3)
C1—C21.371 (3)C10—C111.408 (3)
C1—C61.376 (3)C11—C121.356 (3)
C2—C31.401 (3)C11—H110.930
C2—H20.930C12—C131.381 (3)
C3—C41.398 (3)C13—C141.360 (3)
C3—C71.469 (3)C14—C151.390 (3)
C4—C51.383 (3)C14—H140.930
C4—H40.930C15—H150.930
C5—C61.383 (3)C16—H16A0.970
C5—H50.930C16—H16B0.970
C6—H60.930
C13—O2—C16106.13 (17)O1—C9—C10120.6 (2)
C12—O3—C16106.43 (17)C8—C9—C10119.1 (2)
C2—C1—C6121.8 (2)C15—C10—C11119.6 (2)
C2—C1—Br1119.75 (16)C15—C10—C9122.3 (2)
C6—C1—Br1118.45 (17)C11—C10—C9118.13 (19)
C1—C2—C3120.1 (2)C12—C11—C10117.5 (2)
C1—C2—H2119.9C12—C11—H11121.3
C3—C2—H2119.9C10—C11—H11121.3
C4—C3—C2118.1 (2)C11—C12—C13122.1 (2)
C4—C3—C7122.7 (2)C11—C12—O3128.7 (2)
C2—C3—C7119.15 (19)C13—C12—O3109.26 (19)
C5—C4—C3120.6 (2)C14—C13—O2128.0 (2)
C5—C4—H4119.7C14—C13—C12122.1 (2)
C3—C4—H4119.7O2—C13—C12109.89 (19)
C6—C5—C4120.7 (2)C13—C14—C15116.7 (2)
C6—C5—H5119.7C13—C14—H14121.6
C4—C5—H5119.7C15—C14—H14121.6
C1—C6—C5118.7 (2)C14—C15—C10122.0 (2)
C1—C6—H6120.7C14—C15—H15119.0
C5—C6—H6120.7C10—C15—H15119.0
C8—C7—C3127.3 (2)O3—C16—O2108.07 (18)
C8—C7—H7116.3O3—C16—H16A110.1
C3—C7—H7116.3O2—C16—H16A110.1
C7—C8—C9122.0 (2)O3—C16—H16B110.1
C7—C8—H8119.0O2—C16—H16B110.1
C9—C8—H8119.0H16A—C16—H16B108.4
O1—C9—C8120.3 (2)
C6—C1—C2—C30.5 (3)C15—C10—C11—C121.4 (3)
Br1—C1—C2—C3179.54 (16)C9—C10—C11—C12179.7 (2)
C1—C2—C3—C40.3 (3)C10—C11—C12—C131.4 (4)
C1—C2—C3—C7179.0 (2)C10—C11—C12—O3179.9 (2)
C2—C3—C4—C51.0 (4)C16—O3—C12—C11178.7 (2)
C7—C3—C4—C5178.4 (2)C16—O3—C12—C132.6 (3)
C3—C4—C5—C60.8 (4)C16—O2—C13—C14178.3 (3)
C2—C1—C6—C50.7 (3)C16—O2—C13—C123.2 (3)
Br1—C1—C6—C5179.37 (17)C11—C12—C13—C140.2 (4)
C4—C5—C6—C10.0 (4)O3—C12—C13—C14179.0 (2)
C4—C3—C7—C810.9 (4)C11—C12—C13—O2178.4 (2)
C2—C3—C7—C8169.8 (2)O3—C12—C13—O20.4 (3)
C3—C7—C8—C9179.6 (2)O2—C13—C14—C15179.3 (2)
C7—C8—C9—O11.4 (4)C12—C13—C14—C151.0 (4)
C7—C8—C9—C10178.7 (2)C13—C14—C15—C101.0 (4)
O1—C9—C10—C15176.9 (2)C11—C10—C15—C140.2 (4)
C8—C9—C10—C153.1 (3)C9—C10—C15—C14178.5 (2)
O1—C9—C10—C111.4 (4)C12—O3—C16—O24.5 (3)
C8—C9—C10—C11178.6 (2)C13—O2—C16—O34.7 (3)

Experimental details

Crystal data
Chemical formulaC16H11BrO3
Mr331.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)14.237 (3), 8.1811 (17), 11.717 (2)
β (°) 100.658 (3)
V3)1341.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)3.07
Crystal size (mm)0.12 × 0.10 × 0.06
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.710, 0.837
No. of measured, independent and
observed [I > 2σ(I)] reflections
6752, 2362, 1869
Rint0.021
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.073, 1.04
No. of reflections2362
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.30

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

TVS thanks Mangalore University for research facilities.

References

First citationBruker (2005). SADABS, SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButcher, R. J., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007a). Acta Cryst. E63, o1005–o1007.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationButcher, R. J., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007b). Acta Cryst. E63, o1201–o1203.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationButcher, R. J., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007c). Acta Cryst. E63, o1430–o1431.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationInsuasty, B., Quiroga, J. & Meier, H. (1997). Trends Heterocycl. Chem. 5, 83–89.  CAS Google Scholar
First citationLow, J. N., Cobo, J., Nogueras, M., Sánchez, A., Albornoz, A. & Abonia, R. (2002). Acta Cryst. C58, o42–o45.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds