metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-bi­phenyl-2,2′-di­carboxyl­ato)bis­­[(2,2′-bi­pyridine)cobalt(II)]

aSchool of Chemistry and Life Science, Maoming University, Maoming 525000, People's Republic of China, and bSchool of Chemical and Environmental Engineering, Maoming University, Maoming 525000, People's Republic of China
*Correspondence e-mail: anz_md@163.com

(Received 28 October 2008; accepted 11 November 2008; online 20 November 2008)

In the title compound, [Co2(C14H8O4)2(C10H8N2)2], the CoII atom is coordinated by two N atoms from one 2,2′-bipyridine ligand and two O atoms from two biphenyl-2,2′-dicarboxyl­ate (2,2′-dpa) ligands in a distorted planar geometry. Longer Co—O contacts [2.437 (3) and 2.552 (3) Å] are formed to the second O atom of each coordinated carboxyl­ate group so that these groups approximate a bidentate coordination mode and the coordination geometry around CoII approaches distorted octa­hedral. The 2,2′-dpa ligands bridge two CoII atoms, forming a cyclic dinuclear complex around a centre of inversion.

Related literature

For metal-organic frameworks containing 2,2′-dpa, see: Rueff et al. (2003[Rueff, J.-M., Pillet, S., Bonaventure, G., Souhassou, M. & Rabu, P. (2003). Eur. J. Inorg. Chem. pp. 4173-4178.]); Wang et al. (2006[Wang, R.-H., Gong, Y.-Q., Han, L., Yuan, D.-Q., Lou, B.-Y., Wu, B.-L. & Hong, M.-C. (2006). J. Mol. Struct. 784, 1-6.]); Xu et al. (2006[Xu, X.-X., Lu, Y., Wang, E.-B., Ma, Y. & Bai, X.-L. (2006). Cryst. Growth Des. 6, 2029-2035.]).

[Scheme 1]

Experimental

Crystal data
  • [Co2(C14H8O4)2(C10H8N2)2]

  • Mr = 910.64

  • Monoclinic, P 21 /n

  • a = 11.236 (2) Å

  • b = 13.198 (2) Å

  • c = 13.393 (2) Å

  • β = 102.90 (2)°

  • V = 1936.1 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.92 mm−1

  • T = 296 (2) K

  • 0.39 × 0.27 × 0.21 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.715, Tmax = 0.830

  • 10081 measured reflections

  • 3408 independent reflections

  • 2591 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.093

  • S = 1.00

  • 3408 reflections

  • 280 parameters

  • H-atom parameters not refined

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

biphenyl-2,2'-dicarboxylic acid (H2dpa) has been demonstrated to be a useful ligand for constructing metal-organic frameworks (Rueff et al., 2003; Wang et al., 2006; Xu et al., 2006). The title compound is a cyclic dinuclear CoII compound in which biphenyl-2,2'-dicarboxylate (2,2'-dpa) acts as a bridging ligand.

As shown in Figure 1, each CoII atom is coordinated by two N atoms from one 2,2'-bipyridine ligand and two O atoms from two biphenyl-2,2'-dicarboxylate ligands, forming a distorted planar geometry. The Co—O and Co—N bond lengths are in the range 1.948 (2)–1.964 (2) and 1.968 (3)–1.989 (3) Å, respectively. Longer Co—O contacts (2.437 (3) and 2.552 (3) Å) are formed to the second O atom of each coordinated carboxylate group, so that these groups approximate a bidentate coordination mode and the coordination geometry around CoII approaches distorted octahedral. The biphenyl-2,2'-dicarboxylate ligand acts as a bridge between CoII atoms to form a cyclic dinuclear complex around a centre of inversion.

Related literature top

For metal-organic frameworks containing 2,2'-dpa, see: Rueff et al. (2003); Wang et al. (2006); Xu et al. (2006).

Experimental top

A mixture of cobalt(II) chloride hexahydrate (0.1 mmol), 2,2'-bipyridine (0.1 mmol), biphenyl-2,2'-dicarboxylic acid (0.2 mmol) and H2O (16 ml) in a 25 ml Teflon-lined stainless steel autoclave was kept at 463 K for five days. Red crystals were obtained after cooling to room temperature with a yield of 12%. Elemental analysis calculated: C 63.25, H 3.51, N 6.15%; found: C 63.21, H 3.39, N 6.09%.

Refinement top

H atoms were placed in calculated positions with C—H = 0.93 Å and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular unit in the title compound showing displacement ellipsoids at 30% probability for non-H atoms. Non-labelled atoms are related to labelled atoms by the symmetry code: 1-x, 1-y, 1-z.
Bis(µ-biphenyl-2,2'-dicarboxylato)bis[(2,2'-bipyridine)cobalt(II)] top
Crystal data top
[Co2(C14H8O4)2(C10H8N2)2]F(000) = 932
Mr = 910.64Dx = 1.562 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3408 reflections
a = 11.236 (2) Åθ = 2.1–25.0°
b = 13.198 (2) ŵ = 0.92 mm1
c = 13.393 (2) ÅT = 296 K
β = 102.90 (2)°Block, red
V = 1936.1 (5) Å30.39 × 0.27 × 0.21 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
3408 independent reflections
Radiation source: fine-focus sealed tube2591 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1313
Tmin = 0.715, Tmax = 0.830k = 1515
10081 measured reflectionsl = 157
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters not refined
S = 1.00 w = 1/[σ2(Fo2) + (0.049P)2 + 0.1211P]
where P = (Fo2 + 2Fc2)/3
3408 reflections(Δ/σ)max = 0.005
280 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Co2(C14H8O4)2(C10H8N2)2]V = 1936.1 (5) Å3
Mr = 910.64Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.236 (2) ŵ = 0.92 mm1
b = 13.198 (2) ÅT = 296 K
c = 13.393 (2) Å0.39 × 0.27 × 0.21 mm
β = 102.90 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3408 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2591 reflections with I > 2σ(I)
Tmin = 0.715, Tmax = 0.830Rint = 0.040
10081 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.093H-atom parameters not refined
S = 1.00Δρmax = 0.23 e Å3
3408 reflectionsΔρmin = 0.28 e Å3
280 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.69884 (3)0.33942 (2)0.55976 (3)0.0362 (8)
C10.4768 (3)0.3112 (2)0.5772 (2)0.0376 (7)
C20.3402 (2)0.30053 (19)0.5493 (2)0.0340 (6)
C30.2858 (3)0.2453 (2)0.4630 (2)0.0432 (7)
H30.33520.21140.42680.052*
C40.1603 (3)0.2389 (2)0.4292 (2)0.0479 (8)
H40.12630.20070.37150.057*
C50.0866 (3)0.2894 (2)0.4814 (2)0.0466 (8)
H50.00210.28640.45910.056*
C60.1389 (3)0.3447 (2)0.5672 (2)0.0420 (7)
H60.08820.37890.60210.050*
C70.2648 (2)0.35125 (19)0.6036 (2)0.0341 (6)
C80.7126 (2)0.4230 (2)0.3940 (2)0.0368 (7)
C90.6933 (2)0.4851 (2)0.2986 (2)0.0344 (6)
C100.6914 (2)0.5897 (2)0.2997 (2)0.0331 (6)
C110.6643 (3)0.6406 (2)0.2068 (2)0.0427 (7)
H110.66490.71110.20660.051*
C120.6363 (3)0.5892 (2)0.1142 (2)0.0483 (8)
H120.61560.62510.05300.058*
C130.6393 (3)0.4859 (2)0.1133 (2)0.0477 (8)
H130.62150.45060.05160.057*
C140.6691 (3)0.4344 (2)0.2050 (2)0.0417 (7)
H140.67320.36410.20440.050*
C150.8778 (3)0.4946 (2)0.6591 (2)0.0466 (8)
H150.83410.53990.61160.056*
C160.9763 (3)0.5291 (3)0.7318 (3)0.0563 (9)
H160.99980.59670.73200.068*
C171.0395 (3)0.4634 (3)0.8038 (3)0.0573 (9)
H171.10480.48620.85430.069*
C181.0053 (3)0.3639 (3)0.8004 (2)0.0515 (8)
H181.04740.31800.84810.062*
C190.9069 (2)0.3323 (2)0.7249 (2)0.0395 (7)
C200.8635 (2)0.2279 (2)0.7100 (2)0.0384 (7)
C210.9169 (3)0.1475 (3)0.7677 (3)0.0558 (9)
H210.98130.15760.82380.067*
C220.8741 (3)0.0524 (3)0.7416 (3)0.0638 (10)
H220.91000.00320.77920.077*
C230.7776 (3)0.0393 (2)0.6593 (3)0.0611 (10)
H230.74920.02550.63960.073*
C240.7238 (3)0.1219 (2)0.6068 (3)0.0512 (8)
H240.65600.11320.55310.061*
N10.8438 (2)0.39788 (17)0.65536 (17)0.0389 (6)
N20.7664 (2)0.21450 (17)0.63096 (18)0.0400 (6)
O10.53335 (17)0.28601 (15)0.50773 (15)0.0449 (5)
O20.53139 (18)0.34378 (16)0.66074 (17)0.0561 (6)
O30.7602 (2)0.33887 (15)0.39642 (18)0.0615 (7)
O40.67220 (18)0.45631 (14)0.46882 (15)0.0419 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0383 (19)0.0317 (18)0.0364 (19)0.0024 (15)0.0038 (15)0.0010 (15)
C10.0442 (17)0.0298 (15)0.0383 (17)0.0005 (13)0.0083 (15)0.0045 (13)
C20.0371 (15)0.0266 (14)0.0379 (17)0.0029 (12)0.0076 (13)0.0027 (12)
C30.0447 (18)0.0380 (17)0.0477 (19)0.0056 (13)0.0124 (15)0.0125 (14)
C40.0467 (18)0.0432 (17)0.050 (2)0.0131 (15)0.0029 (16)0.0116 (15)
C50.0365 (16)0.0453 (18)0.054 (2)0.0079 (14)0.0016 (16)0.0012 (16)
C60.0369 (16)0.0431 (17)0.0467 (19)0.0014 (14)0.0106 (14)0.0031 (15)
C70.0364 (15)0.0271 (14)0.0370 (16)0.0039 (12)0.0045 (13)0.0022 (12)
C80.0388 (16)0.0325 (16)0.0370 (17)0.0033 (13)0.0040 (14)0.0015 (13)
C90.0343 (15)0.0353 (15)0.0324 (16)0.0019 (12)0.0050 (13)0.0012 (13)
C100.0306 (14)0.0333 (15)0.0347 (16)0.0017 (12)0.0060 (13)0.0009 (13)
C110.0490 (18)0.0375 (16)0.0417 (18)0.0070 (13)0.0103 (15)0.0072 (14)
C120.0558 (19)0.055 (2)0.0330 (17)0.0089 (16)0.0067 (15)0.0071 (15)
C130.0503 (18)0.058 (2)0.0329 (17)0.0039 (16)0.0044 (15)0.0060 (15)
C140.0448 (17)0.0371 (16)0.0405 (18)0.0011 (13)0.0041 (15)0.0048 (14)
C150.0478 (18)0.0430 (18)0.0472 (19)0.0048 (15)0.0067 (16)0.0030 (15)
C160.054 (2)0.056 (2)0.058 (2)0.0192 (17)0.0091 (18)0.0071 (18)
C170.0416 (18)0.078 (3)0.048 (2)0.0164 (18)0.0013 (16)0.0016 (19)
C180.0378 (17)0.070 (2)0.0420 (19)0.0044 (16)0.0002 (15)0.0102 (16)
C190.0322 (15)0.0532 (18)0.0326 (16)0.0027 (14)0.0059 (13)0.0054 (14)
C200.0358 (15)0.0466 (17)0.0337 (16)0.0079 (13)0.0099 (14)0.0081 (14)
C210.0496 (19)0.059 (2)0.057 (2)0.0149 (17)0.0072 (17)0.0198 (17)
C220.061 (2)0.051 (2)0.082 (3)0.0163 (18)0.023 (2)0.028 (2)
C230.068 (2)0.0381 (19)0.079 (3)0.0010 (17)0.021 (2)0.0111 (18)
C240.057 (2)0.0408 (18)0.056 (2)0.0040 (16)0.0150 (17)0.0012 (16)
N10.0384 (13)0.0417 (15)0.0352 (14)0.0009 (11)0.0056 (11)0.0031 (11)
N20.0421 (14)0.0380 (14)0.0397 (15)0.0009 (11)0.0087 (12)0.0045 (11)
O10.0396 (11)0.0581 (14)0.0366 (12)0.0006 (10)0.0072 (10)0.0038 (10)
O20.0415 (12)0.0719 (15)0.0515 (14)0.0037 (11)0.0030 (11)0.0269 (12)
O30.0940 (18)0.0411 (13)0.0539 (14)0.0263 (12)0.0263 (14)0.0070 (11)
O40.0513 (12)0.0396 (11)0.0350 (11)0.0073 (9)0.0101 (10)0.0016 (9)
Geometric parameters (Å, º) top
Co1—O41.9469 (18)C11—H110.930
Co1—O11.9651 (19)C12—C131.365 (4)
Co1—N21.970 (2)C12—H120.930
Co1—N11.989 (2)C13—C141.377 (4)
Co1—C82.514 (3)C13—H130.930
C1—O21.228 (3)C14—H140.930
C1—O11.281 (3)C15—N11.330 (4)
C1—C21.503 (4)C15—C161.378 (4)
C2—C31.388 (4)C15—H150.930
C2—C71.404 (4)C16—C171.372 (4)
C3—C41.384 (4)C16—H160.930
C3—H30.930C17—C181.366 (4)
C4—C51.370 (4)C17—H170.930
C4—H40.930C18—C191.385 (4)
C5—C61.378 (4)C18—H180.930
C5—H50.930C19—N11.351 (3)
C6—C71.392 (4)C19—C201.461 (4)
C6—H60.930C20—N21.351 (3)
C7—C10i1.497 (4)C20—C211.370 (4)
C8—O31.230 (3)C21—C221.360 (5)
C8—O41.267 (3)C21—H210.930
C8—C91.493 (4)C22—C231.373 (5)
C9—C101.380 (4)C22—H220.930
C9—C141.393 (4)C23—C241.364 (4)
C10—C111.387 (4)C23—H230.930
C10—C7i1.497 (4)C24—N21.326 (4)
C11—C121.386 (4)C24—H240.930
O4—Co1—O193.51 (8)C13—C12—H12120.1
O4—Co1—N2162.73 (9)C11—C12—H12120.1
O1—Co1—N295.93 (9)C12—C13—C14119.1 (3)
O4—Co1—N194.86 (9)C12—C13—H13120.5
O1—Co1—N1160.30 (9)C14—C13—H13120.5
N2—Co1—N180.88 (9)C13—C14—C9121.7 (3)
O4—Co1—C829.68 (8)C13—C14—H14119.2
O1—Co1—C894.82 (9)C9—C14—H14119.2
N2—Co1—C8134.56 (9)N1—C15—C16121.5 (3)
N1—Co1—C8101.27 (9)N1—C15—H15119.2
O2—C1—O1121.7 (3)C16—C15—H15119.2
O2—C1—C2122.2 (3)C17—C16—C15119.7 (3)
O1—C1—C2116.1 (2)C17—C16—H16120.1
C3—C2—C7118.5 (2)C15—C16—H16120.1
C3—C2—C1119.5 (3)C18—C17—C16119.1 (3)
C7—C2—C1121.9 (2)C18—C17—H17120.5
C4—C3—C2122.2 (3)C16—C17—H17120.5
C4—C3—H3118.9C17—C18—C19119.1 (3)
C2—C3—H3118.9C17—C18—H18120.4
C5—C4—C3119.4 (3)C19—C18—H18120.4
C5—C4—H4120.3N1—C19—C18121.4 (3)
C3—C4—H4120.3N1—C19—C20113.7 (2)
C4—C5—C6119.3 (3)C18—C19—C20124.8 (3)
C4—C5—H5120.3N2—C20—C21121.1 (3)
C6—C5—H5120.3N2—C20—C19114.6 (2)
C5—C6—C7122.4 (3)C21—C20—C19124.3 (3)
C5—C6—H6118.8C22—C21—C20119.0 (3)
C7—C6—H6118.8C22—C21—H21120.5
C6—C7—C2118.2 (3)C20—C21—H21120.5
C6—C7—C10i116.6 (3)C21—C22—C23119.5 (3)
C2—C7—C10i125.2 (2)C21—C22—H22120.2
O3—C8—O4121.5 (3)C23—C22—H22120.2
O3—C8—C9119.8 (3)C24—C23—C22119.5 (3)
O4—C8—C9118.5 (2)C24—C23—H23120.2
O3—C8—Co172.13 (17)C22—C23—H23120.2
O4—C8—Co149.52 (13)N2—C24—C23121.1 (3)
C9—C8—Co1166.2 (2)N2—C24—H24119.5
C10—C9—C14119.3 (3)C23—C24—H24119.5
C10—C9—C8122.7 (3)C15—N1—C19119.1 (3)
C14—C9—C8117.9 (2)C15—N1—Co1125.7 (2)
C9—C10—C11118.4 (3)C19—N1—Co1115.06 (19)
C9—C10—C7i121.8 (2)C24—N2—C20119.7 (3)
C11—C10—C7i119.2 (2)C24—N2—Co1125.0 (2)
C12—C11—C10121.7 (3)C20—N2—Co1115.23 (18)
C12—C11—H11119.1C1—O1—Co1103.46 (17)
C10—C11—H11119.1C8—O4—Co1100.80 (16)
C13—C12—C11119.7 (3)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Co2(C14H8O4)2(C10H8N2)2]
Mr910.64
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)11.236 (2), 13.198 (2), 13.393 (2)
β (°) 102.90 (2)
V3)1936.1 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.92
Crystal size (mm)0.39 × 0.27 × 0.21
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.715, 0.830
No. of measured, independent and
observed [I > 2σ(I)] reflections
10081, 3408, 2591
Rint0.040
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.093, 1.00
No. of reflections3408
No. of parameters280
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.23, 0.28

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors acknowledge financial support from Maoming University.

References

First citationBruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRueff, J.-M., Pillet, S., Bonaventure, G., Souhassou, M. & Rabu, P. (2003). Eur. J. Inorg. Chem. pp. 4173–4178.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, R.-H., Gong, Y.-Q., Han, L., Yuan, D.-Q., Lou, B.-Y., Wu, B.-L. & Hong, M.-C. (2006). J. Mol. Struct. 784, 1–6.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, X.-X., Lu, Y., Wang, E.-B., Ma, Y. & Bai, X.-L. (2006). Cryst. Growth Des. 6, 2029–2035.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds