metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­aqua­(2,2′-bi­pyridine-κ2N,N′)nickel(II)]-μ-bi­phenyl-2,2′-di­carboxyl­ato-κ2O:O′]

aSchool of Chemistry and Life Science, Maoming University, Maoming 525000, People's Republic of China, and bSchool of Chemical and Environmental Engineering, Maoming University, Maoming 525000, People's Republic of China
*Correspondence e-mail: anz_md@163.com

(Received 28 October 2008; accepted 9 November 2008; online 13 November 2008)

In the title compound, [Ni(C14H8O4)(C10H8N2)(H2O)2]n, the NiII atom is coordinated in a slightly distorted octa­hedral geometry by two water mol­ecules, two N atoms from a 2,2′-bipyridine ligand and two O atoms from the carboxyl­ate groups of two 2,2′-biphenyl­dicarboxyl­ate (2,2′-dpa) ligands. The 2,2′-dpa ligand acts as a bridge between neighbouring NiII atoms, forming one-dimensional coordination polymers along [100]. The coordinated water mol­ecules form hydrogen bonds to the carboxyl­ate O atoms of 2,2′-dpa within the same coordination polymer, and one O—H⋯π inter­action is also formed to 2,2′-dpa.

Related literature

For other metal–organic frameworks containing 2,2′-dpa, see: Rueff et al. (2003[Rueff, J.-M., Pillet, S., Bonaventure, G., Souhassou, M. & Rabu, P. (2003). Eur. J. Inorg. Chem. pp. 4173-4178.]); Wang et al. (2006[Wang, R.-H., Gong, Y.-Q., Han, L., Yuan, D.-Q., Lou, B.-Y., Wu, B.-L. & Hong, M.-C. (2006). J. Mol. Struct. 784, 1-6.]); Xu et al. (2006[Xu, X.-X., Lu, Y., Wang, E.-B., Ma, Y. & Bai, X.-L. (2006). Cryst. Growth Des. 6, 2029-2035.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C14H8O4)(C10H8N2)(H2O)2]

  • Mr = 491.11

  • Orthorhombic, P 21 21 21

  • a = 10.9087 (15) Å

  • b = 11.214 (2) Å

  • c = 18.129 (3) Å

  • V = 2217.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.92 mm−1

  • T = 296 (2) K

  • 0.42 × 0.27 × 0.19 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.699, Tmax = 0.845

  • 11746 measured reflections

  • 3953 independent reflections

  • 3351 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.088

  • S = 1.00

  • 3953 reflections

  • 310 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1694 Friedel pairs

  • Flack parameter: 0.042 (16)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1WCg1 0.86 (2) 2.91 3.741 (3) 163
O5—H2W⋯O2i 0.85 (2) 1.90 (2) 2.740 (3) 169 (3)
O6—H3W⋯O4i 0.81 (2) 1.91 (2) 2.676 (4) 158 (4)
O6—H4W⋯O2 0.82 (2) 1.98 (2) 2.790 (3) 167 (4)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2]. Cg1 is the centroid of the C2–C7 benzene ring.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2,2'-Biphenyldicarboxylic acid (H2dpa) has been demonstrated to be a useful ligand for constructing metal-organic frameworks (Rueff et al., 2003; Wang et al., 2006; Xu et al., 2006). The title compound is a NiII coordination polymer in which 2,2'-biphenyldicarboxylate (2,2'-dpa) acts as a bridging ligand.

The asymmetric unit (Fig. 1) contains one NiII atom coordinated by one 2,2'-bipyridine ligand, 2,2'-dpa and two water molecules. The NiII atom is hexacoordinated in a slightly distorted octahedral geometry by two water molecules, two N atoms from 2,2'-bipyridine, and two O atoms from carboxylate groups of two 2,2'-dpa. The 2,2'-dpa ligand acts as a bridge to link two neighboring NiII atoms, forming a 1-D coordination polymer along [100] (Fig. 2). Hydrogen bonds from the coordinated water molecules and the O atoms of the carboxylate groups are formed within the same coordination polymer (Fig. 3). One water molecule also forms an O—H···πi interaction to the neighbouring benzene ring of 2,2'-dpa.

Related literature top

For other metal–organic frameworks containing 2,2'-dpa, see: Rueff et al. (2003); Wang et al. (2006); Xu et al. (2006).

Experimental top

A mixture of nickel(II) chloride hexahydrate (0.1 mmol), 2,2'-bipyridine (0.1 mmol), biphenyl-2,2'-dicarboxylic acid (0.2 mmol) and H2O (16 ml) in a 25 ml Teflon-lined stainless steel autoclave was kept at 463 K for five days. Green crystals were obtained after cooling to room temperature with a yield of 12%. Elemental analysis calculated: C 58.64, H 4.89, N 5.70%; found: C 58.62, H 4.86, N 5.65%.

Refinement top

H atoms of the water molecules were located from difference Fourier maps and refined freely with Uiso(H) = 1.2Ueq(O). All other H atoms were placed in calculated positions with C—H = 0.93 Å and allowed to ride with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of the title compound showing displacement ellipsoids at 30% for non-H atoms.
[Figure 2] Fig. 2. 1-D coordination polymer running along the [100] direction.
[Figure 3] Fig. 3. View of the packing along the a axis.
catena-Poly[[diaqua(2,2'-bipyridine-κ2N,N')nickel(II)]- µ-biphenyl-2,2'-dicarboxylato-κ2O:O'] top
Crystal data top
[Ni(C14H8O4)(C10H8N2)(H2O)2]F(000) = 1016
Mr = 491.11Dx = 1.471 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3953 reflections
a = 10.9087 (15) Åθ = 2.1–25.1°
b = 11.214 (2) ŵ = 0.92 mm1
c = 18.129 (3) ÅT = 296 K
V = 2217.6 (6) Å3Block, green
Z = 40.42 × 0.27 × 0.19 mm
Data collection top
Bruker APEXII CCD
diffractometer
3953 independent reflections
Radiation source: fine-focus sealed tube3351 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1312
Tmin = 0.699, Tmax = 0.845k = 913
11746 measured reflectionsl = 2021
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.051P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
3953 reflectionsΔρmax = 0.21 e Å3
310 parametersΔρmin = 0.30 e Å3
0 restraintsAbsolute structure: Flack (1983), 1694 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.042 (16)
Crystal data top
[Ni(C14H8O4)(C10H8N2)(H2O)2]V = 2217.6 (6) Å3
Mr = 491.11Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.9087 (15) ŵ = 0.92 mm1
b = 11.214 (2) ÅT = 296 K
c = 18.129 (3) Å0.42 × 0.27 × 0.19 mm
Data collection top
Bruker APEXII CCD
diffractometer
3953 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3351 reflections with I > 2σ(I)
Tmin = 0.699, Tmax = 0.845Rint = 0.033
11746 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088Δρmax = 0.21 e Å3
S = 1.00Δρmin = 0.30 e Å3
3953 reflectionsAbsolute structure: Flack (1983), 1694 Friedel pairs
310 parametersAbsolute structure parameter: 0.042 (16)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.24756 (4)0.69154 (3)0.898676 (19)0.03527 (12)
C10.5625 (3)1.0010 (3)1.06148 (16)0.0367 (7)
C20.4305 (3)1.0354 (3)1.03948 (16)0.0377 (8)
C30.4167 (4)1.1232 (3)0.98610 (18)0.0525 (9)
H30.48641.15820.96610.063*
C40.3031 (5)1.1602 (4)0.9617 (2)0.0673 (14)
H40.29771.21880.92550.081*
C50.1971 (4)1.1108 (4)0.9905 (2)0.0616 (12)
H50.12081.13530.97350.074*
C60.2059 (3)1.0243 (3)1.04525 (19)0.0515 (10)
H60.13510.99181.06560.062*
C70.3233 (3)0.9853 (3)1.07010 (16)0.0386 (8)
C80.3257 (3)0.9030 (3)1.13631 (16)0.0360 (7)
C90.3102 (3)0.9525 (3)1.20745 (18)0.0492 (9)
H90.29881.03451.21100.059*
C100.3108 (4)0.8874 (4)1.27158 (19)0.0552 (10)
H100.29540.92391.31670.066*
C110.3343 (4)0.7687 (4)1.26763 (18)0.0553 (10)
H110.33830.72221.31010.066*
C120.3524 (3)0.7181 (3)1.19772 (17)0.0469 (8)
H120.37060.63721.19500.056*
C130.3445 (3)0.7820 (3)1.13252 (16)0.0356 (7)
C140.3500 (3)0.7168 (3)1.05824 (16)0.0342 (7)
C150.4937 (3)0.8346 (3)0.8927 (2)0.0509 (9)
H150.49580.82240.94350.061*
C160.5799 (3)0.9085 (3)0.8606 (2)0.0608 (10)
H160.63920.94570.88940.073*
C170.5771 (4)0.9267 (4)0.7847 (3)0.0678 (12)
H170.63370.97720.76250.081*
C180.4900 (4)0.8695 (4)0.7424 (2)0.0596 (10)
H180.48770.88020.69150.071*
C190.4047 (3)0.7949 (3)0.77769 (18)0.0401 (7)
C200.3066 (3)0.7286 (3)0.73743 (17)0.0383 (8)
C210.3005 (4)0.7230 (3)0.65934 (18)0.0527 (10)
H210.35950.76090.63060.063*
C220.2058 (4)0.6605 (3)0.6264 (2)0.0587 (11)
H220.20070.65550.57530.070*
C230.1192 (4)0.6058 (3)0.66986 (18)0.0525 (10)
H230.05470.56380.64860.063*
C240.1297 (3)0.6143 (3)0.74713 (18)0.0451 (8)
H240.07050.57800.77640.054*
N10.4065 (2)0.7797 (2)0.85219 (14)0.0402 (7)
N20.2231 (2)0.6733 (2)0.78055 (13)0.0363 (6)
O10.28142 (19)0.75413 (19)1.00612 (11)0.0407 (6)
O20.4185 (2)0.6272 (2)1.05422 (12)0.0451 (6)
O30.58196 (19)0.89368 (18)1.07528 (12)0.0385 (5)
O40.6422 (2)1.0789 (2)1.06222 (17)0.0670 (8)
O50.1519 (2)0.85857 (18)0.89069 (12)0.0394 (5)
H1W0.187 (2)0.895 (3)0.9264 (15)0.047*
H2W0.0764 (16)0.858 (3)0.9025 (17)0.047*
O60.3552 (2)0.5345 (2)0.91659 (13)0.0466 (6)
H3W0.302 (3)0.484 (3)0.9225 (18)0.056*
H4W0.385 (3)0.557 (3)0.9558 (13)0.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0390 (2)0.0344 (2)0.0325 (2)0.0010 (2)0.0015 (2)0.00163 (16)
C10.047 (2)0.0325 (18)0.0310 (16)0.0033 (16)0.0056 (14)0.0009 (14)
C20.058 (2)0.0275 (16)0.0275 (15)0.0093 (16)0.0028 (15)0.0034 (13)
C30.080 (3)0.0377 (19)0.0401 (19)0.006 (2)0.0049 (19)0.0003 (17)
C40.114 (4)0.042 (2)0.045 (2)0.026 (2)0.033 (2)0.0035 (18)
C50.080 (3)0.049 (2)0.056 (2)0.034 (2)0.032 (2)0.015 (2)
C60.054 (2)0.052 (2)0.048 (2)0.0185 (18)0.0131 (16)0.0215 (18)
C70.049 (2)0.0350 (18)0.0319 (16)0.0132 (15)0.0035 (15)0.0093 (14)
C80.0320 (17)0.0416 (18)0.0343 (16)0.0010 (14)0.0026 (14)0.0022 (14)
C90.056 (2)0.046 (2)0.045 (2)0.0093 (17)0.0060 (17)0.0082 (17)
C100.065 (2)0.068 (3)0.0335 (18)0.004 (2)0.0110 (17)0.0084 (18)
C110.071 (3)0.065 (3)0.0296 (17)0.011 (2)0.0051 (18)0.0021 (17)
C120.059 (2)0.0417 (19)0.0402 (18)0.0088 (17)0.0019 (17)0.0041 (16)
C130.0349 (17)0.0436 (19)0.0283 (15)0.0034 (15)0.0040 (13)0.0020 (14)
C140.0370 (17)0.0334 (18)0.0321 (16)0.0062 (15)0.0009 (14)0.0021 (14)
C150.0413 (19)0.054 (2)0.057 (2)0.0117 (16)0.0082 (18)0.0048 (19)
C160.043 (2)0.053 (2)0.087 (3)0.0107 (19)0.007 (2)0.002 (2)
C170.048 (2)0.054 (2)0.102 (3)0.013 (2)0.015 (2)0.019 (2)
C180.061 (2)0.056 (2)0.062 (2)0.002 (2)0.016 (2)0.018 (2)
C190.0407 (17)0.0313 (17)0.0482 (19)0.0054 (15)0.0106 (15)0.0042 (15)
C200.0513 (19)0.0280 (16)0.0356 (17)0.0079 (15)0.0065 (15)0.0024 (14)
C210.078 (3)0.043 (2)0.0376 (18)0.0082 (19)0.0099 (18)0.0045 (16)
C220.096 (3)0.050 (2)0.0305 (17)0.018 (2)0.0062 (19)0.0007 (17)
C230.072 (3)0.041 (2)0.044 (2)0.0062 (19)0.0159 (18)0.0114 (18)
C240.053 (2)0.042 (2)0.0401 (19)0.0008 (17)0.0012 (16)0.0061 (16)
N10.0388 (15)0.0395 (15)0.0423 (16)0.0044 (13)0.0074 (12)0.0037 (13)
N20.0432 (16)0.0361 (14)0.0295 (12)0.0032 (12)0.0015 (11)0.0020 (11)
O10.0520 (14)0.0380 (12)0.0322 (11)0.0053 (10)0.0061 (10)0.0038 (9)
O20.0518 (14)0.0400 (13)0.0436 (13)0.0029 (12)0.0086 (11)0.0076 (11)
O30.0403 (12)0.0297 (12)0.0456 (12)0.0018 (10)0.0019 (10)0.0082 (10)
O40.0539 (15)0.0333 (14)0.114 (2)0.0040 (13)0.0030 (16)0.0071 (15)
O50.0418 (12)0.0328 (12)0.0436 (13)0.0019 (10)0.0014 (11)0.0006 (10)
O60.0465 (15)0.0415 (14)0.0519 (15)0.0074 (11)0.0036 (12)0.0072 (12)
Geometric parameters (Å, º) top
Ni1—O3i2.098 (2)C13—C141.533 (4)
Ni1—O12.103 (2)C14—O21.255 (4)
Ni1—O62.142 (2)C14—O11.276 (3)
Ni1—O52.149 (2)C15—N11.351 (4)
Ni1—N12.166 (3)C15—C161.383 (5)
Ni1—N22.168 (2)C15—H150.930
C1—O41.233 (4)C16—C171.391 (6)
C1—O31.247 (4)C16—H160.930
C1—C21.543 (5)C17—C181.379 (6)
C2—C31.388 (5)C17—H170.930
C2—C71.412 (5)C18—C191.406 (5)
C3—C41.380 (6)C18—H180.930
C3—H30.930C19—N11.361 (4)
C4—C51.385 (6)C19—C201.493 (5)
C4—H40.930C20—N21.352 (4)
C5—C61.391 (5)C20—C211.419 (4)
C5—H50.930C21—C221.385 (6)
C6—C71.427 (4)C21—H210.930
C6—H60.930C22—C231.374 (5)
C7—C81.514 (4)C22—H220.930
C8—C131.374 (5)C23—C241.409 (5)
C8—C91.414 (4)C23—H230.930
C9—C101.373 (5)C24—N21.357 (4)
C9—H90.930C24—H240.930
C10—C111.358 (6)O3—Ni1ii2.098 (2)
C10—H100.930O5—H1W0.86 (2)
C11—C121.402 (5)O5—H2W0.85 (2)
C11—H110.930O6—H3W0.81 (2)
C12—C131.385 (4)O6—H4W0.82 (2)
C12—H120.930
O3i—Ni1—O195.44 (8)C8—C13—C12118.5 (3)
O3i—Ni1—O693.63 (9)C8—C13—C14121.3 (3)
O1—Ni1—O692.16 (9)C12—C13—C14120.1 (3)
O3i—Ni1—O589.65 (8)O2—C14—O1124.7 (3)
O1—Ni1—O581.77 (8)O2—C14—C13117.1 (3)
O6—Ni1—O5173.36 (9)O1—C14—C13118.1 (3)
O3i—Ni1—N1169.97 (9)N1—C15—C16121.5 (4)
O1—Ni1—N193.86 (9)N1—C15—H15119.2
O6—Ni1—N189.75 (10)C16—C15—H15119.2
O5—Ni1—N187.97 (9)C15—C16—C17119.3 (4)
O3i—Ni1—N294.20 (9)C15—C16—H16120.3
O1—Ni1—N2165.48 (9)C17—C16—H16120.4
O6—Ni1—N298.04 (9)C18—C17—C16119.8 (4)
O5—Ni1—N287.46 (9)C18—C17—H17120.1
N1—Ni1—N275.96 (10)C16—C17—H17120.1
O4—C1—O3124.2 (3)C17—C18—C19118.7 (4)
O4—C1—C2118.9 (3)C17—C18—H18120.7
O3—C1—C2116.9 (3)C19—C18—H18120.7
C3—C2—C7117.8 (3)N1—C19—C18121.1 (3)
C3—C2—C1117.3 (3)N1—C19—C20115.7 (3)
C7—C2—C1124.9 (3)C18—C19—C20123.2 (3)
C4—C3—C2122.3 (4)N2—C20—C21121.7 (3)
C4—C3—H3118.8N2—C20—C19115.4 (3)
C2—C3—H3118.8C21—C20—C19122.9 (3)
C5—C4—C3120.5 (3)C22—C21—C20119.2 (4)
C5—C4—H4119.7C22—C21—H21120.4
C3—C4—H4119.7C20—C21—H21120.4
C4—C5—C6119.4 (3)C23—C22—C21119.5 (3)
C4—C5—H5120.3C23—C22—H22120.3
C6—C5—H5120.3C21—C22—H22120.3
C5—C6—C7120.0 (4)C22—C23—C24119.0 (3)
C5—C6—H6120.0C22—C23—H23120.5
C7—C6—H6120.0C24—C23—H23120.5
C2—C7—C6119.8 (3)N2—C24—C23122.5 (3)
C2—C7—C8122.7 (3)N2—C24—H24118.7
C6—C7—C8116.9 (3)C23—C24—H24118.7
C13—C8—C9116.8 (3)C15—N1—C19119.5 (3)
C13—C8—C7124.4 (3)C15—N1—Ni1124.1 (2)
C9—C8—C7118.8 (3)C19—N1—Ni1115.6 (2)
C10—C9—C8124.3 (3)C20—N2—C24118.1 (3)
C10—C9—H9117.9C20—N2—Ni1116.4 (2)
C8—C9—H9117.8C24—N2—Ni1125.4 (2)
C11—C10—C9118.5 (3)C14—O1—Ni1132.81 (19)
C11—C10—H10120.7C1—O3—Ni1ii129.1 (2)
C9—C10—H10120.8Ni1—O5—H1W99 (2)
C10—C11—C12118.1 (3)Ni1—O5—H2W117 (2)
C10—C11—H11121.0H1W—O5—H2W104 (2)
C12—C11—H11120.9Ni1—O6—H3W102 (3)
C13—C12—C11123.6 (3)Ni1—O6—H4W95 (3)
C13—C12—H12118.2H3W—O6—H4W112 (3)
C11—C12—H12118.2
Symmetry codes: (i) x1/2, y+3/2, z+2; (ii) x+1/2, y+3/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1W···Cg10.86 (2)2.913.741 (3)163
O5—H2W···O2i0.85 (2)1.90 (2)2.740 (3)169 (3)
O6—H3W···O4i0.81 (2)1.91 (2)2.676 (4)158 (4)
O6—H4W···O20.82 (2)1.98 (2)2.790 (3)167 (4)
Symmetry code: (i) x1/2, y+3/2, z+2.

Experimental details

Crystal data
Chemical formula[Ni(C14H8O4)(C10H8N2)(H2O)2]
Mr491.11
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)10.9087 (15), 11.214 (2), 18.129 (3)
V3)2217.6 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.92
Crystal size (mm)0.42 × 0.27 × 0.19
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.699, 0.845
No. of measured, independent and
observed [I > 2σ(I)] reflections
11746, 3953, 3351
Rint0.033
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.088, 1.00
No. of reflections3953
No. of parameters310
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.30
Absolute structureFlack (1983), 1694 Friedel pairs
Absolute structure parameter0.042 (16)

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1W···Cg10.86 (2)2.913.741 (3)163
O5—H2W···O2i0.85 (2)1.90 (2)2.740 (3)169 (3)
O6—H3W···O4i0.81 (2)1.91 (2)2.676 (4)158 (4)
O6—H4W···O20.82 (2)1.98 (2)2.790 (3)167 (4)
Symmetry code: (i) x1/2, y+3/2, z+2.
 

Acknowledgements

The authors acknowledge financial support from Maoming University.

References

First citationBruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRueff, J.-M., Pillet, S., Bonaventure, G., Souhassou, M. & Rabu, P. (2003). Eur. J. Inorg. Chem. pp. 4173–4178.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, R.-H., Gong, Y.-Q., Han, L., Yuan, D.-Q., Lou, B.-Y., Wu, B.-L. & Hong, M.-C. (2006). J. Mol. Struct. 784, 1–6.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, X.-X., Lu, Y., Wang, E.-B., Ma, Y. & Bai, X.-L. (2006). Cryst. Growth Des. 6, 2029–2035.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds