metal-organic compounds
Bis(2-hydroxyiminomethyl-6-methoxyphenolato-κ2O1,N)cobalt(II)
aKey Laboratory of Non-Ferrous Metal Materials and Processing Technology, Department of Materials and Chemical Engineering, Guilin University of Technology, Ministry of Education, Guilin 541004, People's Republic of China
*Correspondence e-mail: zsh720108@163.com
In the title compound, [Co(C8H8NO3)2], the CoII atom lies on a centre of inversion and is coordinated in a slightly distorted square-planar geometry by two N and two O atoms from the 2-hydroxyiminomethyl-6-methoxyphenolate ligands. Intramolecular O—H⋯O hydrogen bonds are formed and the complexes form stacks along the b axis, with an interplanar separation of 3.332 (1) Å between complexes. Pairs of C—H⋯O contacts are formed between complexes in neighbouring stacks.
Related literature
For recent related literature concerning Schiff-base compounds, see: Gupta & Sutar (2008); Sreenivasulu et al. (2005); Zhang et al. (2008); Raptopoulou et al. (2006); Milios et al. (2006); Yang et al. (2007).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808039512/bi2324sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808039512/bi2324Isup2.hkl
A solution of (0.152 g, 1.0 mmol) 2-hydroxy-3-methoxy-benzaldehyde oxime and (0.056 g, 1 mmol) potassium hydroxide in 20 ml absolute methanol was added slowly to a solution of CoNO3.6H2O (0.145 g, 0.5 mmol) in methanol. The mixture was stirred for 1 h at room temperature to give a red solution which was filtered and the filtrate was left to stand at room temperature. Red block crystals suitable for were obtained by slow evaporation Yield: 80.1 % (based on Co). Elemental analysis calculated: C 49.12, H 4.12, N 7.16 %; found: C 48.99, H 4.21, N 7.22 %.
H atoms were positioned geometrically and refined with a riding model, with distances 0.96 (CH3) or 0.93 Å (aromatic ring), and with Uiso(H) = 1.2 Ueq(aromatic ring) or Uiso(H) = 1.5 Ueq(CH3), and with O–H distance 0.82 Å and Uiso(H) = 1.5 Ueq(O).
Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Co(C8H8NO3)2] | F(000) = 402 |
Mr = 391.24 | Dx = 1.664 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 4577 reflections |
a = 8.4254 (19) Å | θ = 2.6–25.5° |
b = 4.9111 (11) Å | µ = 1.14 mm−1 |
c = 18.951 (4) Å | T = 293 K |
β = 95.375 (3)° | Block, red |
V = 780.7 (3) Å3 | 0.22 × 0.18 × 0.14 mm |
Z = 2 |
Bruker SMART CCD diffractometer | 1216 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.021 |
Graphite monochromator | θmax = 25.5°, θmin = 2.6° |
ϕ and ω scans | h = −10→10 |
4577 measured reflections | k = −5→5 |
1433 independent reflections | l = −22→22 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.065 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0303P)2 + 0.2885P] where P = (Fo2 + 2Fc2)/3 |
1433 reflections | (Δ/σ)max < 0.001 |
117 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.17 e Å−3 |
[Co(C8H8NO3)2] | V = 780.7 (3) Å3 |
Mr = 391.24 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.4254 (19) Å | µ = 1.14 mm−1 |
b = 4.9111 (11) Å | T = 293 K |
c = 18.951 (4) Å | 0.22 × 0.18 × 0.14 mm |
β = 95.375 (3)° |
Bruker SMART CCD diffractometer | 1216 reflections with I > 2σ(I) |
4577 measured reflections | Rint = 0.021 |
1433 independent reflections |
R[F2 > 2σ(F2)] = 0.025 | 0 restraints |
wR(F2) = 0.065 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.23 e Å−3 |
1433 reflections | Δρmin = −0.17 e Å−3 |
117 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.0000 | 0.5000 | 0.0000 | 0.03262 (15) | |
C1 | 0.1093 (2) | 0.0793 (4) | 0.09770 (10) | 0.0353 (4) | |
C2 | 0.0701 (2) | −0.1107 (4) | 0.14960 (10) | 0.0377 (5) | |
C3 | 0.1851 (3) | −0.2781 (4) | 0.18262 (11) | 0.0448 (5) | |
H3 | 0.1581 | −0.4028 | 0.2164 | 0.054* | |
C4 | 0.3423 (3) | −0.2610 (4) | 0.16538 (11) | 0.0477 (6) | |
H4 | 0.4196 | −0.3744 | 0.1880 | 0.057* | |
C5 | 0.3837 (3) | −0.0794 (4) | 0.11564 (11) | 0.0429 (5) | |
H5 | 0.4889 | −0.0696 | 0.1048 | 0.052* | |
C6 | 0.2676 (2) | 0.0939 (4) | 0.08055 (10) | 0.0361 (4) | |
C7 | 0.3153 (2) | 0.2796 (4) | 0.02809 (10) | 0.0386 (5) | |
H7 | 0.4217 | 0.2799 | 0.0187 | 0.046* | |
C8 | −0.1391 (3) | −0.3153 (5) | 0.20761 (12) | 0.0535 (6) | |
H8A | −0.1090 | −0.4897 | 0.1902 | 0.080* | |
H8B | −0.2529 | −0.3074 | 0.2077 | 0.080* | |
H8C | −0.0903 | −0.2898 | 0.2550 | 0.080* | |
N1 | 0.21926 (19) | 0.4465 (3) | −0.00691 (8) | 0.0363 (4) | |
O1 | −0.00708 (15) | 0.2354 (3) | 0.06754 (7) | 0.0387 (3) | |
O2 | 0.29495 (16) | 0.6086 (3) | −0.05443 (8) | 0.0487 (4) | |
H2 | 0.2301 | 0.7143 | −0.0744 | 0.073* | |
O3 | −0.08737 (17) | −0.1063 (3) | 0.16291 (8) | 0.0494 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0291 (2) | 0.0337 (2) | 0.0348 (2) | −0.00160 (15) | 0.00146 (15) | 0.00203 (16) |
C1 | 0.0385 (11) | 0.0311 (10) | 0.0354 (11) | 0.0001 (8) | −0.0005 (9) | −0.0038 (8) |
C2 | 0.0415 (11) | 0.0352 (10) | 0.0362 (11) | −0.0016 (9) | 0.0025 (9) | −0.0015 (9) |
C3 | 0.0566 (14) | 0.0375 (11) | 0.0392 (11) | −0.0009 (10) | −0.0007 (10) | 0.0040 (9) |
C4 | 0.0503 (13) | 0.0425 (12) | 0.0478 (13) | 0.0103 (10) | −0.0080 (10) | −0.0001 (10) |
C5 | 0.0384 (11) | 0.0455 (12) | 0.0436 (12) | 0.0057 (9) | −0.0030 (9) | −0.0045 (10) |
C6 | 0.0360 (10) | 0.0350 (10) | 0.0364 (11) | −0.0010 (8) | −0.0017 (8) | −0.0043 (8) |
C7 | 0.0286 (10) | 0.0438 (11) | 0.0429 (11) | 0.0001 (9) | 0.0016 (8) | −0.0041 (9) |
C8 | 0.0591 (14) | 0.0510 (14) | 0.0524 (13) | −0.0079 (11) | 0.0160 (11) | 0.0078 (11) |
N1 | 0.0327 (9) | 0.0410 (10) | 0.0352 (9) | −0.0053 (7) | 0.0040 (7) | 0.0019 (7) |
O1 | 0.0332 (7) | 0.0397 (8) | 0.0434 (8) | 0.0005 (6) | 0.0044 (6) | 0.0083 (6) |
O2 | 0.0346 (8) | 0.0598 (10) | 0.0523 (9) | −0.0032 (7) | 0.0070 (7) | 0.0185 (8) |
O3 | 0.0452 (9) | 0.0493 (8) | 0.0547 (9) | −0.0010 (7) | 0.0105 (7) | 0.0153 (8) |
Co1—O1 | 1.8290 (13) | C4—H4 | 0.930 |
Co1—O1i | 1.8290 (13) | C5—C6 | 1.414 (3) |
Co1—N1 | 1.8826 (17) | C5—H5 | 0.930 |
Co1—N1i | 1.8826 (17) | C6—C7 | 1.434 (3) |
C1—O1 | 1.331 (2) | C7—N1 | 1.290 (2) |
C1—C6 | 1.404 (3) | C7—H7 | 0.930 |
C1—C2 | 1.417 (3) | C8—O3 | 1.425 (2) |
C2—O3 | 1.374 (2) | C8—H8A | 0.960 |
C2—C3 | 1.376 (3) | C8—H8B | 0.960 |
C3—C4 | 1.396 (3) | C8—H8C | 0.960 |
C3—H3 | 0.930 | N1—O2 | 1.400 (2) |
C4—C5 | 1.367 (3) | O2—H2 | 0.820 |
O1—Co1—O1i | 180.00 (8) | C6—C5—H5 | 119.8 |
O1—Co1—N1 | 92.64 (6) | C1—C6—C5 | 119.37 (19) |
O1i—Co1—N1 | 87.36 (6) | C1—C6—C7 | 121.78 (18) |
O1—Co1—N1i | 87.36 (6) | C5—C6—C7 | 118.86 (18) |
O1i—Co1—N1i | 92.64 (6) | N1—C7—C6 | 123.89 (18) |
N1—Co1—N1i | 180.00 (13) | N1—C7—H7 | 118.1 |
O1—C1—C6 | 123.29 (18) | C6—C7—H7 | 118.1 |
O1—C1—C2 | 117.87 (18) | O3—C8—H8A | 109.5 |
C6—C1—C2 | 118.84 (17) | O3—C8—H8B | 109.5 |
O3—C2—C3 | 125.24 (19) | H8A—C8—H8B | 109.5 |
O3—C2—C1 | 114.13 (17) | O3—C8—H8C | 109.5 |
C3—C2—C1 | 120.62 (19) | H8A—C8—H8C | 109.5 |
C2—C3—C4 | 120.0 (2) | H8B—C8—H8C | 109.5 |
C2—C3—H3 | 120.0 | C7—N1—O2 | 112.97 (16) |
C4—C3—H3 | 120.0 | C7—N1—Co1 | 128.68 (14) |
C5—C4—C3 | 120.65 (19) | O2—N1—Co1 | 118.33 (12) |
C5—C4—H4 | 119.7 | C1—O1—Co1 | 129.71 (13) |
C3—C4—H4 | 119.7 | N1—O2—H2 | 109.5 |
C4—C5—C6 | 120.5 (2) | C2—O3—C8 | 116.90 (17) |
C4—C5—H5 | 119.8 |
Symmetry code: (i) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1i | 0.82 | 1.91 | 2.5336 (19) | 132 |
C7—H7···O2ii | 0.93 | 2.48 | 3.321 (2) | 150 |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Co(C8H8NO3)2] |
Mr | 391.24 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 8.4254 (19), 4.9111 (11), 18.951 (4) |
β (°) | 95.375 (3) |
V (Å3) | 780.7 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.14 |
Crystal size (mm) | 0.22 × 0.18 × 0.14 |
Data collection | |
Diffractometer | Bruker SMART CCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4577, 1433, 1216 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.065, 1.04 |
No. of reflections | 1433 |
No. of parameters | 117 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.23, −0.17 |
Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1i | 0.82 | 1.91 | 2.5336 (19) | 131.8 |
C7—H7···O2ii | 0.93 | 2.48 | 3.321 (2) | 150.3 |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1, −y+1, −z. |
Acknowledgements
This work is financially supported by the Young Science Foundation of Guangxi Province of China (grant No. 0832085)
References
Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Gupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252, 1420–1450. Web of Science CrossRef CAS Google Scholar
Milios, C. J., Vinslava, A., Whittaker, A. G., Parsons, S., Wernsdorfer, W., Christou, G., Perlepes, S. P. & Brechin, E. K. (2006). Inorg. Chem. 45, 5272–5274. Web of Science CSD CrossRef PubMed CAS Google Scholar
Raptopoulou, C. P., Boudalis, A. K., Sanakis, Y., Psycharis, V., Clemente-Juan, J. M., Fardis, M., Diamantopoulos, G. & Papavassiliou, G. (2006). Inorg. Chem. 45, 2317–2326. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sreenivasulu, B., Vetrichelvan, M., Zhao, F., Gao, S. & Vittal, J. J. (2005). Eur. J. Inorg. Chem. pp. 4635–4645. Web of Science CSD CrossRef Google Scholar
Yang, C. I., Wernsdorfer, W., Lee, G. H. & Tsai, H. L. (2007). J. Am. Chem. Soc. 129, 456–457. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, S. H., Jiang, Y. M. & Liu, Z. M. (2008). J. Coord. Chem. 61, 1927–1934. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Schiff-base complexes have been studied for many years (Gupta & Sutar, 2008; Sreenivasulu et al., 2005; Zhang et al., 2008) and have aroused increasing interest because of their antiviral, anticancer, catalytic and fluorescent properties. Most model studies of metal complexes of Schiff-base ligands containing salicylaldehyde derivatives and oxime have focused on the binding mode of the ligands (Raptopoulou et al., 2006; Milios et al., 2006; Yang et al., 2007). The crystal structures of the complexes demonstrate that the Schiff-base ligands act in a bidentate, tridentate or mu^5^:eta^1^:etaî^:eta^3^ mode, coordinating through the phenolato O, imine N, or oxime O atoms. Our research group is interested in the Schiff-base derived from 2-hydroxy-3-methoxy-benzaldehyde and hydroxylammonium chloride.