metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[tetra­quazinc(II)]-μ-2,5-di­hydroxy­benzene-1,4-di­acetato-κ2O1:O4] dihydrate]

aDepartment of Environmental Engineering, Polytechnic Tianjin University, Tianjin 300160, People's Republic of China, and bTianjin Tianle International Engineering Consulting Co, Tianjin 300203, People's Republic of China
*Correspondence e-mail: mashi7822@163.com

(Received 4 September 2008; accepted 30 October 2008; online 8 November 2008)

The title compound, {[Zn(C10H8O6)(H2O)4]·2H2O}n, is a one-dimensional coordination polymer with 2,5-dihydroxy­benzene-1,4-diacetate acting as bridging ligand. The zigzag chains, extending parallel to [011], are further packed into a three-dimensional network by hydrogen bonds.

Related literature

For related structures, see Ren et al. (2008[Ren, P., Xu, N., Chen, C., Song, H. B., Shi, W. & Cheng, P. (2008). Inorg. Chem. Commun. 11, 730-732.]); Cano et al. (1997[Cano, J., Munno, G. D., Sanz, J. L., Ruiz, R., Faus, J., Lloret, F., Julve, M. & Caneschi, A. (1997). J. Chem. Soc. Dalton Trans. pp. 1915-1924.]); Sun et al. (2001[Sun, D. F., Gao, R., Liang, Y. C., Shi, Q., Su, W. P. & Hong, M. C. (2001). J. Chem. Soc. Dalton Trans. pp. 2335-2340.]); Zhao et al. (2004[Zhao, B., Cheng, P., Chen, X. Y., Cheng, C., Shi, W., Liao, D. Z., Yan, S. P. & Jiang, Z. H. (2004). J. Am. Chem. Soc. 126, 3012-3013.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C10H8O6)(H2O)4]·2H2O

  • Mr = 397.63

  • Monoclinic, P 21 /c

  • a = 11.122 (2) Å

  • b = 7.5176 (15) Å

  • c = 8.6417 (17) Å

  • β = 95.12 (3)°

  • V = 719.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.77 mm−1

  • T = 113 (2) K

  • 0.32 × 0.24 × 0.10 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalStructure; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.601, Tmax = 0.843

  • 6863 measured reflections

  • 1833 independent reflections

  • 1405 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.117

  • S = 1.17

  • 1833 reflections

  • 125 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O6i 0.84 1.92 2.725 (3) 160
O4—H4A⋯O2ii 0.857 (10) 1.823 (15) 2.616 (3) 153 (3)
O4—H4A⋯O1ii 0.857 (10) 2.45 (3) 3.011 (3) 123 (3)
O4—H4B⋯O6iii 0.859 (10) 1.925 (10) 2.783 (3) 176 (3)
O5—H5A⋯O3iv 0.853 (10) 2.000 (15) 2.828 (3) 164 (3)
O5—H5B⋯O4iii 0.855 (10) 1.956 (15) 2.787 (3) 164 (3)
O6—H6A⋯O2v 0.836 (10) 2.11 (3) 2.781 (3) 137 (3)
O6—H6B⋯O1 0.843 (10) 1.908 (15) 2.721 (3) 162 (3)
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+1, -z+1; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalStructure (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalStructure; data reduction: CrystalStructure; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Rigid carboxylato ligands, such as benzene-carboxylic acid, pyridine-carboxylic acid, etc. have been widely utilized to synthesize coordination polymers because they can link metal ions via one carboxyl group or via the aroma rings, leading plentiful varieties of structures (Cano et al., 1997; Sun et al., 2001; Zhao, et al., 2004). In contrast, flexible aroma-carboxylic acid and their complexes are less studied comparing to the rigid ones. (Ren et al., 2008)

In this contribution, a flexible ligand, 2,5-dihydroxy-p-benzenediacetic acid (H2dba), was selected to construct coordination polymer, and the title complex was obtained under solvothermal conditions.

The Zn(II) ion in the title compound is coordinated by two oxygen atoms from dba anions in the apical sites and four water molecules in the equatorial plane (Fig. 1). The Zn(II) ions are linked through dba dianion forming one-dimensional chain (Fig. 2). Furthermore, the chains are packed into three-dimensional supermolecular moiety by O—H···O H-bonds (Fig. 3).

Related literature top

For related structures, see Ren et al. (2008); Cano et al. (1997); Sun et al. (2001); Zhao et al. (2004).

Experimental top

A mixture of Zn(Ac)22H2O (0.5 mmol, 109.8 mg), H2dba (0.5 mmol, 133.0 mg), 10 ml THF and 10 ml water was put into a 25 ml acid digestion bomb and heated at 80°C for three days. After cooling to room temperature, the title compound (56% yield based on Zn(II) salt) was obtained. Elemental analysis (%) for the title compound C10H20ZnO12: found: C, 29.94; H, 4.96; N, 0. Calc.: C, 30.20; H, 5.07; N, 0.

Refinement top

The carboxyl H and aromatic H were placed in calculated positions and refined in riding mode with Uiso(H) = 1.2Ueq(C). Water H atoms were located in a difference Fourier map and refined as riding in as-found relative positions with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrystalStructure (Rigaku/MSC, 2005); cell refinement: CrystalStructure (Rigaku/MSC, 2005); data reduction: CrystalStructure (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids. Symmetry code: A - x, -y + 2 - z.
[Figure 2] Fig. 2. One-dimensional chain structure of the title compound. H atoms and lattice water molecules are omitted for clarity. Symmetry code: (A) x, y, z; (B) - x, -y + 2 - z; (C) 1 - x, 1 - y, -z.
[Figure 3] Fig. 3. The packing diagram of the title compound.
catena-Poly[[[tetraquazinc(II)]-µ-2,5-dihydroxybenzene-1,4-diacetato- κ2O1:O4] dihydrate] top
Crystal data top
[Zn(C10H8O6)(H2O)4]·2H2OF(000) = 412
Mr = 397.63Dx = 1.835 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 1803 reflections
a = 11.122 (2) Åθ = 2.9–28.6°
b = 7.5176 (15) ŵ = 1.77 mm1
c = 8.6417 (17) ÅT = 113 K
β = 95.12 (3)°Prism, colorless
V = 719.7 (2) Å30.32 × 0.24 × 0.10 mm
Z = 2
Data collection top
Rigaku Saturn
diffractometer
1833 independent reflections
Radiation source: rotating anode1405 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 28.6°, θmin = 1.8°
Absorption correction: multi-scan
(CrystalStructure; Rigaku/MSC, 2005)
h = 1414
Tmin = 0.601, Tmax = 0.843k = 1010
6863 measured reflectionsl = 1011
Refinement top
Refinement on F29 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0565P)2 + 0.7652P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.117(Δ/σ)max < 0.001
S = 1.17Δρmax = 0.60 e Å3
1833 reflectionsΔρmin = 0.66 e Å3
125 parameters
Crystal data top
[Zn(C10H8O6)(H2O)4]·2H2OV = 719.7 (2) Å3
Mr = 397.63Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.122 (2) ŵ = 1.77 mm1
b = 7.5176 (15) ÅT = 113 K
c = 8.6417 (17) Å0.32 × 0.24 × 0.10 mm
β = 95.12 (3)°
Data collection top
Rigaku Saturn
diffractometer
1833 independent reflections
Absorption correction: multi-scan
(CrystalStructure; Rigaku/MSC, 2005)
1405 reflections with I > 2σ(I)
Tmin = 0.601, Tmax = 0.843Rint = 0.041
6863 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0329 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.17Δρmax = 0.60 e Å3
1833 reflectionsΔρmin = 0.66 e Å3
125 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.50000.50000.00908 (16)
O10.33235 (19)0.5544 (3)0.5773 (2)0.0106 (4)
O20.30469 (19)0.8254 (3)0.4764 (3)0.0142 (5)
O30.17185 (19)1.0259 (3)0.7503 (3)0.0124 (5)
H30.18321.13320.77460.019*
O40.4629 (2)0.2263 (3)0.5260 (3)0.0121 (4)
H4A0.5325 (13)0.207 (5)0.494 (4)0.018*
H4B0.4037 (18)0.197 (5)0.460 (3)0.018*
O50.4263 (2)0.5039 (3)0.2703 (3)0.0138 (4)
H5A0.3500 (11)0.517 (4)0.268 (4)0.021*
H5B0.449 (3)0.426 (4)0.207 (4)0.021*
C10.2689 (3)0.6913 (4)0.5470 (3)0.0103 (6)
C20.1445 (3)0.6927 (4)0.6029 (4)0.0107 (6)
H2A0.10140.58380.56470.013*
H2B0.15250.68790.71780.013*
C30.0690 (2)0.8511 (4)0.5524 (3)0.0090 (6)
C40.0186 (3)0.8388 (4)0.4269 (3)0.0103 (6)
H40.03210.72770.37580.012*
C50.0863 (2)1.0146 (4)0.6249 (3)0.0095 (5)
O60.2650 (2)0.3550 (3)0.8178 (3)0.0133 (4)
H6A0.246 (3)0.426 (4)0.886 (3)0.020*
H6B0.286 (3)0.395 (4)0.733 (2)0.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0073 (2)0.0100 (3)0.0101 (3)0.00122 (18)0.00169 (16)0.00064 (19)
O10.0082 (10)0.0111 (10)0.0125 (10)0.0037 (8)0.0015 (8)0.0024 (8)
O20.0097 (10)0.0127 (10)0.0204 (12)0.0011 (8)0.0035 (9)0.0034 (9)
O30.0108 (10)0.0131 (11)0.0125 (11)0.0002 (8)0.0035 (8)0.0011 (8)
O40.0086 (9)0.0104 (10)0.0177 (11)0.0004 (8)0.0032 (8)0.0010 (8)
O50.0111 (10)0.0182 (11)0.0117 (11)0.0018 (9)0.0007 (8)0.0026 (9)
C10.0089 (13)0.0116 (14)0.0104 (14)0.0005 (11)0.0001 (11)0.0042 (11)
C20.0080 (13)0.0126 (14)0.0117 (14)0.0043 (10)0.0023 (11)0.0046 (11)
C30.0049 (12)0.0095 (13)0.0132 (14)0.0020 (10)0.0043 (10)0.0031 (11)
C40.0079 (12)0.0156 (14)0.0080 (14)0.0006 (11)0.0039 (10)0.0018 (11)
C50.0048 (11)0.0159 (14)0.0082 (13)0.0023 (11)0.0027 (9)0.0011 (11)
O60.0159 (11)0.0119 (11)0.0123 (11)0.0003 (8)0.0028 (9)0.0001 (8)
Geometric parameters (Å, º) top
Zn1—O12.077 (2)O5—H5B0.855 (10)
Zn1—O1i2.077 (2)C1—C21.506 (4)
Zn1—O5i2.080 (2)C2—C31.500 (4)
Zn1—O52.080 (2)C2—H2A0.9900
Zn1—O42.115 (2)C2—H2B0.9900
Zn1—O4i2.115 (2)C3—C51.384 (4)
O1—C11.262 (3)C3—C41.395 (4)
O2—C11.261 (4)C4—C5ii1.387 (4)
O3—C51.379 (3)C4—H40.9500
O3—H30.8400C5—C4ii1.387 (4)
O4—H4A0.857 (10)O6—H6A0.836 (10)
O4—H4B0.859 (10)O6—H6B0.843 (10)
O5—H5A0.853 (10)
O1—Zn1—O1i180.0Zn1—O5—H5B119 (2)
O1—Zn1—O5i89.12 (9)H5A—O5—H5B114.9 (18)
O1i—Zn1—O5i90.88 (9)O2—C1—O1123.9 (3)
O1—Zn1—O590.88 (9)O2—C1—C2119.2 (3)
O1i—Zn1—O589.12 (9)O1—C1—C2116.8 (3)
O5i—Zn1—O5180.0C3—C2—C1114.8 (2)
O1—Zn1—O488.16 (8)C3—C2—H2A108.6
O1i—Zn1—O491.84 (8)C1—C2—H2A108.6
O5i—Zn1—O487.08 (8)C3—C2—H2B108.6
O5—Zn1—O492.92 (9)C1—C2—H2B108.6
O1—Zn1—O4i91.84 (8)H2A—C2—H2B107.6
O1i—Zn1—O4i88.16 (8)C5—C3—C4118.1 (3)
O5i—Zn1—O4i92.92 (9)C5—C3—C2121.4 (3)
O5—Zn1—O4i87.08 (8)C4—C3—C2120.5 (3)
O4—Zn1—O4i180.0C5ii—C4—C3121.3 (3)
C1—O1—Zn1126.52 (19)C5ii—C4—H4119.4
C5—O3—H3109.5C3—C4—H4119.4
Zn1—O4—H4A86 (3)O3—C5—C3117.9 (3)
Zn1—O4—H4B109 (3)O3—C5—C4ii121.4 (3)
H4A—O4—H4B113.9 (17)C3—C5—C4ii120.7 (3)
Zn1—O5—H5A109 (3)H6A—O6—H6B119.8 (19)
O5i—Zn1—O1—C1118.5 (2)C1—C2—C3—C577.9 (4)
O5—Zn1—O1—C161.5 (2)C1—C2—C3—C4100.0 (3)
O4—Zn1—O1—C1154.4 (2)C5—C3—C4—C5ii0.2 (5)
O4i—Zn1—O1—C125.6 (2)C2—C3—C4—C5ii177.7 (3)
Zn1—O1—C1—O27.4 (4)C4—C3—C5—O3179.1 (3)
Zn1—O1—C1—C2173.89 (19)C2—C3—C5—O32.9 (4)
O2—C1—C2—C36.2 (4)C4—C3—C5—C4ii0.2 (5)
O1—C1—C2—C3175.0 (3)C2—C3—C5—C4ii177.7 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O6iii0.841.922.725 (3)160
O4—H4A···O2i0.86 (1)1.82 (2)2.616 (3)153 (3)
O4—H4A···O1i0.86 (1)2.45 (3)3.011 (3)123 (3)
O4—H4B···O6iv0.86 (1)1.93 (1)2.783 (3)176 (3)
O5—H5A···O3v0.85 (1)2.00 (2)2.828 (3)164 (3)
O5—H5B···O4iv0.86 (1)1.96 (2)2.787 (3)164 (3)
O6—H6A···O2vi0.84 (1)2.11 (3)2.781 (3)137 (3)
O6—H6B···O10.84 (1)1.91 (2)2.721 (3)162 (3)
Symmetry codes: (i) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x, y+1/2, z1/2; (v) x, y+3/2, z1/2; (vi) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C10H8O6)(H2O)4]·2H2O
Mr397.63
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)11.122 (2), 7.5176 (15), 8.6417 (17)
β (°) 95.12 (3)
V3)719.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.77
Crystal size (mm)0.32 × 0.24 × 0.10
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalStructure; Rigaku/MSC, 2005)
Tmin, Tmax0.601, 0.843
No. of measured, independent and
observed [I > 2σ(I)] reflections
6863, 1833, 1405
Rint0.041
(sin θ/λ)max1)0.674
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.117, 1.17
No. of reflections1833
No. of parameters125
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.60, 0.66

Computer programs: CrystalStructure (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O6i0.841.922.725 (3)160.1
O4—H4A···O2ii0.857 (10)1.823 (15)2.616 (3)153 (3)
O4—H4A···O1ii0.857 (10)2.45 (3)3.011 (3)123 (3)
O4—H4B···O6iii0.859 (10)1.925 (10)2.783 (3)176 (3)
O5—H5A···O3iv0.853 (10)2.000 (15)2.828 (3)164 (3)
O5—H5B···O4iii0.855 (10)1.956 (15)2.787 (3)164 (3)
O6—H6A···O2v0.836 (10)2.11 (3)2.781 (3)137 (3)
O6—H6B···O10.843 (10)1.908 (15)2.721 (3)162 (3)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z1/2; (iv) x, y+3/2, z1/2; (v) x, y+3/2, z+1/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 50578108) and the Sci and Tec Innovation Foundation of Tianjin (No. 06FZZDSH00900).

References

First citationCano, J., Munno, G. D., Sanz, J. L., Ruiz, R., Faus, J., Lloret, F., Julve, M. & Caneschi, A. (1997). J. Chem. Soc. Dalton Trans. pp. 1915–1924.  CSD CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationRen, P., Xu, N., Chen, C., Song, H. B., Shi, W. & Cheng, P. (2008). Inorg. Chem. Commun. 11, 730–732.  Web of Science CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, D. F., Gao, R., Liang, Y. C., Shi, Q., Su, W. P. & Hong, M. C. (2001). J. Chem. Soc. Dalton Trans. pp. 2335–2340.  Web of Science CSD CrossRef Google Scholar
First citationZhao, B., Cheng, P., Chen, X. Y., Cheng, C., Shi, W., Liao, D. Z., Yan, S. P. & Jiang, Z. H. (2004). J. Am. Chem. Soc. 126, 3012–3013.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds