metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[Bis(3,5-di­methyl­pyrazol-1-yl)methane]{N-[1-(2-oxidophen­yl)ethyl­­idene]-DL-alaninato}copper(II) monohydrate

aSchool of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000, People's Republic of China
*Correspondence e-mail: zgq1118@163.com

(Received 8 September 2008; accepted 11 November 2008; online 13 November 2008)

In the title compound, [Cu(C11H11NO3)(C11H16N4)]·H2O, the CuII atom is five-coordinate in a distorted square-pyramidal geometry. The basal positions are occupied by three donor atoms from the tridentate Schiff base ligand and by one N atom from a bis­(3,5-dimethyl­prazol-l-yl)methane ligand. The apical position is occupied by the N atom of the other ligand of this type. There are only van der Waals contacts in the crystal structure.

Related literature

For background to transition metal complexes with Schiff base ligands, see: Casella & Guillotti (1983[Casella, L. & Guillotti, M. (1983). Inorg. Chem. 22, 2259-2266.]); Ganguly et al. (2008[Ganguly, R., Sreenivasulu, B. & Vittal, J. J. (2008). Coord. Chem. Rev. 252, 1027-1050.]); Vigato & Tamburini (2004[Vigato, P. A. & Tamburini, S. (2004). Coord. Chem. Rev. 248, 1717-2128.]). For structural studies of Schiff base complexes derived from 2-hydroxy­acetophenone and animo acids, see: Baul et al. (2007[Baul, T. S. B., Masharing, C., Ruisi, G., Jirásko, R., Holčapek, M., Voc, D., Wolstenholme, D. & Linden, A. (2007). J. Organomet. Chem. 692, 4849-4862.]); Parekh et al. (2006[Parekh, H. M., Mehta, S. R. & Patel, M. N. (2006). Russ. J. Inorg. Chem. 35, 67-72.]); Usman et al. (2003[Usman, A., Fun, H.-K., Basu Baul, T. S. & Paul, P. C. (2003). Acta Cryst. E59, m438-m440.]). For related literature, see: Plesch et al. (1997[Plesch, G., Friebel, C., Warda, S. A., Sivý, J. & Švajlenová, O. (1997). Transition Met. Chem. 22, 433-440.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C11H11NO3)(C11H16N4)]·H2O

  • Mr = 491.04

  • Monoclinic, P 21 /c

  • a = 13.365 (3) Å

  • b = 7.8602 (15) Å

  • c = 23.404 (4) Å

  • β = 102.315 (2)°

  • V = 2402.1 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 293 (2) K

  • 0.36 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.727, Tmax = 0.833

  • 14432 measured reflections

  • 5500 independent reflections

  • 3724 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.150

  • S = 1.02

  • 5500 reflections

  • 296 parameters

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.879 (2)
Cu1—O2 1.961 (2)
Cu1—N1 1.974 (2)
Cu1—N4 2.062 (2)
Cu1—N2 2.315 (3)

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker Axs Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker Axs Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past decades, significant progress has been achieved in understanding the chemistry of transition metal complexes with Schiff base ligands composed of salicylaldehyde, 2-formylpyridine or their analogues, and α-amino acids (Vigato & Tamburini, 2004; Ganguly et al., 2008; Casella & Guillotti, 1983). A few stuctural studies have been performed on Schiff base complexes derived from 2-Hydroxyacetophenone and animo acids (Usman et al., 2003; Baul et al., 2007; Parekh et al., 2006). We report here the crystal structure of the title CuII complex, (I).

The structure consists of discrete monomeric square-pyramidal CuII complex (Fig. 1 and Table 1). The basal positions are occupied by three donor atoms from the tridentate Schiff base ligand, which furnishes an ONO donor set, with the fourth position occupied by one N atom from the 1,1-bis(3,5-dimethylprazol-l-yl)methane ligand. The apical position is occupied by the other N atom of this ligand.

The two nitrogen heterocycles are planar and lie at angles of 95.5° and 30.9° to the plane of the C1—C6 ring. The two nitrogen heterocycles form a dihedral angle of 66.2° with each other.

The van der Waals contacts are major factors in the crystal packing. The H atoms of water could not be fixed because of the high disorder of O4. So, no comment can be given about the probable O—H···O type hydrogen bonds which should be formed through the solvent water molecule with neighboring carboxylate oxygen O3.

Related literature top

For background to transition metal complexes with Schiff base ligands, see: Casella & Guillotti (1983); Ganguly et al. (2008); Vigato & Tamburini (2004). For structural studies of Schiff base complexes derived from 2-hydroxyacetophenone and animo acids, see: Baul et al. (2007); Parekh et al. (2006); Usman et al. (2003). For related literature, see: Plesch et al. (1997).

Experimental top

The title compound was synthesized as described in the literature (Plesch et al., 1997). To L-valine (1.00 mmol) and potassium hydroxide (1.00 mmol) in 10 ml of methanol was added 2-Hydroxyacetophenone (1.00 mmol in 10 ml of methanol) dropwise. The yellow solution was stirred for 2.0 h at 333 K. The resultant mixture was added dropwise to copper (II) acetate monohydrate (1.00 mmol) and 1,1-bis(3,5-dimethylprazol-l-yl)methane (1.00 mmol) in an aqueous methanolic solution (20 ml, 1:1 v/v), and heated with stirring for 2.0 h at 333 K. The dark blue solution was filtered and left for several days, dark blue crystals had formed that were filtered off, washed with water, and dried under vacuum.

Refinement top

In (I), All H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (CH) or 0.97 Å (CH2) and Uiso(H) = 1.2Ueq(C), with C—H = 0.96 Å (CH3) and Uiso(H) = 1.5Ueq(C). The oxygen (O4) of the water molecule is extremely disorder. So, no H-atom could be attached.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Bis(3,5-dimethylpyrazol-1-yl)methane]{N-[1-(2- oxidophenyl)ethylidene]-DL-alaninato}copper(II) monohydrate top
Crystal data top
[Cu(C11H11NO3)(C11H16N4)]·H2OF(000) = 1028
Mr = 491.04Dx = 1.358 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3344 reflections
a = 13.365 (3) Åθ = 2.6–23.9°
b = 7.8602 (15) ŵ = 0.95 mm1
c = 23.404 (4) ÅT = 293 K
β = 102.315 (2)°Block, dark blue
V = 2402.1 (8) Å30.36 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
5500 independent reflections
Radiation source: fine-focus sealed tube3724 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ϕ and ω scansθmax = 27.6°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1217
Tmin = 0.727, Tmax = 0.833k = 1010
14432 measured reflectionsl = 3027
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0715P)2 + 0.4661P]
where P = (Fo2 + 2Fc2)/3
5500 reflections(Δ/σ)max = 0.001
296 parametersΔρmax = 0.79 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Cu(C11H11NO3)(C11H16N4)]·H2OV = 2402.1 (8) Å3
Mr = 491.04Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.365 (3) ŵ = 0.95 mm1
b = 7.8602 (15) ÅT = 293 K
c = 23.404 (4) Å0.36 × 0.25 × 0.20 mm
β = 102.315 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5500 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3724 reflections with I > 2σ(I)
Tmin = 0.727, Tmax = 0.833Rint = 0.054
14432 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.02Δρmax = 0.79 e Å3
5500 reflectionsΔρmin = 0.53 e Å3
296 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8201 (2)0.6577 (4)0.77226 (13)0.0495 (8)
C20.8236 (3)0.6612 (6)0.83301 (14)0.0657 (10)
H20.76230.65970.84570.079*
C30.9132 (3)0.6666 (6)0.87380 (16)0.0758 (12)
H30.91220.66820.91340.091*
C41.0060 (3)0.6697 (6)0.85614 (16)0.0777 (12)
H41.06750.67740.88350.093*
C51.0049 (3)0.6611 (5)0.79729 (16)0.0657 (10)
H51.06730.65890.78580.079*
C60.9140 (2)0.6554 (4)0.75344 (14)0.0473 (8)
C70.9202 (2)0.6387 (4)0.69200 (14)0.0460 (7)
C80.8453 (2)0.5740 (4)0.59087 (13)0.0477 (8)
H80.91040.51820.58960.057*
C90.7567 (3)0.4588 (5)0.56306 (14)0.0519 (8)
C101.0249 (2)0.6546 (6)0.67706 (17)0.0690 (11)
H10A1.01720.66090.63540.104*
H10B1.06570.55710.69170.104*
H10C1.05810.75580.69470.104*
C110.8367 (3)0.7413 (5)0.55651 (16)0.0692 (11)
H11A0.89710.80840.57010.104*
H11B0.77770.80320.56220.104*
H11C0.83000.71710.51570.104*
C120.6251 (2)0.9931 (4)0.62768 (14)0.0477 (7)
C130.5374 (3)1.0828 (4)0.60353 (17)0.0594 (9)
H130.52901.20030.60390.071*
C140.4655 (3)0.9659 (4)0.57912 (15)0.0510 (8)
C150.3571 (3)0.9869 (6)0.5464 (2)0.0819 (13)
H15A0.34690.92480.51030.123*
H15B0.34321.10530.53830.123*
H15C0.31150.94400.56970.123*
C160.7269 (3)1.0596 (5)0.66044 (19)0.0730 (12)
H16A0.75220.98810.69360.110*
H16B0.71861.17350.67350.110*
H16C0.77471.05950.63510.110*
C170.4717 (2)0.6429 (4)0.57657 (12)0.0411 (7)
H17A0.51560.58040.55590.049*
H17B0.40410.64940.55130.049*
C180.3806 (2)0.5024 (5)0.64872 (15)0.0504 (8)
C190.4159 (3)0.4218 (4)0.70075 (16)0.0586 (9)
H190.37610.37090.72410.070*
C200.5217 (3)0.4297 (4)0.71236 (14)0.0491 (8)
C210.5955 (3)0.3618 (6)0.76487 (17)0.0787 (12)
H21A0.65780.32820.75380.118*
H21B0.56570.26510.78010.118*
H21C0.61010.44860.79430.118*
C220.2745 (3)0.5421 (6)0.61745 (19)0.0811 (13)
H22A0.26450.50380.57770.122*
H22B0.26350.66270.61800.122*
H22C0.22680.48540.63640.122*
Cu10.69565 (3)0.58580 (5)0.659531 (15)0.03989 (15)
N10.83952 (18)0.6059 (3)0.65209 (11)0.0421 (6)
N20.61092 (17)0.8286 (3)0.61916 (11)0.0432 (6)
N30.51185 (17)0.8133 (3)0.58899 (10)0.0402 (6)
N40.55252 (18)0.5077 (3)0.66850 (11)0.0428 (6)
N50.46534 (18)0.5521 (3)0.62967 (11)0.0411 (6)
O10.72874 (16)0.6610 (3)0.73752 (9)0.0561 (6)
O20.67815 (16)0.4594 (3)0.58584 (9)0.0503 (6)
O30.7635 (2)0.3745 (4)0.51962 (12)0.0863 (10)
O40.9427 (3)0.3264 (13)0.48232 (19)0.269 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0451 (18)0.054 (2)0.0463 (18)0.0114 (15)0.0040 (15)0.0053 (15)
C20.057 (2)0.096 (3)0.0428 (19)0.016 (2)0.0085 (17)0.0079 (18)
C30.077 (3)0.102 (3)0.043 (2)0.019 (2)0.003 (2)0.007 (2)
C40.059 (3)0.110 (4)0.053 (2)0.023 (2)0.0117 (19)0.013 (2)
C50.0406 (19)0.087 (3)0.064 (2)0.0130 (19)0.0011 (17)0.010 (2)
C60.0365 (17)0.0529 (19)0.0495 (18)0.0100 (14)0.0022 (14)0.0056 (15)
C70.0319 (16)0.0505 (19)0.0542 (19)0.0051 (13)0.0063 (14)0.0006 (15)
C80.0319 (16)0.071 (2)0.0423 (17)0.0032 (15)0.0116 (13)0.0015 (15)
C90.0422 (18)0.072 (2)0.0412 (17)0.0053 (16)0.0081 (14)0.0056 (15)
C100.0305 (18)0.105 (3)0.071 (2)0.0030 (19)0.0106 (17)0.013 (2)
C110.058 (2)0.093 (3)0.061 (2)0.001 (2)0.0220 (18)0.019 (2)
C120.0421 (18)0.0425 (19)0.058 (2)0.0077 (14)0.0094 (15)0.0009 (15)
C130.057 (2)0.0430 (19)0.072 (2)0.0043 (16)0.0015 (19)0.0004 (16)
C140.0444 (18)0.052 (2)0.055 (2)0.0094 (15)0.0066 (15)0.0041 (15)
C150.056 (2)0.079 (3)0.096 (3)0.021 (2)0.015 (2)0.001 (3)
C160.051 (2)0.064 (3)0.096 (3)0.0145 (18)0.002 (2)0.009 (2)
C170.0341 (16)0.0482 (18)0.0402 (16)0.0048 (13)0.0059 (13)0.0052 (13)
C180.0394 (17)0.059 (2)0.057 (2)0.0143 (16)0.0188 (15)0.0086 (16)
C190.054 (2)0.068 (2)0.062 (2)0.0176 (17)0.0295 (18)0.0038 (18)
C200.058 (2)0.0458 (19)0.0480 (18)0.0049 (15)0.0206 (16)0.0004 (14)
C210.088 (3)0.084 (3)0.063 (2)0.001 (2)0.015 (2)0.027 (2)
C220.037 (2)0.121 (4)0.087 (3)0.013 (2)0.019 (2)0.006 (3)
Cu10.0293 (2)0.0490 (3)0.0421 (2)0.00231 (15)0.00949 (15)0.00283 (16)
N10.0319 (13)0.0521 (16)0.0421 (14)0.0036 (11)0.0074 (11)0.0015 (11)
N20.0263 (12)0.0471 (16)0.0528 (15)0.0040 (11)0.0008 (11)0.0023 (12)
N30.0311 (13)0.0443 (15)0.0441 (13)0.0003 (11)0.0056 (11)0.0014 (11)
N40.0390 (14)0.0445 (15)0.0462 (14)0.0040 (12)0.0119 (12)0.0031 (12)
N50.0309 (13)0.0526 (16)0.0414 (14)0.0067 (11)0.0111 (11)0.0009 (11)
O10.0336 (12)0.0861 (17)0.0478 (13)0.0080 (11)0.0069 (10)0.0120 (12)
O20.0379 (12)0.0612 (15)0.0548 (13)0.0025 (10)0.0167 (10)0.0111 (10)
O30.0584 (17)0.142 (3)0.0650 (17)0.0115 (16)0.0265 (14)0.0473 (17)
O40.082 (3)0.624 (14)0.103 (3)0.110 (5)0.026 (2)0.007 (5)
Geometric parameters (Å, º) top
C1—O11.314 (4)C14—C151.497 (4)
C1—C21.413 (4)C15—H15A0.9600
C1—C61.417 (4)C15—H15B0.9600
C2—C31.364 (5)C15—H15C0.9600
C2—H20.9300C16—H16A0.9600
C3—C41.388 (6)C16—H16B0.9600
C3—H30.9300C16—H16C0.9600
C4—C51.376 (5)C17—N31.449 (4)
C4—H40.9300C17—N51.451 (4)
C5—C61.414 (4)C17—H17A0.9700
C5—H50.9300C17—H17B0.9700
C6—C71.464 (4)C18—N51.361 (4)
C7—N11.293 (4)C18—C191.364 (5)
C7—C101.518 (4)C18—C221.483 (5)
C8—N11.473 (4)C19—C201.384 (5)
C8—C91.522 (5)C19—H190.9300
C8—C111.533 (5)C20—N41.334 (4)
C8—H80.9800C20—C211.500 (5)
C9—O31.233 (4)C21—H21A0.9600
C9—O21.275 (4)C21—H21B0.9600
C10—H10A0.9600C21—H21C0.9600
C10—H10B0.9600C22—H22A0.9600
C10—H10C0.9600C22—H22B0.9600
C11—H11A0.9600C22—H22C0.9600
C11—H11B0.9600Cu1—O11.879 (2)
C11—H11C0.9600Cu1—O21.961 (2)
C12—N21.316 (4)Cu1—N11.974 (2)
C12—C131.381 (5)Cu1—N42.062 (2)
C12—C161.505 (5)Cu1—N22.315 (3)
C13—C141.364 (5)N2—N31.367 (3)
C13—H130.9300N4—N51.362 (3)
C14—N31.348 (4)
O1—C1—C2116.7 (3)H16A—C16—H16B109.5
O1—C1—C6125.1 (3)C12—C16—H16C109.5
C2—C1—C6118.1 (3)H16A—C16—H16C109.5
C3—C2—C1122.8 (4)H16B—C16—H16C109.5
C3—C2—H2118.6N3—C17—N5111.7 (2)
C1—C2—H2118.6N3—C17—H17A109.3
C2—C3—C4119.9 (3)N5—C17—H17A109.3
C2—C3—H3120.0N3—C17—H17B109.3
C4—C3—H3120.0N5—C17—H17B109.3
C5—C4—C3118.6 (3)H17A—C17—H17B107.9
C5—C4—H4120.7N5—C18—C19105.8 (3)
C3—C4—H4120.7N5—C18—C22123.6 (3)
C4—C5—C6123.5 (4)C19—C18—C22130.6 (3)
C4—C5—H5118.3C18—C19—C20107.4 (3)
C6—C5—H5118.3C18—C19—H19126.3
C5—C6—C1117.1 (3)C20—C19—H19126.3
C5—C6—C7119.7 (3)N4—C20—C19109.9 (3)
C1—C6—C7123.1 (3)N4—C20—C21122.5 (3)
N1—C7—C6120.9 (3)C19—C20—C21127.6 (3)
N1—C7—C10121.2 (3)C20—C21—H21A109.5
C6—C7—C10117.8 (3)C20—C21—H21B109.5
N1—C8—C9108.6 (2)H21A—C21—H21B109.5
N1—C8—C11110.5 (3)C20—C21—H21C109.5
C9—C8—C11108.8 (3)H21A—C21—H21C109.5
N1—C8—H8109.6H21B—C21—H21C109.5
C9—C8—H8109.6C18—C22—H22A109.5
C11—C8—H8109.6C18—C22—H22B109.5
O3—C9—O2124.0 (3)H22A—C22—H22B109.5
O3—C9—C8119.0 (3)C18—C22—H22C109.5
O2—C9—C8117.0 (3)H22A—C22—H22C109.5
C7—C10—H10A109.5H22B—C22—H22C109.5
C7—C10—H10B109.5O1—Cu1—O2166.62 (10)
H10A—C10—H10B109.5O1—Cu1—N191.65 (10)
C7—C10—H10C109.5O2—Cu1—N184.17 (9)
H10A—C10—H10C109.5O1—Cu1—N491.49 (10)
H10B—C10—H10C109.5O2—Cu1—N489.98 (9)
C8—C11—H11A109.5N1—Cu1—N4167.22 (10)
C8—C11—H11B109.5O1—Cu1—N297.50 (10)
H11A—C11—H11B109.5O2—Cu1—N295.87 (9)
C8—C11—H11C109.5N1—Cu1—N2107.40 (9)
H11A—C11—H11C109.5N4—Cu1—N284.45 (9)
H11B—C11—H11C109.5C7—N1—C8121.9 (3)
N2—C12—C13111.0 (3)C7—N1—Cu1129.1 (2)
N2—C12—C16120.2 (3)C8—N1—Cu1109.07 (18)
C13—C12—C16128.8 (3)C12—N2—N3104.9 (2)
C14—C13—C12106.7 (3)C12—N2—Cu1134.91 (19)
C14—C13—H13126.6N3—N2—Cu1118.30 (18)
C12—C13—H13126.6C14—N3—N2111.7 (3)
N3—C14—C13105.7 (3)C14—N3—C17130.7 (3)
N3—C14—C15123.0 (3)N2—N3—C17117.5 (2)
C13—C14—C15131.2 (3)C20—N4—N5105.7 (2)
C14—C15—H15A109.5C20—N4—Cu1131.3 (2)
C14—C15—H15B109.5N5—N4—Cu1122.41 (18)
H15A—C15—H15B109.5C18—N5—N4111.2 (2)
C14—C15—H15C109.5C18—N5—C17128.8 (3)
H15A—C15—H15C109.5N4—N5—C17120.0 (2)
H15B—C15—H15C109.5C1—O1—Cu1126.14 (19)
C12—C16—H16A109.5C9—O2—Cu1114.6 (2)
C12—C16—H16B109.5

Experimental details

Crystal data
Chemical formula[Cu(C11H11NO3)(C11H16N4)]·H2O
Mr491.04
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.365 (3), 7.8602 (15), 23.404 (4)
β (°) 102.315 (2)
V3)2402.1 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.36 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.727, 0.833
No. of measured, independent and
observed [I > 2σ(I)] reflections
14432, 5500, 3724
Rint0.054
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.150, 1.02
No. of reflections5500
No. of parameters296
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.53

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O11.879 (2)Cu1—N42.062 (2)
Cu1—O21.961 (2)Cu1—N22.315 (3)
Cu1—N11.974 (2)
 

Acknowledgements

This research was supported by the National Sciences Foundation of China (grant Nos. 20676057 and 20877036).

References

First citationBaul, T. S. B., Masharing, C., Ruisi, G., Jirásko, R., Holčapek, M., Voc, D., Wolstenholme, D. & Linden, A. (2007). J. Organomet. Chem. 692, 4849–4862.  Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker Axs Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasella, L. & Guillotti, M. (1983). Inorg. Chem. 22, 2259–2266.  CrossRef CAS Web of Science Google Scholar
First citationGanguly, R., Sreenivasulu, B. & Vittal, J. J. (2008). Coord. Chem. Rev. 252, 1027–1050.  Web of Science CrossRef CAS Google Scholar
First citationParekh, H. M., Mehta, S. R. & Patel, M. N. (2006). Russ. J. Inorg. Chem. 35, 67–72.  Web of Science CrossRef Google Scholar
First citationPlesch, G., Friebel, C., Warda, S. A., Sivý, J. & Švajlenová, O. (1997). Transition Met. Chem. 22, 433–440.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsman, A., Fun, H.-K., Basu Baul, T. S. & Paul, P. C. (2003). Acta Cryst. E59, m438–m440.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVigato, P. A. & Tamburini, S. (2004). Coord. Chem. Rev. 248, 1717–2128.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds