organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Iso­propyl 2-(5-iodo-3-methyl­sulfinyl-1-benzo­furan-2-yl)acetate

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 11 November 2008; accepted 12 November 2008; online 20 November 2008)

In the title compound, C14H15IO4S, the O atom and the methyl group of the methyl­sulfinyl substituent lie on opposite sides of the plane of the benzofuran fragment. The crystal structure is stabilized by C—H⋯π inter­actions between a methyl H atom and the benzene ring of an adjacent mol­ecule, and by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the crystal structures of similar isopropyl 2-(3-methyl­sulfinyl-1-benzofuran-2-yl)acetate derivatives, see: Choi et al. (2008a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o2079.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o2250.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15IO4S

  • Mr = 406.22

  • Triclinic, [P \overline 1]

  • a = 8.0584 (7) Å

  • b = 10.1959 (9) Å

  • c = 10.8367 (9) Å

  • α = 70.369 (2)°

  • β = 81.926 (2)°

  • γ = 66.882 (1)°

  • V = 771.24 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.22 mm−1

  • T = 298 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999[Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.]) Tmin = 0.595, Tmax = 0.806

  • 4396 measured reflections

  • 2965 independent reflections

  • 2639 reflections with I > 2σ(I)

  • Rint = 0.011

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.079

  • S = 1.13

  • 2965 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C2–C7 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O4i 0.93 2.57 3.451 (4) 159
C9—H9B⋯O4ii 0.97 2.41 3.373 (4) 170
C13—H13CCgiii 0.96 2.78 3.532 (5) 136
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1; (iii) x, y-1, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our ongoing studies of the synthesis and structure of isopropyl 2-(3-methylsulfinyl-1-benzofuran-2-yl)acetate analogues, we have recently described the crystal structures of isopropyl 2-(5-methyl-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi et al., 2008a) and isopropyl 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl) acetate (Choi et al., 2008b). Here we report the crystal structure of the title compound, isopropyl 2-(5-iodo-3-methylsulfinyl-1-benzofuran-2-yl) acetate (Fig. 1). The benzofuran unit is essentially planar, with a mean deviation of 0.013 (2) Å from the least-squares plane defined by the nine constituent atoms. The molecular packing is stabilized by C—H···π interactions between a methyl H atom of isopropyl group and the benzene ring of the benzofuran unit, with a C13—H13C···Cgiii separation of 2.78 Å (Fig. 2 and Table 1; Cg is the centroid of the C2–C7 benzene ring, symmetry code as in Fig. 2). Also weak intermolecular C—H···O hydrogen bonds in the structure were observed (Table 1 & Fig. 2).

Related literature top

For the crystal structures of similar isopropyl 2-(3-methylsulfinyl-1- benzofuran-2-yl)acetate derivatives, see: Choi et al. (2008a,b). Cg is the centroid of the C2–C7 benzene ring.

Experimental top

77% 3-chloroperoxybenzoic acid (197 mg, 0.88 mmol) was added in small portions to a stirred solution of isopropyl 2-(5-iodo-3-methylsulfanyl-1-benzofuran-2-yl)acetate (321 mg, 0.8 mmol) in dichloromethane (30 ml) at 273 K. After being stirred for 3 h at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 1:2 v/v) to afford the title compound as a colorless solid [yield 80%, m.p. 420–421 K; Rf = 0.63 (hexane-ethyl acetate, 1;2 v/v)]. Single crystals suitable for X–ray diffraction were prepared by evaporation of a solution of the title compound in acetone at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 1.27 (d, J = 6.20 Hz, 6H), 3.07 (s, 3H), 4.0 (s, 2H), 5.01-5.07 (m, 1H), 7.29 (d, J = 8.80 Hz, 1H), 7.66 (d, J = 8.76 Hz, 1H), 8.29 (s, 1H); EI-MS 406 [M+].

Refinement top

All H atoms were geometrically positioned and refined using a riding model, with C—H = 0.93 Å for the aryl, 0.97 Å for the methylene, 0.98 Å for the methine, and 0.96 Å for the methyl H atoms. Uiso(H) = 1.2Ueq(C) for the aryl, methine and methylene H atoms, and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. C—H···π and C—H···O interactions (dotted lines) in the title ompound. Cg denotes ring centroid. [Symmetry code: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1; (iii) x, y-1, z+1.]
Isopropyl 2-(5-iodo-3-methylsulfinyl-1-benzofuran-2-yl)acetate top
Crystal data top
C14H15IO4SZ = 2
Mr = 406.22F(000) = 400
Triclinic, P1Dx = 1.749 Mg m3
Hall symbol: -P 1Melting point = 420–421 K
a = 8.0584 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.1959 (9) ÅCell parameters from 3094 reflections
c = 10.8367 (9) Åθ = 2.5–28.2°
α = 70.369 (2)°µ = 2.22 mm1
β = 81.926 (2)°T = 298 K
γ = 66.882 (1)°Block, colorless
V = 771.24 (12) Å30.30 × 0.20 × 0.10 mm
Data collection top
Bruker SMART CCD
diffractometer
2965 independent reflections
Radiation source: fine-focus sealed tube2639 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
Detector resolution: 10.0 pixels mm-1θmax = 26.0°, θmin = 2.5°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
k = 1210
Tmin = 0.595, Tmax = 0.806l = 1113
4396 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0351P)2 + 0.6769P]
where P = (Fo2 + 2Fc2)/3
2965 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
C14H15IO4Sγ = 66.882 (1)°
Mr = 406.22V = 771.24 (12) Å3
Triclinic, P1Z = 2
a = 8.0584 (7) ÅMo Kα radiation
b = 10.1959 (9) ŵ = 2.22 mm1
c = 10.8367 (9) ÅT = 298 K
α = 70.369 (2)°0.30 × 0.20 × 0.10 mm
β = 81.926 (2)°
Data collection top
Bruker SMART CCD
diffractometer
2965 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
2639 reflections with I > 2σ(I)
Tmin = 0.595, Tmax = 0.806Rint = 0.011
4396 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.13Δρmax = 0.62 e Å3
2965 reflectionsΔρmin = 0.58 e Å3
182 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I0.70596 (3)0.79850 (3)0.12855 (3)0.05948 (12)
S0.25632 (12)0.39419 (10)0.46216 (8)0.0450 (2)
O10.1637 (3)0.5266 (2)0.0838 (2)0.0396 (5)
O20.0175 (4)0.1492 (3)0.2759 (3)0.0541 (6)
O30.2647 (4)0.1371 (3)0.2867 (3)0.0668 (8)
O40.2538 (4)0.5137 (3)0.5137 (3)0.0601 (7)
C10.2512 (4)0.4675 (3)0.2898 (3)0.0362 (6)
C20.3469 (4)0.5580 (3)0.2042 (3)0.0349 (6)
C30.4715 (4)0.6148 (4)0.2202 (3)0.0398 (7)
H30.51640.59320.30220.048*
C40.5252 (4)0.7044 (3)0.1086 (3)0.0406 (7)
C50.4622 (5)0.7382 (4)0.0162 (3)0.0430 (7)
H50.50300.79880.08840.052*
C60.3394 (5)0.6817 (4)0.0328 (3)0.0413 (7)
H60.29550.70260.11490.050*
C70.2851 (4)0.5925 (3)0.0795 (3)0.0369 (7)
C80.1443 (4)0.4531 (3)0.2138 (3)0.0377 (7)
C90.0157 (5)0.3741 (4)0.2441 (4)0.0434 (7)
H9A0.06620.41540.17120.052*
H9B0.05560.39280.32070.052*
C100.1072 (5)0.2070 (4)0.2695 (3)0.0414 (7)
C110.0424 (6)0.0125 (4)0.2990 (4)0.0661 (12)
H110.15310.06700.35060.079*
C120.1125 (10)0.0567 (7)0.3724 (6)0.104 (2)
H12A0.21850.00370.31910.125*
H12B0.13630.03150.45260.125*
H12C0.08050.16260.39190.125*
C130.0701 (9)0.0397 (5)0.1698 (6)0.0926 (18)
H13A0.15790.00060.11950.111*
H13B0.04200.00960.12350.111*
H13C0.11240.14540.18280.111*
C140.4840 (6)0.2608 (5)0.4771 (4)0.0647 (11)
H14A0.56570.31270.44430.097*
H14B0.49890.19470.42730.097*
H14C0.50920.20350.56750.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I0.05565 (17)0.05111 (16)0.0792 (2)0.03419 (12)0.00801 (12)0.00920 (12)
S0.0496 (5)0.0512 (5)0.0385 (4)0.0270 (4)0.0031 (3)0.0082 (4)
O10.0425 (12)0.0397 (12)0.0418 (12)0.0179 (10)0.0069 (9)0.0131 (10)
O20.0601 (15)0.0406 (13)0.0698 (17)0.0273 (12)0.0179 (12)0.0099 (12)
O30.0509 (16)0.0473 (15)0.100 (2)0.0204 (13)0.0092 (15)0.0144 (15)
O40.0719 (18)0.0681 (18)0.0502 (15)0.0283 (15)0.0032 (13)0.0264 (13)
C10.0400 (16)0.0352 (15)0.0373 (17)0.0179 (13)0.0038 (13)0.0099 (13)
C20.0376 (15)0.0296 (14)0.0383 (17)0.0123 (12)0.0044 (12)0.0100 (12)
C30.0412 (17)0.0383 (17)0.0438 (18)0.0179 (14)0.0052 (13)0.0120 (14)
C40.0376 (16)0.0324 (16)0.055 (2)0.0157 (13)0.0010 (14)0.0135 (14)
C50.0472 (18)0.0347 (16)0.0434 (19)0.0159 (14)0.0017 (14)0.0073 (14)
C60.0462 (18)0.0385 (17)0.0371 (17)0.0140 (14)0.0040 (13)0.0097 (13)
C70.0394 (16)0.0315 (15)0.0435 (18)0.0137 (13)0.0045 (13)0.0138 (13)
C80.0419 (16)0.0336 (15)0.0414 (17)0.0155 (13)0.0040 (13)0.0128 (13)
C90.0439 (18)0.0441 (18)0.0512 (19)0.0228 (15)0.0039 (14)0.0165 (15)
C100.050 (2)0.0435 (18)0.0382 (17)0.0264 (16)0.0039 (14)0.0100 (14)
C110.085 (3)0.0381 (19)0.078 (3)0.031 (2)0.034 (2)0.0010 (19)
C120.178 (7)0.097 (4)0.080 (4)0.099 (5)0.029 (4)0.032 (3)
C130.116 (4)0.052 (3)0.104 (4)0.032 (3)0.044 (3)0.034 (3)
C140.061 (2)0.059 (2)0.060 (2)0.012 (2)0.0181 (19)0.006 (2)
Geometric parameters (Å, º) top
I—C42.101 (3)C6—C71.385 (5)
S—O41.494 (3)C6—H60.9300
S—C11.763 (3)C8—C91.488 (4)
S—C141.794 (4)C9—C101.509 (5)
O1—C71.375 (4)C9—H9A0.9700
O1—C81.375 (4)C9—H9B0.9700
O2—C101.335 (4)C11—C131.487 (7)
O2—C111.465 (4)C11—C121.521 (7)
O3—C101.192 (4)C11—H110.9800
C1—C81.350 (4)C12—H12A0.9600
C1—C21.445 (4)C12—H12B0.9600
C2—C71.390 (4)C12—H12C0.9600
C2—C31.395 (4)C13—H13A0.9600
C3—C41.380 (5)C13—H13B0.9600
C3—H30.9300C13—H13C0.9600
C4—C51.396 (5)C14—H14A0.9600
C5—C61.382 (5)C14—H14B0.9600
C5—H50.9300C14—H14C0.9600
O4—S—C1107.22 (15)C10—C9—H9A108.9
O4—S—C14106.49 (19)C8—C9—H9B108.9
C1—S—C1497.67 (18)C10—C9—H9B108.9
C7—O1—C8106.2 (2)H9A—C9—H9B107.7
C10—O2—C11118.3 (3)O3—C10—O2125.4 (3)
C8—C1—C2107.2 (3)O3—C10—C9125.4 (3)
C8—C1—S124.0 (2)O2—C10—C9109.1 (3)
C2—C1—S128.7 (2)O2—C11—C13108.2 (3)
C7—C2—C3119.4 (3)O2—C11—C12105.4 (4)
C7—C2—C1104.7 (3)C13—C11—C12109.8 (4)
C3—C2—C1135.9 (3)O2—C11—H11111.1
C4—C3—C2116.9 (3)C13—C11—H11111.1
C4—C3—H3121.6C12—C11—H11111.1
C2—C3—H3121.6C11—C12—H12A109.5
C3—C4—C5123.2 (3)C11—C12—H12B109.5
C3—C4—I118.3 (2)H12A—C12—H12B109.5
C5—C4—I118.5 (2)C11—C12—H12C109.5
C6—C5—C4120.2 (3)H12A—C12—H12C109.5
C6—C5—H5119.9H12B—C12—H12C109.5
C4—C5—H5119.9C11—C13—H13A109.5
C5—C6—C7116.4 (3)C11—C13—H13B109.5
C5—C6—H6121.8H13A—C13—H13B109.5
C7—C6—H6121.8C11—C13—H13C109.5
O1—C7—C6125.3 (3)H13A—C13—H13C109.5
O1—C7—C2110.7 (3)H13B—C13—H13C109.5
C6—C7—C2123.9 (3)S—C14—H14A109.5
C1—C8—O1111.1 (3)S—C14—H14B109.5
C1—C8—C9132.6 (3)H14A—C14—H14B109.5
O1—C8—C9116.3 (3)S—C14—H14C109.5
C8—C9—C10113.4 (3)H14A—C14—H14C109.5
C8—C9—H9A108.9H14B—C14—H14C109.5
O4—S—C1—C8135.0 (3)C3—C2—C7—O1180.0 (3)
C14—S—C1—C8115.0 (3)C1—C2—C7—O11.5 (3)
O4—S—C1—C241.4 (3)C3—C2—C7—C60.2 (5)
C14—S—C1—C268.6 (3)C1—C2—C7—C6178.3 (3)
C8—C1—C2—C70.6 (3)C2—C1—C8—O10.6 (4)
S—C1—C2—C7176.3 (2)S—C1—C8—O1177.6 (2)
C8—C1—C2—C3178.7 (4)C2—C1—C8—C9179.9 (3)
S—C1—C2—C31.9 (6)S—C1—C8—C93.1 (5)
C7—C2—C3—C40.5 (4)C7—O1—C8—C11.5 (3)
C1—C2—C3—C4177.4 (3)C7—O1—C8—C9179.1 (3)
C2—C3—C4—C50.6 (5)C1—C8—C9—C1078.0 (5)
C2—C3—C4—I177.9 (2)O1—C8—C9—C10101.3 (3)
C3—C4—C5—C60.3 (5)C11—O2—C10—O33.5 (5)
I—C4—C5—C6178.2 (2)C11—O2—C10—C9179.5 (3)
C4—C5—C6—C70.1 (5)C8—C9—C10—O312.3 (5)
C8—O1—C7—C6177.9 (3)C8—C9—C10—O2170.7 (3)
C8—O1—C7—C21.8 (3)C10—O2—C11—C1392.6 (4)
C5—C6—C7—O1179.7 (3)C10—O2—C11—C12150.0 (4)
C5—C6—C7—C20.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O4i0.932.573.451 (4)159
C9—H9B···O4ii0.972.413.373 (4)170
C13—H13C···Cgiii0.962.783.532 (5)136
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC14H15IO4S
Mr406.22
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.0584 (7), 10.1959 (9), 10.8367 (9)
α, β, γ (°)70.369 (2), 81.926 (2), 66.882 (1)
V3)771.24 (12)
Z2
Radiation typeMo Kα
µ (mm1)2.22
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1999)
Tmin, Tmax0.595, 0.806
No. of measured, independent and
observed [I > 2σ(I)] reflections
4396, 2965, 2639
Rint0.011
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.079, 1.13
No. of reflections2965
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.58

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O4i0.932.573.451 (4)158.8
C9—H9B···O4ii0.972.413.373 (4)169.5
C13—H13C···Cgiii0.962.783.532 (5)135.6
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x, y1, z.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o2079.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o2250.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds