organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′,6,6′-Tetra­bromo-2,2′-(2,8-diazonia-5-azanona-1,8-diene-1,9-diyl)diphenolate

aZhejiang Textile and Fashion College, Ningbo 315211, People's Republic of China, and bState Key Laboratory Base of Novel Functional Materials and Preparation Science, Institute of Solid Materials Chemistry, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People's Republic of China
*Correspondence e-mail: chen_zhujun@yahoo.cn

(Received 11 November 2008; accepted 13 November 2008; online 26 November 2008)

In the zwitterionic title compound, C18H17Br4N3O2, the two salicylaldimine groups form a dihedral angle of 51.94 (2)° and the dihedral angle between the aromatic ring planes is 51.14 (2)°. One of the C atoms adjacent to the aza N atom is disordered over two positions; the site-occupancy factors are 0.51 (1) and 0.49 (1). There are two strong intra­molecular N—H⋯O hydrogen bonds in the mol­ecule.

Related literature

For general background on the use of Schiff bases in metal complexes, see: Vigato et al. (2007[Vigato, P. A., Tamburini, S. & Bertolo, L. (2007). Coord. Chem. Rev. 251, 1311-1492.]).

[Scheme 1]

Experimental

Crystal data
  • C18H17Br4N3O2

  • Mr = 626.99

  • Monoclinic, P 21 /n

  • a = 9.4506 (11) Å

  • b = 9.1242 (11) Å

  • c = 23.618 (3) Å

  • β = 94.774 (2)°

  • V = 2029.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.95 mm−1

  • T = 293 (2) K

  • 0.26 × 0.21 × 0.19 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.149, Tmax = 0.227

  • 17118 measured reflections

  • 4693 independent reflections

  • 3747 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.095

  • S = 1.05

  • 4693 reflections

  • 256 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.07 e Å−3

  • Δρmin = −0.94 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.97 (6) 1.70 (6) 2.553 (5) 144 (5)
N3—H3A⋯O2 0.87 (6) 1.84 (6) 2.597 (4) 144 (5)

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: XP in SHELXTL.

Supporting information


Comment top

The Schiff bases are widely employed as ligands in coordination chemistry. These ligands are readily available, versatile and, depending on the nature of the starting materials (primary amines and carbonyl precursors), they exhibit various denticities and functionalities. Moreover, the number, the nature, and the relative position of the donor atoms of a Schiff base ligand allow a good control over the stereochemistry of the metallic centers, as well as over the number of the metal ions within homo- and heteropolynuclear complexes. All these advantages make Schiff bases very good candidates in the effort to synthesize metal complexes of interest in bioinorganic chemistry, catalysis, encapsulation, transport and separation processes, magnetochemistry (Vigato et al., 2007). So we report here the crystal structure of the new Schiff base ligand, 4,4',6,6'-Tetrabromo-2,2'-[3-azapentane- 1,5-diylbis(nitrilomethylidyne)]diphenol(I).

The molecular structure of (I) is illustrated in Fig. 1. The two pendant moieties in a cis conformation attach to the ends of the C—C—N—C—C backbone. The N2 atom exhibits tetrahedral sp3 hybridization, whereas the two amide N atoms display planar sp2 hybridization. There is no H atom attached to O1 and O2 atoms. Instead these H atoms are attached to the N1 and N3 atoms. The double-bonds C7—N1 (1.295 (6) Å) and C12—N3 (1.296 (6) Å) show the typical character of Schiff base. The dihedral angle between the salicylaldimine groups is 51.94 (2)°. The crystal structure of (I) is stabilized by intramolecular N—H···O hydrogen bonding. The C10 atom is disorder over two positions with the site-occupancy factors of 0.51 (1) and 0.49 (1). The larger than normal range of thermal motion is mostly due to the difference between the disordered group and the other atoms which are not disordered.

Related literature top

For general background on the use of Schiff bases in metal complexes, see: Vigato et al. (2007).

Experimental top

N-(2-aminoethyl)ethane-1,2-diamine (0.01 mol, 1.03 g) and 2-hydroxy-3,5-dibromobenzaldehyde(0.02 mol, 5.60 g) were dissolved in 20 ml e thanol and the solution was stirred for 3 h. After filtration and evaporation, a pure yellow product was recrystallized from ethanol. Yield: 81.7%. Calcd. for C18H17Br4N3O2: C, 34.48; H, 2.73; N, 6.70; Found: C, 34.59; H, 2.62; N, 6.81%.

Refinement top

All H atoms except the N attached H1A and H3A which refined freely were placed in geometrically idealized positions and constrained to ride on their parent atoms (C—H = 0.93%A, 0.97%A; N—H = 0.86 Å; and Uiso(H) values equal to 1.2 UeqC.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: XP in SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. Dashed lines show H-bondings. Only the major component is shown.
4,4',6,6'-Tetrabromo-2,2'-(2,8-diazonia-5-azanona-1,8-diene-1,9-diyl)diphenolate top
Crystal data top
C18H17Br4N3O2F(000) = 1208
Mr = 626.99Dx = 2.052 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5793 reflections
a = 9.4506 (11) Åθ = 1.0–27.6°
b = 9.1242 (11) ŵ = 7.95 mm1
c = 23.618 (3) ÅT = 293 K
β = 94.774 (2)°BLOCK, yellow
V = 2029.5 (4) Å30.26 × 0.21 × 0.19 mm
Z = 4
Data collection top
Bruker SMART APEXII
diffractometer
4693 independent reflections
Radiation source: fine-focus sealed tube3747 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 27.6°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1212
Tmin = 0.149, Tmax = 0.227k = 1110
17118 measured reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0444P)2 + 3.6177P]
where P = (Fo2 + 2Fc2)/3
4693 reflections(Δ/σ)max = 0.001
256 parametersΔρmax = 2.07 e Å3
6 restraintsΔρmin = 0.94 e Å3
Crystal data top
C18H17Br4N3O2V = 2029.5 (4) Å3
Mr = 626.99Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.4506 (11) ŵ = 7.95 mm1
b = 9.1242 (11) ÅT = 293 K
c = 23.618 (3) Å0.26 × 0.21 × 0.19 mm
β = 94.774 (2)°
Data collection top
Bruker SMART APEXII
diffractometer
4693 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
3747 reflections with I > 2σ(I)
Tmin = 0.149, Tmax = 0.227Rint = 0.040
17118 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0386 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 2.07 e Å3
4693 reflectionsΔρmin = 0.94 e Å3
256 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C11.1639 (4)1.1651 (4)0.03605 (16)0.0255 (8)
C21.2507 (4)1.0675 (4)0.00631 (15)0.0244 (8)
C31.2518 (4)0.9186 (4)0.01388 (16)0.0260 (8)
H31.30970.85960.00650.031*
C41.1645 (4)0.8557 (4)0.05281 (18)0.0280 (9)
C51.0778 (4)0.9402 (5)0.08246 (17)0.0277 (8)
H51.01970.89680.10760.033*
C61.0763 (4)1.0945 (5)0.07503 (16)0.0252 (8)
C70.9904 (4)1.1819 (5)0.10911 (17)0.0286 (9)
H70.93411.13630.13440.034*
C80.9087 (5)1.4217 (5)0.13912 (18)0.0362 (10)
H8A0.97341.48580.16150.043*
H8B0.85661.36470.16510.043*
C90.8055 (5)1.5135 (5)0.10130 (19)0.0367 (10)
H9A0.76931.59250.12350.044*
H9B0.85511.55670.07110.044*
C100.5604 (11)1.4631 (12)0.1098 (5)0.0500 (18)0.501 (9)
H10A0.59281.47770.14950.060*0.501 (9)
H10B0.51881.55440.09550.060*0.501 (9)
C10'0.5427 (11)1.4357 (13)0.0666 (5)0.0500 (18)0.499 (9)
H10C0.51681.39880.02860.060*0.499 (9)
H10D0.51601.53830.06700.060*0.499 (9)
C110.4590 (6)1.3573 (6)0.1061 (3)0.0619 (17)
H11A0.42381.34490.06660.074*
H11B0.38011.38810.12700.074*
C120.4349 (4)1.1126 (5)0.14599 (17)0.0303 (9)
H120.33681.12420.14170.036*
C130.4899 (4)0.9821 (4)0.17117 (15)0.0235 (8)
C140.6423 (4)0.9637 (4)0.18085 (15)0.0228 (8)
C150.6853 (4)0.8296 (4)0.20880 (15)0.0227 (8)
C160.5925 (4)0.7256 (4)0.22511 (16)0.0259 (8)
H160.62600.64050.24330.031*
C170.4452 (4)0.7494 (4)0.21399 (17)0.0277 (8)
C180.3950 (4)0.8739 (5)0.18751 (16)0.0266 (8)
H180.29770.88750.18020.032*
Br11.37074 (5)1.15131 (5)0.045130 (17)0.03273 (12)
Br21.17523 (5)0.64919 (5)0.06248 (2)0.04388 (14)
Br30.88370 (4)0.79812 (5)0.222670 (17)0.03065 (12)
Br40.31565 (5)0.60611 (6)0.23712 (2)0.04384 (14)
N10.9899 (4)1.3230 (4)0.10528 (15)0.0310 (8)
N20.6880 (4)1.4267 (5)0.07679 (18)0.0447 (10)
H20.68961.36610.04900.054*
N30.5128 (4)1.2170 (4)0.12852 (16)0.0342 (8)
O11.1653 (3)1.3038 (3)0.02905 (13)0.0365 (7)
O20.7294 (3)1.0603 (3)0.16669 (11)0.0265 (6)
H1A1.050 (6)1.358 (6)0.077 (2)0.052 (15)*
H3A0.603 (6)1.199 (6)0.137 (2)0.052 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0248 (19)0.026 (2)0.0259 (19)0.0012 (16)0.0033 (14)0.0018 (15)
C20.0241 (19)0.026 (2)0.0231 (18)0.0036 (15)0.0034 (14)0.0021 (15)
C30.0238 (19)0.024 (2)0.0295 (19)0.0033 (15)0.0026 (15)0.0002 (16)
C40.025 (2)0.021 (2)0.037 (2)0.0015 (16)0.0051 (16)0.0068 (17)
C50.0217 (19)0.030 (2)0.031 (2)0.0039 (16)0.0001 (15)0.0095 (17)
C60.0200 (18)0.030 (2)0.0259 (19)0.0013 (16)0.0020 (14)0.0043 (16)
C70.024 (2)0.033 (2)0.029 (2)0.0017 (17)0.0043 (15)0.0062 (17)
C80.040 (2)0.038 (3)0.032 (2)0.009 (2)0.0082 (18)0.0018 (19)
C90.047 (3)0.028 (2)0.037 (2)0.009 (2)0.0102 (19)0.0003 (18)
C100.050 (4)0.050 (4)0.050 (4)0.000 (3)0.004 (4)0.000 (4)
C10'0.050 (4)0.050 (4)0.050 (4)0.000 (3)0.004 (4)0.000 (4)
C110.046 (3)0.049 (3)0.094 (5)0.021 (3)0.026 (3)0.042 (3)
C120.0202 (19)0.041 (3)0.030 (2)0.0029 (17)0.0028 (15)0.0027 (18)
C130.0210 (18)0.029 (2)0.0210 (17)0.0010 (15)0.0009 (14)0.0005 (15)
C140.0226 (18)0.027 (2)0.0194 (17)0.0007 (16)0.0040 (14)0.0058 (15)
C150.0234 (18)0.024 (2)0.0205 (17)0.0015 (15)0.0031 (14)0.0046 (15)
C160.034 (2)0.022 (2)0.0232 (18)0.0001 (16)0.0073 (15)0.0017 (15)
C170.030 (2)0.027 (2)0.0271 (19)0.0079 (17)0.0100 (15)0.0036 (16)
C180.0217 (19)0.033 (2)0.0249 (18)0.0004 (16)0.0036 (14)0.0046 (16)
Br10.0407 (2)0.0288 (2)0.0309 (2)0.00118 (18)0.01642 (17)0.00159 (16)
Br20.0412 (3)0.0226 (2)0.0680 (3)0.00063 (19)0.0055 (2)0.0134 (2)
Br30.0242 (2)0.0332 (2)0.0343 (2)0.00332 (17)0.00105 (15)0.00357 (17)
Br40.0378 (3)0.0422 (3)0.0531 (3)0.0142 (2)0.0130 (2)0.0056 (2)
N10.0311 (19)0.031 (2)0.0321 (18)0.0054 (15)0.0115 (15)0.0043 (15)
N20.040 (2)0.042 (3)0.052 (2)0.0019 (19)0.0068 (18)0.0108 (19)
N30.0275 (19)0.035 (2)0.040 (2)0.0112 (16)0.0045 (15)0.0110 (17)
O10.0476 (19)0.0202 (15)0.0448 (17)0.0028 (14)0.0220 (14)0.0030 (13)
O20.0227 (13)0.0244 (15)0.0325 (14)0.0013 (11)0.0037 (11)0.0024 (11)
Geometric parameters (Å, º) top
C1—O11.277 (5)C10'—N21.376 (11)
C1—C21.434 (6)C10'—C111.459 (12)
C1—C61.440 (5)C10'—H10C0.9700
C2—C31.370 (6)C10'—H10D0.9700
C2—Br11.892 (4)C11—N31.460 (6)
C3—C41.408 (6)C11—H11A0.9700
C3—H30.9300C11—H11B0.9700
C4—C51.360 (6)C12—N31.293 (6)
C4—Br21.900 (4)C12—C131.411 (6)
C5—C61.419 (6)C12—H120.9300
C5—H50.9300C13—C181.409 (6)
C6—C71.433 (6)C13—C141.449 (5)
C7—N11.290 (6)C14—O21.270 (5)
C7—H70.9300C14—C151.433 (5)
C8—N11.463 (5)C15—C161.369 (6)
C8—C91.518 (6)C15—Br31.898 (4)
C8—H8A0.9700C16—C171.412 (6)
C8—H8B0.9700C16—H160.9300
C9—N21.445 (6)C17—C181.363 (6)
C9—H9A0.9700C17—Br41.902 (4)
C9—H9B0.9700C18—H180.9300
C10—C111.359 (12)N1—H1A0.97 (6)
C10—N21.526 (11)N2—H20.8600
C10—H10A0.9700N3—H3A0.87 (6)
C10—H10B0.9700
O1—C1—C2122.7 (4)H10C—C10'—H10D107.3
O1—C1—C6122.6 (4)C10—C11—C10'43.6 (6)
C2—C1—C6114.7 (4)C10—C11—N3112.1 (7)
C3—C2—C1123.4 (4)C10'—C11—N3118.1 (6)
C3—C2—Br1119.1 (3)C10—C11—H11A109.2
C1—C2—Br1117.5 (3)C10'—C11—H11A66.7
C2—C3—C4119.4 (4)N3—C11—H11A109.2
C2—C3—H3120.3C10—C11—H11B109.2
C4—C3—H3120.3C10'—C11—H11B131.6
C5—C4—C3121.0 (4)N3—C11—H11B109.2
C5—C4—Br2121.9 (3)H11A—C11—H11B107.9
C3—C4—Br2117.0 (3)N3—C12—C13123.8 (4)
C4—C5—C6119.9 (4)N3—C12—H12118.1
C4—C5—H5120.0C13—C12—H12118.1
C6—C5—H5120.0C18—C13—C12119.1 (3)
C5—C6—C7118.9 (4)C18—C13—C14121.5 (4)
C5—C6—C1121.5 (4)C12—C13—C14119.4 (4)
C7—C6—C1119.5 (4)O2—C14—C15123.3 (3)
N1—C7—C6121.0 (4)O2—C14—C13122.4 (4)
N1—C7—H7119.5C15—C14—C13114.3 (3)
C6—C7—H7119.5C16—C15—C14123.9 (4)
N1—C8—C9111.0 (4)C16—C15—Br3119.6 (3)
N1—C8—H8A109.4C14—C15—Br3116.5 (3)
C9—C8—H8A109.4C15—C16—C17119.1 (4)
N1—C8—H8B109.4C15—C16—H16120.5
C9—C8—H8B109.4C17—C16—H16120.5
H8A—C8—H8B108.0C18—C17—C16120.9 (4)
N2—C9—C8111.6 (4)C18—C17—Br4119.8 (3)
N2—C9—H9A109.3C16—C17—Br4119.3 (3)
C8—C9—H9A109.3C17—C18—C13120.3 (4)
N2—C9—H9B109.3C17—C18—H18119.8
C8—C9—H9B109.3C13—C18—H18119.8
H9A—C9—H9B108.0C7—N1—C8125.1 (4)
C11—C10—N2113.3 (8)C7—N1—H1A112 (3)
C11—C10—H10A108.9C8—N1—H1A123 (3)
N2—C10—H10A108.9C10'—N2—C9139.4 (6)
C11—C10—H10B108.9C10'—N2—C1042.1 (6)
N2—C10—H10B108.9C9—N2—C10106.8 (5)
H10A—C10—H10B107.7C10'—N2—H289.2
N2—C10'—C11116.4 (8)C9—N2—H2126.6
N2—C10'—H10C108.2C10—N2—H2126.6
C11—C10'—H10C108.2C12—N3—C11124.8 (4)
N2—C10'—H10D108.2C12—N3—H3A111 (4)
C11—C10'—H10D108.2C11—N3—H3A123 (4)
O1—C1—C2—C3179.1 (4)C12—C13—C14—O21.1 (6)
C6—C1—C2—C30.1 (6)C18—C13—C14—C151.0 (5)
O1—C1—C2—Br10.1 (5)C12—C13—C14—C15177.5 (3)
C6—C1—C2—Br1179.3 (3)O2—C14—C15—C16178.9 (4)
C1—C2—C3—C40.3 (6)C13—C14—C15—C160.3 (5)
Br1—C2—C3—C4178.9 (3)O2—C14—C15—Br31.6 (5)
C2—C3—C4—C50.8 (6)C13—C14—C15—Br3179.8 (3)
C2—C3—C4—Br2178.4 (3)C14—C15—C16—C170.2 (6)
C3—C4—C5—C61.0 (6)Br3—C15—C16—C17179.3 (3)
Br2—C4—C5—C6178.2 (3)C15—C16—C17—C180.1 (6)
C4—C5—C6—C7176.5 (4)C15—C16—C17—Br4179.5 (3)
C4—C5—C6—C10.7 (6)C16—C17—C18—C130.6 (6)
O1—C1—C6—C5179.3 (4)Br4—C17—C18—C13178.8 (3)
C2—C1—C6—C50.1 (5)C12—C13—C18—C17177.4 (4)
O1—C1—C6—C72.2 (6)C14—C13—C18—C171.2 (6)
C2—C1—C6—C7177.0 (3)C6—C7—N1—C8178.4 (4)
C5—C6—C7—N1177.4 (4)C9—C8—N1—C7120.1 (5)
C1—C6—C7—N10.2 (6)C11—C10'—N2—C9101.3 (11)
N1—C8—C9—N272.0 (5)C11—C10'—N2—C1050.4 (9)
N2—C10—C11—C10'47.6 (8)C8—C9—N2—C10'136.5 (8)
N2—C10—C11—N360.4 (10)C8—C9—N2—C10103.6 (6)
N2—C10'—C11—C1057.2 (10)C11—C10—N2—C10'53.8 (10)
N2—C10'—C11—N336.2 (12)C11—C10—N2—C9158.1 (7)
N3—C12—C13—C18178.6 (4)C13—C12—N3—C11175.4 (5)
N3—C12—C13—C142.9 (6)C10—C11—N3—C12158.2 (7)
C18—C13—C14—O2179.6 (3)C10'—C11—N3—C12153.8 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.97 (6)1.70 (6)2.553 (5)144 (5)
N3—H3A···O20.87 (6)1.84 (6)2.597 (4)144 (5)

Experimental details

Crystal data
Chemical formulaC18H17Br4N3O2
Mr626.99
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.4506 (11), 9.1242 (11), 23.618 (3)
β (°) 94.774 (2)
V3)2029.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)7.95
Crystal size (mm)0.26 × 0.21 × 0.19
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.149, 0.227
No. of measured, independent and
observed [I > 2σ(I)] reflections
17118, 4693, 3747
Rint0.040
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.095, 1.05
No. of reflections4693
No. of parameters256
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)2.07, 0.94

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.97 (6)1.70 (6)2.553 (5)144 (5)
N3—H3A···O20.87 (6)1.84 (6)2.597 (4)144 (5)
 

Acknowledgements

The authors are grateful to the Fund of Zhejiang Textile and Fashion College for financial support.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVigato, P. A., Tamburini, S. & Bertolo, L. (2007). Coord. Chem. Rev. 251, 1311–1492.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds