inorganic compounds
Ag2PdP2O7
aInstitut für Anorganische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany
*Correspondence e-mail: rglaum@uni-bonn.de
Disilver(I) palladium(II) diphosphate, Ag2PdP2O7, is isotypic with Na2PdP2O7. It consists of infinite diphosphato-palladate(II) [Pd(P2O7)2/2]2− ribbons with the PdII ion in an almost square-planar coordination ( symmetry) and the P2O7 group exhibiting 2 symmetry. The [Pd(P2O7)2/2]2− ribbons are linked by distorted [AgO6] octahedra. 31P-MAS NMR studies on Ag2PdP2O7 are in accordance with one independent site for phosphorus; its isotropic δiso = 21.5 p.p.m. is similar to that of Pd2P2O7.
Related literature
For related literature on palladium oxo-compounds, see: Arndt & Wickleder (2007); Dahmen et al. (1994); Laligant et al. (1991); Palkina et al. (1978); Panagiotidis et al. (2005b); Waser et al. (1953). For related literature on polynary palladium phosphates, see: El Maadi et al. (2003); Laligant (1992a,b); Lii et al. (2004); For related literature on noble metal phosphates, see: Panagiotidis et al. (2005a, 2008). For background on parameters, see: Moreno et al. (2002); Griffiths et al. (1986); Hayashi & Hayamizu (1989). For details of software used, see: Bak et al. (2000); Soose & Meyer (1980); Vosegaard et al. (2002).
Experimental
Crystal data
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808038518/br2086sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808038518/br2086Isup2.hkl
Microcrystalline Ag2PdP2O7 was synthesized via a solid state reaction by heating an amorphous precursor for 24 h at T = 773 K in air. The precursor was obtained by drying a mixture of 100.0 mg (0.94 mmol) palladium powder (99.99%, UMICORE AG, Hanau–Wolfgang) with an excess of conc. nitric acid and stoichiometric amounts of 319.2 mg AgNO3 (1.88 mmol) (p.A., Merck) and 18.8 ml H3PO4 (0.1 M) at 423 K as a brownish powder.
Isothermal heating of 100.0 mg (0.82 mmol) PdO, 189.3 mg (0.82 mmol) Ag2O (p.A. Merck) and 116.0 mg (0.41 mmol) P4O10 (99%, Riedel de Häen) (addition of 8.0 mg PdCl2 as mineralizer) carried out in sealed and evacuated silica tubes at 773 K for seven days gave besides microcrystalline, single-phase Ag2PdP2O7 (eq. 1) also small amounts of yellow plate-like single crystals which were distributed over the whole ampoule.
PdOs + Ag2Os + 1/2 P4O10,s → Ag2PdP2O7,s (eq. 1)
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).Ag2PdP2O7 | F(000) = 904 |
Mr = 496.10 | The lattice parameters given were refined with the program SOS (Soose & Meyer, 1980), using 40 reflections from a Guinier IP photograph. |
Monoclinic, C2/c | Dx = 5.008 Mg m−3 |
Hall symbol: -C 2yc | Mo Kα radiation, λ = 0.71073 Å |
a = 15.739 (2) Å | Cell parameters from 40 reflections |
b = 5.7177 (7) Å | θ = 6.3–34.3° |
c = 8.187 (1) Å | µ = 9.08 mm−1 |
β = 116.75 (1)° | T = 293 K |
V = 657.91 (15) Å3 | Prism, yellow |
Z = 4 | 0.08 × 0.05 × 0.05 mm |
Enraf–Nonius CAD-4 diffractometer | 591 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.080 |
Graphite monochromator | θmax = 29.9°, θmin = 2.9° |
Nonprofiled ω scans | h = −22→22 |
Absorption correction: ψ scan (North et al., 1968) | k = −8→0 |
Tmin = 0.551, Tmax = 0.631 | l = −11→11 |
1890 measured reflections | 3 standard reflections every 60 min |
947 independent reflections | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | w = 1/[σ2(Fo2) + (0.0245P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.074 | (Δ/σ)max < 0.001 |
S = 0.97 | Δρmax = 1.30 e Å−3 |
947 reflections | Δρmin = −1.14 e Å−3 |
58 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00104 (17) |
0 constraints |
Ag2PdP2O7 | V = 657.91 (15) Å3 |
Mr = 496.10 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 15.739 (2) Å | µ = 9.08 mm−1 |
b = 5.7177 (7) Å | T = 293 K |
c = 8.187 (1) Å | 0.08 × 0.05 × 0.05 mm |
β = 116.75 (1)° |
Enraf–Nonius CAD-4 diffractometer | 591 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.080 |
Tmin = 0.551, Tmax = 0.631 | 3 standard reflections every 60 min |
1890 measured reflections | intensity decay: none |
947 independent reflections |
R[F2 > 2σ(F2)] = 0.035 | 58 parameters |
wR(F2) = 0.074 | 0 restraints |
S = 0.97 | Δρmax = 1.30 e Å−3 |
947 reflections | Δρmin = −1.14 e Å−3 |
Geometry. All e.s.d.'s are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances and angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Pd1 | 0 | 0 | 0 | 0.0145 (2) | |
Ag1 | 0.23426 (5) | 0.85894 (13) | 0.79398 (9) | 0.0217 (2) | |
P1 | 0.10116 (14) | 0.3445 (4) | 0.8422 (3) | 0.0137 (4) | |
O1 | 0.8200 (4) | 0.5226 (10) | 0.5959 (7) | 0.0177 (13) | |
O2 | 0 | 0.4744 (14) | 0.75 | 0.0139 (16) | |
O3 | 0.8949 (4) | 0.1859 (11) | 0.8057 (7) | 0.0220 (14) | |
O4 | 0.6031 (4) | 0.2953 (11) | 0.5045 (8) | 0.0213 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pd1 | 0.0103 (4) | 0.0178 (5) | 0.0135 (4) | −0.0012 (4) | 0.0036 (3) | 0.0055 (4) |
Ag1 | 0.0197 (4) | 0.0247 (4) | 0.0171 (3) | −0.0044 (3) | 0.0050 (3) | −0.0017 (3) |
P1 | 0.0111 (9) | 0.0152 (11) | 0.0146 (9) | −0.0028 (9) | 0.0055 (8) | 0.0003 (10) |
O1 | 0.016 (3) | 0.016 (3) | 0.019 (3) | 0.011 (3) | 0.006 (2) | 0.005 (3) |
O2 | 0.014 (4) | 0.011 (4) | 0.015 (4) | 0 | 0.006 (3) | 0 |
O3 | 0.018 (3) | 0.027 (4) | 0.019 (3) | −0.003 (3) | 0.007 (3) | 0.010 (3) |
O4 | 0.011 (3) | 0.026 (4) | 0.023 (3) | 0.004 (3) | 0.004 (2) | −0.012 (3) |
Pd1—O4i | 1.987 (5) | P1—O4x | 1.539 (6) |
Pd1—O4ii | 1.987 (5) | P1—O2 | 1.605 (4) |
Pd1—O3iii | 2.007 (6) | O1—P1vii | 1.505 (6) |
Pd1—O3iv | 2.007 (6) | O1—Ag1xi | 2.321 (5) |
Ag1—O1v | 2.321 (5) | O1—Ag1vii | 2.436 (6) |
Ag1—O4vi | 2.368 (6) | O2—P1xii | 1.605 (4) |
Ag1—O1vii | 2.436 (6) | O3—P1vii | 1.537 (6) |
Ag1—Ag1viii | 3.0427 (6) | O3—Pd1xiii | 2.007 (6) |
Ag1—Ag1ix | 3.0427 (6) | O4—P1xiv | 1.539 (6) |
P1—O1vii | 1.505 (6) | O4—Pd1xv | 1.987 (5) |
P1—O3vii | 1.537 (6) | O4—Ag1xvi | 2.368 (5) |
O4i—Pd1—O4ii | 180.0 (4) | Ag1viii—Ag1—Ag1ix | 139.96 (5) |
O4i—Pd1—O3iii | 94.5 (2) | O1vii—P1—O3vii | 110.2 (3) |
O4ii—Pd1—O3iii | 85.5 (2) | O1vii—P1—O4x | 111.6 (3) |
O4i—Pd1—O3iv | 85.5 (2) | O3vii—P1—O4x | 112.4 (4) |
O4ii—Pd1—O3iv | 94.5 (2) | O1vii—P1—O2 | 109.8 (4) |
O3iii—Pd1—O3iv | 180.0 (6) | O3vii—P1—O2 | 106.6 (3) |
O1v—Ag1—O4vi | 159.7 (2) | O4x—P1—O2 | 106.0 (3) |
O1v—Ag1—O1vii | 88.23 (19) | P1vii—O1—Ag1xi | 123.5 (3) |
O4vi—Ag1—O1vii | 87.5 (2) | P1vii—O1—Ag1vii | 141.5 (3) |
O1v—Ag1—Ag1viii | 116.60 (15) | Ag1xi—O1—Ag1vii | 91.77 (19) |
O4vi—Ag1—Ag1viii | 77.30 (15) | P1xii—O2—P1 | 124.9 (5) |
O1vii—Ag1—Ag1viii | 57.82 (14) | P1vii—O3—Pd1xiii | 128.7 (3) |
O1v—Ag1—Ag1ix | 84.21 (15) | P1xiv—O4—Pd1xv | 126.2 (3) |
O4vi—Ag1—Ag1ix | 93.96 (16) | P1xiv—O4—Ag1xvi | 127.8 (3) |
O1vii—Ag1—Ag1ix | 161.97 (14) | Pd1xv—O4—Ag1xvi | 105.4 (2) |
Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) −x+1/2, y−1/2, −z+1/2; (iii) x−1, y, z−1; (iv) −x+1, −y, −z+1; (v) x−1/2, −y+3/2, z+1/2; (vi) x−1/2, y+1/2, z; (vii) −x+1, y, −z+3/2; (viii) −x+1/2, y−1/2, −z+3/2; (ix) −x+1/2, y+1/2, −z+3/2; (x) x−1/2, −y+1/2, z+1/2; (xi) x+1/2, −y+3/2, z−1/2; (xii) −x, y, −z+3/2; (xiii) x+1, y, z+1; (xiv) x+1/2, −y+1/2, z−1/2; (xv) −x+1/2, y+1/2, −z+1/2; (xvi) x+1/2, y−1/2, z. |
Experimental details
Crystal data | |
Chemical formula | Ag2PdP2O7 |
Mr | 496.10 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 15.739 (2), 5.7177 (7), 8.187 (1) |
β (°) | 116.75 (1) |
V (Å3) | 657.91 (15) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 9.08 |
Crystal size (mm) | 0.08 × 0.05 × 0.05 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.551, 0.631 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1890, 947, 591 |
Rint | 0.080 |
(sin θ/λ)max (Å−1) | 0.701 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.074, 0.97 |
No. of reflections | 947 |
No. of parameters | 58 |
Δρmax, Δρmin (e Å−3) | 1.30, −1.14 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2008), WinGX (Farrugia, 1999).
Acknowledgements
We thank Dr M. Schöneborn (University of Bonn) for the data collection. For the 31P-MAS NMR measurement we thank Dr W. Hoffbauer (University of Bonn). A noble metal donation by UMICORE AG (Hanau–Wolfgang) is gratefully acknowledged.
References
Arndt, A. & Wickleder, M. S. (2007). Eur. J. Inorg. Chem. 27, 4335–4339. Web of Science CrossRef Google Scholar
Bak, M., Rasmussen, J. T. & Nielsen, N. C. (2000). J. Magn. Reson. 147, 296–330. Web of Science CrossRef PubMed CAS Google Scholar
Brandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Dahmen, T., Rittner, P., Böger-Seidl, S. & Gruehn, R. (1994). J. Alloys Compd. 216, 11–19. CrossRef CAS Web of Science Google Scholar
El Maadi, A., Bennazha, J., Réau, J. M., Boukhari, A. & Holt, E. M. (2003). Mater. Res. Bull. 38, 865–874. Web of Science CrossRef CAS Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Griffiths, L., Root, A., Harris, R. K. & Parker, K. J. (1986). J. Chem. Soc. Dalton Trans. pp. 2247–2251. CrossRef Web of Science Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Hayashi, S. & Hayamizu, K. (1989). Bull. Chem. Soc. Jpn, 62, 3061–3068. CrossRef CAS Web of Science Google Scholar
Laligant, Y. (1992a). Eur. J. Solid State Inorg. Chem. 29, 239–247. CAS Google Scholar
Laligant, Y. (1992b). Eur. J. Solid State Inorg. Chem. 29, 83–94. CAS Google Scholar
Laligant, Y., Ferey, G. & Le Bail, A. (1991). Mater. Res. Bull. 26, 269–275. CrossRef CAS Web of Science Google Scholar
Lii, K. H., Wang, S.-L. & Liao, F.-L. (2004). Inorg. Chem. 43, 2499–2502. Web of Science CrossRef PubMed CAS Google Scholar
Moreno, B., Rodrigues, C. O., Bailey, B. N., Urbina, J. A., Moreno, S. N. J., Docampo, R. & Oldfield, E. (2002). FEBS Lett. 523, 207–212. Web of Science CrossRef PubMed CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Palkina, K. K., Maksimova, S. I., Lavrov, A. V. & Chalisova, N. A. (1978). Dokl. Akad. Nauk SSSR, 242, 829–831. CAS Google Scholar
Panagiotidis, K. & Glaum, R. (2005a). Phosphorus Res. Bull. 19, 77–84. CAS Google Scholar
Panagiotidis, K., Glaum, R., Schmedt auf der Günne, J. & Hoffbauer, W. (2008). Z. Anorg. Allg. Chem. 634, 2922–2932. Web of Science CrossRef CAS Google Scholar
Panagiotidis, K., Glaum, R., Schmedt auf der Günne, J., Hoffbauer, W. & Görzel, H. (2005b). Z. Anorg. Allg. Chem. 631, 2371–2376. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Soose, J. & Meyer, G. (1980). SOS. University of Giessen, Germany. Google Scholar
Vosegaard, T., Malmendal, A. & Nielsen, N. C. (2002). Monatsh. Chem. 133, 1555–1574. Web of Science CrossRef CAS Google Scholar
Waser, J., Levy, H. A. & Peterson, S. W. (1953). Acta Cryst. 6, 661–663. CrossRef CAS IUCr Journals Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
With the synthesis and crystal structure refinement of the first gold phosphate AuIIIPO4 (Panagiotidis et al., 2005a) and two modifications of IrIII(PO3)3 (Panagiotidis et al., 2008) we have widened the crystal chemical knowledge on anhydrous phosphates of the noble metals. Investigations in the ternary system Pd/P/O provided, apart from the already existing phosphates Pd(PO3)2 (Palkina et al., 1978) and Pd2P2O7 (Panagiotidis et al., 2005b), no evidence for further thermodynamically stable palladium phosphates. Due to our interest in network structures built from square-planar units [MO4] (M = PdII, AuIII) and phosphate tetrahedra we focused therefore our search on polynary palladium phosphates. Polynary phosphates of divalent palladium are rare in literature. Up to now, only the compositions MI2PdP2O7 (M = Li (Laligant, 1992a), Na (Laligant, 1992b), K (El Maadi et al., 2003), K3.5Pd2.25(P2O7)2 (El Maadi et al., 2003) and Cs2Pd3(P2O7)2 (Lii et al., 2004) were reported. In Pd2P2O7 itself, Li2PdP2O7, and Na2PdP2O7 infinite ribbons [Pd(P2O7)2/2]2- are the characteristic structural motif. K2PdP2O7 adopts a layer structure with the crystal chemical composition [Pd(P2O7)4/4]2-. The structures of K3.5Pd2.25(P2O7)2 and Cs2Pd3(P2O7)2 consist of [PdIIO4] and [P2O7] groups generating a three-dimensional framework.
According to our X-ray single-crystal study Ag2PdP2O7 is isotypic to Na2PdP2O7. The unit cell contains four formula units Ag2PdP2O7 with one crystallographically independent site for silver, palladium and phosphorus (Fig. 1). As in the crystal structures of PdO (Waser et al., 1953), M-PdIISO4 (Dahmen et al., 1994), PdII(NO3)2(H2O)2 (Laligant et al., 1991), and Pd2P2O7 the Pd2+ ions show a square-planar coordination by oxygen. In Ag2PdP2O7 palladium is coordinated in a chelating way by two [P2O7] groups. This coordination mode, with a, for such diphosphates typically observed, bridging angle 〈(P—O2—P) = 124.9°, leads to the formation of corrugated ribbons [Pd(P2O7)2/2]2- (Fig. 2). These ribbons are linked by significantly distorted [AgIO6] octahedra. Due to different crystal chemical environment of the four independent oxygen atoms, with O1 forming one bond to P and two to Ag, O2 forming two bonds to P and O3 and O4 forming one bond each to P, Pd and Ag, a radial distortion of the phosphate groups with one very short, two medium long and one elongated distance d(P—O) is observed. In accordance with the crystal structure of Ag2PdP2O7 31P-MAS-NMR investigations (Varian Infinity Plus, 9.4 tesla-magnet, 2.5-mm MAS double resonance NMR probe, rotation frequency 3.0 kHz) show the presence of just one phosphorus site. Chemical shift parameters were determined by means of numerically calculated spectra (programme SIMPSON (Bak et al., 2000), MINUIT routine in SIMPSON (Vosegaard et al., 2002)) to δiso = 21.5 p.p.m., δaniso = 79.0 p.p.m. and η = 0.87. The chemical shifts are reported in parts per million (p.p.m.) from the external standard 85% H3PO4. As in Pd2P2O7 (η = 0.86) and in contrast to other diphosphates (Moreno et al., 2002; Griffiths et al., 1986; Hayashi & Hayamizu, 1989) a remarkably high value for η is observed. The isotropical chemical shift of Ag2PdP2O7 which is similar to the one observed for Pd2P2O7 (δiso = 28.3 p.p.m.) is exceptionally high in comparison to δiso values of diphosphates of the alkaline and alkaline earth metals (Moreno et al., 2002; Griffiths et al., 1986; Hayashi & Hayamizu, 1989). We attribute this observation to significant covalency in the Pd—O interaction.