inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ag2PdP2O7

aInstitut für Anorganische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany
*Correspondence e-mail: rglaum@uni-bonn.de

(Received 29 October 2008; accepted 18 November 2008; online 29 November 2008)

Disilver(I) palladium(II) diphosphate, Ag2PdP2O7, is isotypic with Na2PdP2O7. It consists of infinite diphosphato-pallad­ate(II) [Pd(P2O7)2/2]2− ribbons with the PdII ion in an almost square-planar coordination ([\overline1] symmetry) and the P2O7 group exhibiting 2 symmetry. The [Pd(P2O7)2/2]2− ribbons are linked by distorted [AgO6] octa­hedra. 31P-MAS NMR studies on Ag2PdP2O7 are in accordance with one independent site for phospho­rus; its isotropic chemical shift δiso = 21.5 p.p.m. is similar to that of Pd2P2O7.

Related literature

For related literature on palladium oxo-compounds, see: Arndt & Wickleder (2007[Arndt, A. & Wickleder, M. S. (2007). Eur. J. Inorg. Chem. 27, 4335-4339.]); Dahmen et al. (1994[Dahmen, T., Rittner, P., Böger-Seidl, S. & Gruehn, R. (1994). J. Alloys Compd. 216, 11-19.]); Laligant et al. (1991[Laligant, Y., Ferey, G. & Le Bail, A. (1991). Mater. Res. Bull. 26, 269-275.]); Palkina et al. (1978[Palkina, K. K., Maksimova, S. I., Lavrov, A. V. & Chalisova, N. A. (1978). Dokl. Akad. Nauk SSSR, 242, 829-831.]); Panagiotidis et al. (2005b[Panagiotidis, K., Glaum, R., Schmedt auf der Günne, J., Hoffbauer, W. & Görzel, H. (2005b). Z. Anorg. Allg. Chem. 631, 2371-2376.]); Waser et al. (1953[Waser, J., Levy, H. A. & Peterson, S. W. (1953). Acta Cryst. 6, 661-663.]). For related literature on polynary palladium phosphates, see: El Maadi et al. (2003[El Maadi, A., Bennazha, J., Réau, J. M., Boukhari, A. & Holt, E. M. (2003). Mater. Res. Bull. 38, 865-874.]); Laligant (1992a[Laligant, Y. (1992a). Eur. J. Solid State Inorg. Chem. 29, 239-247.],b[Laligant, Y. (1992b). Eur. J. Solid State Inorg. Chem. 29, 83-94.]); Lii et al. (2004[Lii, K. H., Wang, S.-L. & Liao, F.-L. (2004). Inorg. Chem. 43, 2499-2502.]); For related literature on noble metal phosphates, see: Panagiotidis et al. (2005a[Panagiotidis, K. & Glaum, R. (2005a). Phosphorus Res. Bull. 19, 77-84.], 2008[Panagiotidis, K., Glaum, R., Schmedt auf der Günne, J. & Hoffbauer, W. (2008). Z. Anorg. Allg. Chem. 634, 2922-2932.]). For background on chemical shift parameters, see: Moreno et al. (2002[Moreno, B., Rodrigues, C. O., Bailey, B. N., Urbina, J. A., Moreno, S. N. J., Docampo, R. & Oldfield, E. (2002). FEBS Lett. 523, 207-212.]); Griffiths et al. (1986[Griffiths, L., Root, A., Harris, R. K. & Parker, K. J. (1986). J. Chem. Soc. Dalton Trans. pp. 2247-2251.]); Hayashi & Hayamizu (1989[Hayashi, S. & Hayamizu, K. (1989). Bull. Chem. Soc. Jpn, 62, 3061-3068.]). For details of software used, see: Bak et al. (2000[Bak, M., Rasmussen, J. T. & Nielsen, N. C. (2000). J. Magn. Reson. 147, 296-330.]); Soose & Meyer (1980[Soose, J. & Meyer, G. (1980). SOS. University of Giessen, Germany.]); Vosegaard et al. (2002[Vosegaard, T., Malmendal, A. & Nielsen, N. C. (2002). Monatsh. Chem. 133, 1555-1574.]).

Experimental

Crystal data
  • Ag2PdP2O7

  • Mr = 496.10

  • Monoclinic, C 2/c

  • a = 15.739 (2) Å

  • b = 5.7177 (7) Å

  • c = 8.187 (1) Å

  • β = 116.75 (1)°

  • V = 657.91 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 9.08 mm−1

  • T = 293 (2) K

  • 0.08 × 0.05 × 0.05 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.551, Tmax = 0.631

  • 1890 measured reflections

  • 947 independent reflections

  • 591 reflections with I > 2σ(I)

  • Rint = 0.080

  • 3 standard reflections frequency: 60 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.074

  • S = 0.97

  • 947 reflections

  • 58 parameters

  • Δρmax = 1.30 e Å−3

  • Δρmin = −1.14 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2008[Brandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

With the synthesis and crystal structure refinement of the first gold phosphate AuIIIPO4 (Panagiotidis et al., 2005a) and two modifications of IrIII(PO3)3 (Panagiotidis et al., 2008) we have widened the crystal chemical knowledge on anhydrous phosphates of the noble metals. Investigations in the ternary system Pd/P/O provided, apart from the already existing phosphates Pd(PO3)2 (Palkina et al., 1978) and Pd2P2O7 (Panagiotidis et al., 2005b), no evidence for further thermodynamically stable palladium phosphates. Due to our interest in network structures built from square-planar units [MO4] (M = PdII, AuIII) and phosphate tetrahedra we focused therefore our search on polynary palladium phosphates. Polynary phosphates of divalent palladium are rare in literature. Up to now, only the compositions MI2PdP2O7 (M = Li (Laligant, 1992a), Na (Laligant, 1992b), K (El Maadi et al., 2003), K3.5Pd2.25(P2O7)2 (El Maadi et al., 2003) and Cs2Pd3(P2O7)2 (Lii et al., 2004) were reported. In Pd2P2O7 itself, Li2PdP2O7, and Na2PdP2O7 infinite ribbons [Pd(P2O7)2/2]2- are the characteristic structural motif. K2PdP2O7 adopts a layer structure with the crystal chemical composition [Pd(P2O7)4/4]2-. The structures of K3.5Pd2.25(P2O7)2 and Cs2Pd3(P2O7)2 consist of [PdIIO4] and [P2O7] groups generating a three-dimensional framework.

According to our X-ray single-crystal study Ag2PdP2O7 is isotypic to Na2PdP2O7. The unit cell contains four formula units Ag2PdP2O7 with one crystallographically independent site for silver, palladium and phosphorus (Fig. 1). As in the crystal structures of PdO (Waser et al., 1953), M-PdIISO4 (Dahmen et al., 1994), PdII(NO3)2(H2O)2 (Laligant et al., 1991), and Pd2P2O7 the Pd2+ ions show a square-planar coordination by oxygen. In Ag2PdP2O7 palladium is coordinated in a chelating way by two [P2O7] groups. This coordination mode, with a, for such diphosphates typically observed, bridging angle (P—O2—P) = 124.9°, leads to the formation of corrugated ribbons [Pd(P2O7)2/2]2- (Fig. 2). These ribbons are linked by significantly distorted [AgIO6] octahedra. Due to different crystal chemical environment of the four independent oxygen atoms, with O1 forming one bond to P and two to Ag, O2 forming two bonds to P and O3 and O4 forming one bond each to P, Pd and Ag, a radial distortion of the phosphate groups with one very short, two medium long and one elongated distance d(P—O) is observed. In accordance with the crystal structure of Ag2PdP2O7 31P-MAS-NMR investigations (Varian Infinity Plus, 9.4 tesla-magnet, 2.5-mm MAS double resonance NMR probe, rotation frequency 3.0 kHz) show the presence of just one phosphorus site. Chemical shift parameters were determined by means of numerically calculated spectra (programme SIMPSON (Bak et al., 2000), MINUIT routine in SIMPSON (Vosegaard et al., 2002)) to δiso = 21.5 p.p.m., δaniso = 79.0 p.p.m. and η = 0.87. The chemical shifts are reported in parts per million (p.p.m.) from the external standard 85% H3PO4. As in Pd2P2O7 (η = 0.86) and in contrast to other diphosphates (Moreno et al., 2002; Griffiths et al., 1986; Hayashi & Hayamizu, 1989) a remarkably high value for η is observed. The isotropical chemical shift of Ag2PdP2O7 which is similar to the one observed for Pd2P2O7 (δiso = 28.3 p.p.m.) is exceptionally high in comparison to δiso values of diphosphates of the alkaline and alkaline earth metals (Moreno et al., 2002; Griffiths et al., 1986; Hayashi & Hayamizu, 1989). We attribute this observation to significant covalency in the Pd—O interaction.

Related literature top

For related literature on palladium oxo-compounds, see: Arndt & Wickleder (2007); Dahmen et al. (1994); Laligant et al. (1991); Palkina et al. (1978); Panagiotidis et al. (2005b); Waser et al. (1953). For related literature on polynary palladium phosphates, see: El Maadi et al. (2003); Laligant (1992a,b); Lii et al. (2004); For related literature on noble metal phosphates, see: Panagiotidis et al. (2005a, 2008b). For background on chemical shift parameters, see: Moreno et al. (2002); Griffiths et al. (1986); Hayashi & Hayamizu (1989). For details of software used, see: Bak et al. (2000); Soose & Meyer (1980); Vosegaard et al. (2002).

Experimental top

Microcrystalline Ag2PdP2O7 was synthesized via a solid state reaction by heating an amorphous precursor for 24 h at T = 773 K in air. The precursor was obtained by drying a mixture of 100.0 mg (0.94 mmol) palladium powder (99.99%, UMICORE AG, Hanau–Wolfgang) with an excess of conc. nitric acid and stoichiometric amounts of 319.2 mg AgNO3 (1.88 mmol) (p.A., Merck) and 18.8 ml H3PO4 (0.1 M) at 423 K as a brownish powder.

Isothermal heating of 100.0 mg (0.82 mmol) PdO, 189.3 mg (0.82 mmol) Ag2O (p.A. Merck) and 116.0 mg (0.41 mmol) P4O10 (99%, Riedel de Häen) (addition of 8.0 mg PdCl2 as mineralizer) carried out in sealed and evacuated silica tubes at 773 K for seven days gave besides microcrystalline, single-phase Ag2PdP2O7 (eq. 1) also small amounts of yellow plate-like single crystals which were distributed over the whole ampoule.

PdOs + Ag2Os + 1/2 P4O10,s Ag2PdP2O7,s (eq. 1)

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Projection of the crystal structure of Ag2PdP2O7 along [010] with tetrahedral [PO4] units (yellow), Pd2+ (red) and Ag+ grey (DIAMOND v3.1f).
[Figure 2] Fig. 2. Diphosphato-palladate(II) ribbon [Pd(P2O7)2/2]2- along [001]. Thermal elipsoids with 50% probability (DIAMOND, v3.1f).
Disilver(I) palladium(II) diphosphate top
Crystal data top
Ag2PdP2O7F(000) = 904
Mr = 496.10The lattice parameters given were refined with the program SOS (Soose & Meyer, 1980), using 40 reflections from a Guinier IP photograph.
Monoclinic, C2/cDx = 5.008 Mg m3
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 15.739 (2) ÅCell parameters from 40 reflections
b = 5.7177 (7) Åθ = 6.3–34.3°
c = 8.187 (1) ŵ = 9.08 mm1
β = 116.75 (1)°T = 293 K
V = 657.91 (15) Å3Prism, yellow
Z = 40.08 × 0.05 × 0.05 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
591 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.080
Graphite monochromatorθmax = 29.9°, θmin = 2.9°
Nonprofiled ω scansh = 2222
Absorption correction: ψ scan
(North et al., 1968)
k = 80
Tmin = 0.551, Tmax = 0.631l = 1111
1890 measured reflections3 standard reflections every 60 min
947 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0245P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.074(Δ/σ)max < 0.001
S = 0.97Δρmax = 1.30 e Å3
947 reflectionsΔρmin = 1.14 e Å3
58 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00104 (17)
0 constraints
Crystal data top
Ag2PdP2O7V = 657.91 (15) Å3
Mr = 496.10Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.739 (2) ŵ = 9.08 mm1
b = 5.7177 (7) ÅT = 293 K
c = 8.187 (1) Å0.08 × 0.05 × 0.05 mm
β = 116.75 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
591 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.080
Tmin = 0.551, Tmax = 0.6313 standard reflections every 60 min
1890 measured reflections intensity decay: none
947 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03558 parameters
wR(F2) = 0.0740 restraints
S = 0.97Δρmax = 1.30 e Å3
947 reflectionsΔρmin = 1.14 e Å3
Special details top

Geometry. All e.s.d.'s are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances and angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10000.0145 (2)
Ag10.23426 (5)0.85894 (13)0.79398 (9)0.0217 (2)
P10.10116 (14)0.3445 (4)0.8422 (3)0.0137 (4)
O10.8200 (4)0.5226 (10)0.5959 (7)0.0177 (13)
O200.4744 (14)0.750.0139 (16)
O30.8949 (4)0.1859 (11)0.8057 (7)0.0220 (14)
O40.6031 (4)0.2953 (11)0.5045 (8)0.0213 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0103 (4)0.0178 (5)0.0135 (4)0.0012 (4)0.0036 (3)0.0055 (4)
Ag10.0197 (4)0.0247 (4)0.0171 (3)0.0044 (3)0.0050 (3)0.0017 (3)
P10.0111 (9)0.0152 (11)0.0146 (9)0.0028 (9)0.0055 (8)0.0003 (10)
O10.016 (3)0.016 (3)0.019 (3)0.011 (3)0.006 (2)0.005 (3)
O20.014 (4)0.011 (4)0.015 (4)00.006 (3)0
O30.018 (3)0.027 (4)0.019 (3)0.003 (3)0.007 (3)0.010 (3)
O40.011 (3)0.026 (4)0.023 (3)0.004 (3)0.004 (2)0.012 (3)
Geometric parameters (Å, º) top
Pd1—O4i1.987 (5)P1—O4x1.539 (6)
Pd1—O4ii1.987 (5)P1—O21.605 (4)
Pd1—O3iii2.007 (6)O1—P1vii1.505 (6)
Pd1—O3iv2.007 (6)O1—Ag1xi2.321 (5)
Ag1—O1v2.321 (5)O1—Ag1vii2.436 (6)
Ag1—O4vi2.368 (6)O2—P1xii1.605 (4)
Ag1—O1vii2.436 (6)O3—P1vii1.537 (6)
Ag1—Ag1viii3.0427 (6)O3—Pd1xiii2.007 (6)
Ag1—Ag1ix3.0427 (6)O4—P1xiv1.539 (6)
P1—O1vii1.505 (6)O4—Pd1xv1.987 (5)
P1—O3vii1.537 (6)O4—Ag1xvi2.368 (5)
O4i—Pd1—O4ii180.0 (4)Ag1viii—Ag1—Ag1ix139.96 (5)
O4i—Pd1—O3iii94.5 (2)O1vii—P1—O3vii110.2 (3)
O4ii—Pd1—O3iii85.5 (2)O1vii—P1—O4x111.6 (3)
O4i—Pd1—O3iv85.5 (2)O3vii—P1—O4x112.4 (4)
O4ii—Pd1—O3iv94.5 (2)O1vii—P1—O2109.8 (4)
O3iii—Pd1—O3iv180.0 (6)O3vii—P1—O2106.6 (3)
O1v—Ag1—O4vi159.7 (2)O4x—P1—O2106.0 (3)
O1v—Ag1—O1vii88.23 (19)P1vii—O1—Ag1xi123.5 (3)
O4vi—Ag1—O1vii87.5 (2)P1vii—O1—Ag1vii141.5 (3)
O1v—Ag1—Ag1viii116.60 (15)Ag1xi—O1—Ag1vii91.77 (19)
O4vi—Ag1—Ag1viii77.30 (15)P1xii—O2—P1124.9 (5)
O1vii—Ag1—Ag1viii57.82 (14)P1vii—O3—Pd1xiii128.7 (3)
O1v—Ag1—Ag1ix84.21 (15)P1xiv—O4—Pd1xv126.2 (3)
O4vi—Ag1—Ag1ix93.96 (16)P1xiv—O4—Ag1xvi127.8 (3)
O1vii—Ag1—Ag1ix161.97 (14)Pd1xv—O4—Ag1xvi105.4 (2)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x1, y, z1; (iv) x+1, y, z+1; (v) x1/2, y+3/2, z+1/2; (vi) x1/2, y+1/2, z; (vii) x+1, y, z+3/2; (viii) x+1/2, y1/2, z+3/2; (ix) x+1/2, y+1/2, z+3/2; (x) x1/2, y+1/2, z+1/2; (xi) x+1/2, y+3/2, z1/2; (xii) x, y, z+3/2; (xiii) x+1, y, z+1; (xiv) x+1/2, y+1/2, z1/2; (xv) x+1/2, y+1/2, z+1/2; (xvi) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaAg2PdP2O7
Mr496.10
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)15.739 (2), 5.7177 (7), 8.187 (1)
β (°) 116.75 (1)
V3)657.91 (15)
Z4
Radiation typeMo Kα
µ (mm1)9.08
Crystal size (mm)0.08 × 0.05 × 0.05
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.551, 0.631
No. of measured, independent and
observed [I > 2σ(I)] reflections
1890, 947, 591
Rint0.080
(sin θ/λ)max1)0.701
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.074, 0.97
No. of reflections947
No. of parameters58
Δρmax, Δρmin (e Å3)1.30, 1.14

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2008), WinGX (Farrugia, 1999).

 

Acknowledgements

We thank Dr M. Schöneborn (University of Bonn) for the data collection. For the 31P-MAS NMR measurement we thank Dr W. Hoffbauer (University of Bonn). A noble metal donation by UMICORE AG (Hanau–Wolfgang) is gratefully acknowledged.

References

First citationArndt, A. & Wickleder, M. S. (2007). Eur. J. Inorg. Chem. 27, 4335–4339.  Web of Science CrossRef Google Scholar
First citationBak, M., Rasmussen, J. T. & Nielsen, N. C. (2000). J. Magn. Reson. 147, 296–330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDahmen, T., Rittner, P., Böger-Seidl, S. & Gruehn, R. (1994). J. Alloys Compd. 216, 11–19.  CrossRef CAS Web of Science Google Scholar
First citationEl Maadi, A., Bennazha, J., Réau, J. M., Boukhari, A. & Holt, E. M. (2003). Mater. Res. Bull. 38, 865–874.  Web of Science CrossRef CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGriffiths, L., Root, A., Harris, R. K. & Parker, K. J. (1986). J. Chem. Soc. Dalton Trans. pp. 2247–2251.  CrossRef Web of Science Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHayashi, S. & Hayamizu, K. (1989). Bull. Chem. Soc. Jpn, 62, 3061–3068.  CrossRef CAS Web of Science Google Scholar
First citationLaligant, Y. (1992a). Eur. J. Solid State Inorg. Chem. 29, 239–247.  CAS Google Scholar
First citationLaligant, Y. (1992b). Eur. J. Solid State Inorg. Chem. 29, 83–94.  CAS Google Scholar
First citationLaligant, Y., Ferey, G. & Le Bail, A. (1991). Mater. Res. Bull. 26, 269–275.  CrossRef CAS Web of Science Google Scholar
First citationLii, K. H., Wang, S.-L. & Liao, F.-L. (2004). Inorg. Chem. 43, 2499–2502.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoreno, B., Rodrigues, C. O., Bailey, B. N., Urbina, J. A., Moreno, S. N. J., Docampo, R. & Oldfield, E. (2002). FEBS Lett. 523, 207–212.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPalkina, K. K., Maksimova, S. I., Lavrov, A. V. & Chalisova, N. A. (1978). Dokl. Akad. Nauk SSSR, 242, 829–831.  CAS Google Scholar
First citationPanagiotidis, K. & Glaum, R. (2005a). Phosphorus Res. Bull. 19, 77–84.  CAS Google Scholar
First citationPanagiotidis, K., Glaum, R., Schmedt auf der Günne, J. & Hoffbauer, W. (2008). Z. Anorg. Allg. Chem. 634, 2922–2932.  Web of Science CrossRef CAS Google Scholar
First citationPanagiotidis, K., Glaum, R., Schmedt auf der Günne, J., Hoffbauer, W. & Görzel, H. (2005b). Z. Anorg. Allg. Chem. 631, 2371–2376.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoose, J. & Meyer, G. (1980). SOS. University of Giessen, Germany.  Google Scholar
First citationVosegaard, T., Malmendal, A. & Nielsen, N. C. (2002). Monatsh. Chem. 133, 1555–1574.  Web of Science CrossRef CAS Google Scholar
First citationWaser, J., Levy, H. A. & Peterson, S. W. (1953). Acta Cryst. 6, 661–663.  CrossRef CAS IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds