metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(1,10-phenanthroline-κ2N,N′)copper(I)]-μ-thio­cyanato-κ2N:S-[(1,10-phenanthroline-κ2N,N′)copper(I)]-μ-cyanido-κ2N:C]

aCollege of Mechanical and Material Engineering, Functional Materials Research Institue, Three Gorges University, Yichang 443002, People's Republic of China
*Correspondence e-mail: lidongsheng1@126.com

(Received 13 October 2008; accepted 14 November 2008; online 20 November 2008)

In the title complex, [Cu2(CN)(NCS)(C12H8N2)2], which was synthesized under hydro­thermal conditions, both CuI atoms have a slightly distorted tetra­hedral geometry. They are coordinated by two N atoms of one 1,10-phenanthroline ligand, one bridging thio­cyanate anion and one bridging cyanide anion. In the crystal structure, infinite helical {Cu–CN–Cu–SCN}n chains are formed along [[{\overline 1}]01].

Related literature

For related literature, see: Cheng et al. (2006[Cheng, L., Lin, J.-B., Gong, J.-Z., Sun, A.-P., Ye, B.-H. & Chen, X.-M. (2006). Cryst. Growth Des. 6, 2739-2746.]); Greig & Philp (2001[Greig, L. M. & Philp, D. (2001). Chem. Soc. Rev. 30, 287-302.]); Luan et al. (2006[Luan, X.-J., Cai, X.-H., Wang, Y.-Y., Li, D.-S., Wang, C.-J., Liu, P., Hu, H.-M., Shi, Q.-Z. & Peng, S.-M. (2006). Chem. Eur. J. 12, 6281-6289.]); Piguet et al. (1997[Piguet, C., Bermardinelli, G. & Hopfgartner, G. (1997). Chem. Rev. 97, 2005-2062.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(CN)(NCS)(C12H8N2)2]

  • Mr = 571.59

  • Monoclinic, P 21 /n

  • a = 13.046 (7) Å

  • b = 13.470 (7) Å

  • c = 13.538 (7) Å

  • β = 90.044 (9)°

  • V = 2379 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.90 mm−1

  • T = 293 (2) K

  • 0.30 × 0.15 × 0.12 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan SADABS (Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.599, Tmax = 0.804

  • 15496 measured reflections

  • 4959 independent reflections

  • 3662 reflections with I > 2σ(I)

  • Rint = 0.081

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.164

  • S = 1.00

  • 4959 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.57 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Self-assembly processes that lead to helical structures are common throughout biology and chemistry (Luan et al., 2006; Piguet et al., 2005). Protein α-helices and the DNA double helix are well known biological examples which have inspired the work of synthetic chemists aiming to create chemical analogs of these complex structures (Greig et al., 2001). However, there is a little known about meso-helical self-assembling systems within this very active field of helical structure research in supramolecular chemistry (Cheng et al., 2006).

The crystal structure of the title complex contains two 1,10-Phen ligands, one CuSCN and one CuCN co-existing in the asymmetric unit, as illustrated in Fig. 1. The coordianation geometry of the four-coordinated Cu(1) is slightly distorted tetrahedral with two N donors of the chelating 1,10-Phen and another N donor [N(1)] of the CN- occupying the basal sites and a S donor of SCN- occupying the vertex site. The Cu(2) also has a slightly distorted tetrahedral geometry and is coordinated by two N atoms of one 1,10-Phen ligand, one bridging thiocyanate anion N atom [N(2)] and one bridging cyanide C atom [C(1)]. It is noteworthy that the Cu(I)atoms are linked by CN- and SCN- anions into infinite helical {CuCN-CuSCN}n chains along a 21 screw axis, furthermore, the Cu2(CN)(SCN) chains run around and cross two parallel axes forming meso-helices as showed in Fig. 2.

Related literature top

For related literature, see: Cheng, et al. (2006); Greig & Philp (2001); Luan et al. (2006); Piguet et al. (2005).

Experimental top

All chemicals were of reagent grade quality obtained from commercial sources and used without further purification. A mixture of CuSCN (0.60 mmol, 0.07 g), NaCN (1 mmol, 0.05 g),1,10-Phen (0.40 mmol, 0.07 g) and water (10 ml) in a 25 ml Teflon-lined stainless steel reactor was heated from 298 to 453 K in 2 h and maintained at 453 K for 72 h. After the mixture wascooled to 298 K, red crystals of the title compound were obtained (yield 43%).

Refinement top

All H atoms were positioned geometrically (C—H = 0.93 Å) and allowed to ride on their parent atoms, with Uiso(H) values equal to 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with displacement ellipsoids for the non-hydrogen atoms drawn at the 30% probability level.
[Figure 2] Fig. 2. Left: presentation of the location of the copper centres of coordination polymer; Right: View of the meso-helical arrangement.
catena-Poly[[(1,10-phenanthroline-κ2N,N')copper(I)]-µ-thiocyanato-κ2N:S- [(1,10-phenanthroline-κ2N,N')copper(I)]-µ-cyanido-κ2N:C] top
Crystal data top
[Cu2(CN)(NCS)(C12H8N2)2]F(000) = 1152
Mr = 571.59Dx = 1.596 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2103 reflections
a = 13.046 (7) Åθ = 2.2–27.5°
b = 13.470 (7) ŵ = 1.90 mm1
c = 13.538 (7) ÅT = 293 K
β = 90.044 (9)°Prism, red
V = 2379 (2) Å30.30 × 0.15 × 0.12 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
4959 independent reflections
Radiation source: fine-focus sealed tube3662 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.081
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.2°
CCD Profile fitting scansh = 1516
Absorption correction: multi-scan
SADABS (Sheldrick, 1996)
k = 1715
Tmin = 0.599, Tmax = 0.804l = 1717
15496 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0669P)2 + 0.4979P]
where P = (Fo2 + 2Fc2)/3
4959 reflections(Δ/σ)max = 0.001
316 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
[Cu2(CN)(NCS)(C12H8N2)2]V = 2379 (2) Å3
Mr = 571.59Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.046 (7) ŵ = 1.90 mm1
b = 13.470 (7) ÅT = 293 K
c = 13.538 (7) Å0.30 × 0.15 × 0.12 mm
β = 90.044 (9)°
Data collection top
Bruker SMART CCD
diffractometer
4959 independent reflections
Absorption correction: multi-scan
SADABS (Sheldrick, 1996)
3662 reflections with I > 2σ(I)
Tmin = 0.599, Tmax = 0.804Rint = 0.081
15496 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.164H-atom parameters constrained
S = 1.00Δρmax = 0.47 e Å3
4959 reflectionsΔρmin = 0.57 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.08441 (4)0.73813 (3)0.04132 (4)0.06012 (19)
Cu20.45032 (3)0.76203 (3)0.04863 (3)0.05589 (18)
C10.3089 (3)0.7520 (2)0.0233 (3)0.0502 (8)
N20.5019 (2)0.8164 (2)0.1747 (2)0.0623 (7)
N30.0405 (2)0.73312 (19)0.0551 (2)0.0557 (7)
N40.0024 (2)0.86301 (19)0.0898 (2)0.0524 (6)
N50.54334 (18)0.8232 (2)0.06500 (19)0.0501 (6)
N60.5591 (2)0.64667 (19)0.02813 (19)0.0515 (6)
N10.2232 (2)0.74724 (19)0.0059 (2)0.0619 (8)
C20.5338 (2)0.8478 (2)0.2473 (2)0.0505 (7)
C30.0636 (3)0.6686 (3)0.1262 (3)0.0712 (10)
H3A0.02260.61250.13250.085*
C40.1433 (4)0.6793 (3)0.1905 (4)0.0901 (14)
H4A0.15490.63240.23970.108*
C50.2064 (4)0.7608 (3)0.1815 (4)0.0854 (15)
H5A0.26100.76970.22480.103*
C60.1878 (2)0.8295 (2)0.1071 (3)0.0609 (9)
C70.2500 (3)0.9176 (3)0.0924 (3)0.0709 (10)
H7A0.30600.92960.13330.085*
C80.2269 (3)0.9819 (3)0.0200 (3)0.0662 (10)
H8A0.26751.03800.01190.079*
C90.1417 (2)0.9670 (2)0.0451 (3)0.0523 (7)
C100.1156 (3)1.0327 (2)0.1207 (3)0.0597 (9)
H10A0.15451.08960.13110.072*
C110.0333 (3)1.0133 (3)0.1790 (3)0.0682 (10)
H11A0.01551.05630.22990.082*
C120.0254 (3)0.9263 (3)0.1610 (2)0.0625 (9)
H12A0.08200.91350.20080.075*
C130.0798 (2)0.8824 (2)0.0330 (2)0.0473 (7)
C140.1038 (2)0.8128 (2)0.0458 (2)0.0502 (7)
C150.5371 (3)0.9102 (3)0.1122 (3)0.0639 (9)
H15A0.48490.95360.09430.077*
C160.6044 (3)0.9392 (3)0.1865 (3)0.0747 (10)
H16A0.59681.00080.21670.090*
C170.6812 (3)0.8776 (3)0.2149 (3)0.0733 (10)
H17A0.72530.89540.26590.088*
C180.6929 (3)0.7856 (3)0.1653 (3)0.0559 (8)
C190.7759 (3)0.7185 (3)0.1877 (3)0.0692 (10)
H19A0.82190.73320.23820.083*
C200.7865 (3)0.6345 (3)0.1351 (3)0.0696 (10)
H20A0.84240.59370.14780.084*
C210.7157 (2)0.6058 (2)0.0611 (3)0.0581 (8)
C220.7226 (3)0.5174 (3)0.0063 (3)0.0743 (12)
H22A0.77700.47400.01680.089*
C230.6491 (3)0.4955 (3)0.0622 (3)0.0783 (12)
H23A0.65300.43700.09850.094*
C240.5680 (3)0.5616 (3)0.0775 (3)0.0641 (9)
H24A0.51820.54550.12400.077*
C250.6313 (2)0.6691 (2)0.0399 (2)0.0471 (7)
C260.6224 (3)0.7617 (2)0.0929 (2)0.0468 (7)
S10.58145 (8)0.89734 (6)0.34839 (7)0.0644 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0442 (3)0.0592 (3)0.0770 (4)0.01178 (17)0.0058 (2)0.00483 (19)
Cu20.0407 (3)0.0623 (3)0.0646 (3)0.00543 (17)0.0032 (2)0.00538 (18)
C10.0387 (17)0.0418 (15)0.070 (2)0.0058 (12)0.0049 (15)0.0057 (13)
N20.0498 (15)0.0711 (19)0.0659 (18)0.0020 (14)0.0025 (13)0.0112 (15)
N30.0468 (16)0.0429 (14)0.077 (2)0.0043 (11)0.0045 (15)0.0008 (12)
N40.0538 (14)0.0452 (13)0.0582 (15)0.0046 (12)0.0092 (12)0.0053 (12)
N50.0421 (13)0.0504 (14)0.0577 (15)0.0087 (11)0.0024 (11)0.0010 (12)
N60.0503 (14)0.0457 (14)0.0584 (15)0.0028 (11)0.0049 (12)0.0001 (12)
N10.0516 (19)0.0502 (16)0.084 (2)0.0083 (12)0.0027 (16)0.0065 (14)
C20.0389 (14)0.0447 (16)0.068 (2)0.0002 (13)0.0035 (14)0.0008 (14)
C30.061 (2)0.056 (2)0.097 (3)0.0088 (17)0.003 (2)0.023 (2)
C40.084 (3)0.067 (3)0.119 (4)0.008 (2)0.017 (3)0.036 (3)
C50.060 (3)0.069 (3)0.127 (4)0.0007 (19)0.027 (3)0.022 (2)
C60.0396 (15)0.0487 (17)0.094 (3)0.0007 (14)0.0049 (16)0.0069 (17)
C70.0495 (18)0.0507 (19)0.113 (3)0.0065 (16)0.0176 (19)0.005 (2)
C80.0518 (19)0.0413 (17)0.106 (3)0.0098 (15)0.0004 (19)0.0024 (18)
C90.0471 (16)0.0394 (15)0.071 (2)0.0027 (13)0.0081 (15)0.0049 (14)
C100.067 (2)0.0431 (17)0.069 (2)0.0091 (15)0.0118 (18)0.0027 (15)
C110.089 (3)0.056 (2)0.060 (2)0.006 (2)0.004 (2)0.0001 (16)
C120.071 (2)0.060 (2)0.0563 (19)0.0092 (18)0.0005 (16)0.0008 (16)
C130.0384 (14)0.0383 (15)0.0653 (18)0.0014 (12)0.0091 (13)0.0044 (13)
C140.0395 (14)0.0389 (15)0.072 (2)0.0000 (12)0.0074 (14)0.0024 (14)
C150.0590 (19)0.060 (2)0.072 (2)0.0170 (17)0.0047 (17)0.0110 (17)
C160.078 (2)0.074 (2)0.072 (2)0.011 (2)0.001 (2)0.023 (2)
C170.071 (2)0.085 (3)0.065 (2)0.006 (2)0.0035 (18)0.016 (2)
C180.0430 (17)0.066 (2)0.0590 (19)0.0033 (16)0.0031 (14)0.0115 (17)
C190.049 (2)0.086 (3)0.072 (2)0.003 (2)0.0150 (17)0.017 (2)
C200.0497 (18)0.073 (2)0.086 (3)0.0160 (18)0.0044 (18)0.030 (2)
C210.0468 (17)0.0500 (18)0.077 (2)0.0118 (14)0.0091 (16)0.0149 (16)
C220.072 (3)0.052 (2)0.099 (3)0.0215 (19)0.020 (2)0.013 (2)
C230.092 (3)0.047 (2)0.097 (3)0.012 (2)0.021 (3)0.005 (2)
C240.075 (2)0.0519 (18)0.065 (2)0.0020 (17)0.0054 (17)0.0055 (16)
C250.0397 (14)0.0446 (15)0.0570 (17)0.0076 (12)0.0079 (13)0.0080 (13)
C260.0429 (17)0.0476 (16)0.0500 (17)0.0051 (12)0.0054 (14)0.0045 (12)
S10.0725 (6)0.0491 (5)0.0717 (6)0.0137 (4)0.0150 (5)0.0022 (4)
Geometric parameters (Å, º) top
Cu1—N11.924 (3)C8—H8A0.9300
Cu1—N32.089 (3)C9—C101.395 (5)
Cu1—N42.099 (3)C9—C131.406 (4)
Cu1—S1i2.3581 (13)C10—C111.358 (5)
Cu2—C11.882 (3)C10—H10A0.9300
Cu2—N21.976 (3)C11—C121.420 (5)
Cu2—N62.123 (3)C11—H11A0.9300
Cu2—N52.125 (3)C12—H12A0.9300
C1—N11.145 (5)C13—C141.454 (5)
N2—C21.148 (4)C15—C161.391 (5)
N3—C31.331 (5)C15—H15A0.9300
N3—C141.360 (4)C16—C171.356 (6)
N4—C121.322 (4)C16—H16A0.9300
N4—C131.345 (4)C17—C181.417 (5)
N5—C151.336 (4)C17—H17A0.9300
N5—C261.376 (4)C18—C261.382 (5)
N6—C241.331 (4)C18—C191.443 (5)
N6—C251.351 (4)C19—C201.343 (6)
C2—S11.645 (3)C19—H19A0.9300
C3—C41.363 (6)C20—C211.416 (5)
C3—H3A0.9300C20—H20A0.9300
C4—C51.377 (6)C21—C221.406 (5)
C4—H4A0.9300C21—C251.421 (4)
C5—C61.390 (6)C22—C231.366 (6)
C5—H5A0.9300C22—H22A0.9300
C6—C141.392 (5)C23—C241.399 (5)
C6—C71.452 (5)C23—H23A0.9300
C7—C81.341 (5)C24—H24A0.9300
C7—H7A0.9300C25—C261.444 (4)
C8—C91.433 (5)S1—Cu1ii2.3581 (13)
N1—Cu1—N3121.90 (14)C9—C10—H10A120.1
N1—Cu1—N4122.18 (11)C10—C11—C12119.1 (3)
N3—Cu1—N479.83 (11)C10—C11—H11A120.5
N1—Cu1—S1i105.99 (9)C12—C11—H11A120.5
N3—Cu1—S1i110.96 (8)N4—C12—C11122.4 (3)
N4—Cu1—S1i114.43 (8)N4—C12—H12A118.8
C1—Cu2—N2121.25 (14)C11—C12—H12A118.8
C1—Cu2—N6125.39 (12)N4—C13—C9123.2 (3)
N2—Cu2—N698.99 (11)N4—C13—C14117.7 (3)
C1—Cu2—N5117.10 (13)C9—C13—C14119.0 (3)
N2—Cu2—N5106.65 (12)N3—C14—C6123.4 (3)
N6—Cu2—N578.93 (11)N3—C14—C13116.6 (3)
N1—C1—Cu2178.3 (4)C6—C14—C13120.1 (3)
C2—N2—Cu2178.7 (3)N5—C15—C16123.6 (3)
C3—N3—C14116.5 (3)N5—C15—H15A118.2
C3—N3—Cu1130.5 (2)C16—C15—H15A118.2
C14—N3—Cu1112.9 (2)C17—C16—C15119.9 (4)
C12—N4—C13118.2 (3)C17—C16—H16A120.1
C12—N4—Cu1129.0 (2)C15—C16—H16A120.1
C13—N4—Cu1112.6 (2)C16—C17—C18118.8 (4)
C15—N5—C26116.2 (3)C16—C17—H17A120.6
C15—N5—Cu2130.6 (2)C18—C17—H17A120.6
C26—N5—Cu2113.1 (2)C26—C18—C17117.9 (3)
C24—N6—C25118.3 (3)C26—C18—C19120.1 (4)
C24—N6—Cu2128.5 (3)C17—C18—C19122.0 (4)
C25—N6—Cu2113.0 (2)C20—C19—C18119.6 (4)
C1—N1—Cu1172.5 (4)C20—C19—H19A120.2
N2—C2—S1177.3 (3)C18—C19—H19A120.2
N3—C3—C4124.4 (4)C19—C20—C21122.5 (3)
N3—C3—H3A117.8C19—C20—H20A118.7
C4—C3—H3A117.8C21—C20—H20A118.7
C3—C4—C5118.9 (4)C22—C21—C20124.2 (3)
C3—C4—H4A120.5C22—C21—C25116.8 (4)
C5—C4—H4A120.5C20—C21—C25118.9 (3)
C4—C5—C6119.4 (4)C23—C22—C21119.7 (3)
C4—C5—H5A120.3C23—C22—H22A120.1
C6—C5—H5A120.3C21—C22—H22A120.1
C14—C6—C5117.5 (3)C22—C23—C24119.5 (4)
C14—C6—C7119.4 (3)C22—C23—H23A120.2
C5—C6—C7123.1 (4)C24—C23—H23A120.2
C8—C7—C6120.1 (3)N6—C24—C23122.7 (4)
C8—C7—H7A119.9N6—C24—H24A118.7
C6—C7—H7A119.9C23—C24—H24A118.7
C7—C8—C9122.2 (3)N6—C25—C21122.9 (3)
C7—C8—H8A118.9N6—C25—C26118.4 (3)
C9—C8—H8A118.9C21—C25—C26118.7 (3)
C10—C9—C13117.4 (3)N5—C26—C18123.6 (3)
C10—C9—C8123.4 (3)N5—C26—C25116.4 (3)
C13—C9—C8119.1 (3)C18—C26—C25120.0 (3)
C11—C10—C9119.7 (3)C2—S1—Cu1ii102.69 (12)
C11—C10—H10A120.1
N2—Cu2—C1—N1122 (11)Cu1—N4—C13—C144.5 (3)
N6—Cu2—C1—N1107 (11)C10—C9—C13—N40.5 (4)
N5—Cu2—C1—N111 (11)C8—C9—C13—N4179.1 (3)
C1—Cu2—N2—C2178 (100)C10—C9—C13—C14179.2 (3)
N6—Cu2—N2—C241 (13)C8—C9—C13—C140.3 (4)
N5—Cu2—N2—C240 (13)C3—N3—C14—C61.2 (5)
N1—Cu1—N3—C359.4 (4)Cu1—N3—C14—C6175.1 (3)
N4—Cu1—N3—C3178.9 (3)C3—N3—C14—C13178.9 (3)
S1i—Cu1—N3—C366.5 (3)Cu1—N3—C14—C134.8 (4)
N1—Cu1—N3—C14116.3 (2)C5—C6—C14—N30.3 (5)
N4—Cu1—N3—C145.5 (2)C7—C6—C14—N3179.0 (3)
S1i—Cu1—N3—C14117.9 (2)C5—C6—C14—C13179.6 (4)
N1—Cu1—N4—C1258.1 (3)C7—C6—C14—C130.9 (5)
N3—Cu1—N4—C12179.6 (3)N4—C13—C14—N30.2 (4)
S1i—Cu1—N4—C1271.9 (3)C9—C13—C14—N3179.0 (3)
N1—Cu1—N4—C13116.1 (2)N4—C13—C14—C6179.7 (3)
N3—Cu1—N4—C135.3 (2)C9—C13—C14—C60.9 (4)
S1i—Cu1—N4—C13113.87 (19)C26—N5—C15—C160.8 (5)
C1—Cu2—N5—C1555.7 (3)Cu2—N5—C15—C16179.4 (3)
N2—Cu2—N5—C1583.8 (3)N5—C15—C16—C170.3 (6)
N6—Cu2—N5—C15180.0 (3)C15—C16—C17—C182.0 (6)
C1—Cu2—N5—C26124.4 (2)C16—C17—C18—C262.6 (5)
N2—Cu2—N5—C2696.0 (2)C16—C17—C18—C19176.6 (4)
N6—Cu2—N5—C260.2 (2)C26—C18—C19—C202.5 (5)
C1—Cu2—N6—C2467.3 (3)C17—C18—C19—C20176.7 (4)
N2—Cu2—N6—C2471.8 (3)C18—C19—C20—C213.5 (6)
N5—Cu2—N6—C24177.2 (3)C19—C20—C21—C22178.3 (4)
C1—Cu2—N6—C25117.6 (2)C19—C20—C21—C251.4 (5)
N2—Cu2—N6—C25103.2 (2)C20—C21—C22—C23178.7 (3)
N5—Cu2—N6—C252.1 (2)C25—C21—C22—C230.9 (5)
Cu2—C1—N1—Cu139 (13)C21—C22—C23—C240.3 (6)
N3—Cu1—N1—C1177 (2)C25—N6—C24—C230.6 (5)
N4—Cu1—N1—C185 (2)Cu2—N6—C24—C23174.2 (3)
S1i—Cu1—N1—C149 (2)C22—C23—C24—N60.5 (6)
Cu2—N2—C2—S166 (17)C24—N6—C25—C210.2 (4)
C14—N3—C3—C42.1 (6)Cu2—N6—C25—C21175.7 (2)
Cu1—N3—C3—C4173.4 (3)C24—N6—C25—C26179.4 (3)
N3—C3—C4—C51.3 (8)Cu2—N6—C25—C263.9 (3)
C3—C4—C5—C60.3 (8)C22—C21—C25—N60.9 (5)
C4—C5—C6—C141.1 (7)C20—C21—C25—N6178.7 (3)
C4—C5—C6—C7179.7 (4)C22—C21—C25—C26178.7 (3)
C14—C6—C7—C80.4 (6)C20—C21—C25—C261.7 (4)
C5—C6—C7—C8179.0 (4)C15—N5—C26—C180.1 (5)
C6—C7—C8—C90.2 (6)Cu2—N5—C26—C18180.0 (2)
C7—C8—C9—C10179.7 (4)C15—N5—C26—C25178.1 (3)
C7—C8—C9—C130.2 (5)Cu2—N5—C26—C251.8 (3)
C13—C9—C10—C110.1 (5)C17—C18—C26—N51.6 (5)
C8—C9—C10—C11179.7 (3)C19—C18—C26—N5177.7 (3)
C9—C10—C11—C120.6 (5)C17—C18—C26—C25179.7 (3)
C13—N4—C12—C110.2 (5)C19—C18—C26—C250.5 (5)
Cu1—N4—C12—C11173.8 (2)N6—C25—C26—N53.8 (4)
C10—C11—C12—N40.4 (5)C21—C25—C26—N5175.8 (3)
C12—N4—C13—C90.6 (4)N6—C25—C26—C18177.9 (3)
Cu1—N4—C13—C9174.3 (2)C21—C25—C26—C182.5 (4)
C12—N4—C13—C14179.4 (3)N2—C2—S1—Cu1ii163 (6)
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x+1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu2(CN)(NCS)(C12H8N2)2]
Mr571.59
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)13.046 (7), 13.470 (7), 13.538 (7)
β (°) 90.044 (9)
V3)2379 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.90
Crystal size (mm)0.30 × 0.15 × 0.12
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
SADABS (Sheldrick, 1996)
Tmin, Tmax0.599, 0.804
No. of measured, independent and
observed [I > 2σ(I)] reflections
15496, 4959, 3662
Rint0.081
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.164, 1.00
No. of reflections4959
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.57

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (grant No. 20773104), the Program for New Century Excellent Talents in University (grant No. NCET-06-0891), the Key Project of the Chinese Ministry of Education (grant No. 208143), and the Important Project of Hubei Provincial Education Office (grant No. 09HB81).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, L., Lin, J.-B., Gong, J.-Z., Sun, A.-P., Ye, B.-H. & Chen, X.-M. (2006). Cryst. Growth Des. 6, 2739–2746.  Web of Science CSD CrossRef CAS Google Scholar
First citationGreig, L. M. & Philp, D. (2001). Chem. Soc. Rev. 30, 287–302.  Web of Science CrossRef CAS Google Scholar
First citationLuan, X.-J., Cai, X.-H., Wang, Y.-Y., Li, D.-S., Wang, C.-J., Liu, P., Hu, H.-M., Shi, Q.-Z. & Peng, S.-M. (2006). Chem. Eur. J. 12, 6281–6289.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPiguet, C., Bermardinelli, G. & Hopfgartner, G. (1997). Chem. Rev. 97, 2005-2062.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds