organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(E)-1-(5-Bromo-2-hy­droxy­phen­yl)ethyl­­idene]benzohydrazide

aCollege of Environmental and Chemical Engineering, Xi'an Polytechnic University, 710048 Xi'an, Shaanxi, People's Republic of China, and bDepartment of Materials Science and Chemical Engineering, Sichuan University of Science and Engineering , 643000 Zigong, Sichuan, People's Republic of China
*Correspondence e-mail: jichangyou789456@126.com

(Received 23 November 2008; accepted 25 November 2008; online 29 November 2008)

The C=N double bond in the title compound, C15H13BrN2O2, is trans E configured and the dihedral angle between the aromatic ring planes is 22.3 (1)°. The crystal structure is stabilized by intra­molecular O—H⋯O and inter­molecular N—H⋯O hydrogen bonds.

Related literature

For aroylhydrazones and their biological activity, see: Singh et al. (1982[Singh, R. B., Jain, P. & Singh, R. P. (1982). Talanta, 29, 77-84.]); Salem (1998[Salem, A. A. (1998). Microchem. J. 60, 51-66.]); Carcelli et al. (1995[Carcelli, M., Mazza, P., Pelizzi, G. & Zani, F. (1995). J. Inorg. Biochem. 57, 43-62.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13BrN2O2

  • Mr = 333.18

  • Monoclinic, P 21 /c

  • a = 7.3761 (15) Å

  • b = 28.270 (6) Å

  • c = 8.6089 (13) Å

  • β = 116.928 (12)°

  • V = 1600.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.57 mm−1

  • T = 298 (2) K

  • 0.12 × 0.08 × 0.06 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.748, Tmax = 0.861

  • 8028 measured reflections

  • 2830 independent reflections

  • 1490 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.188

  • S = 1.01

  • 2830 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.85 2.522 (6) 138
N2—H2⋯O2i 0.86 2.14 2.889 (6) 146
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chemistry of aroylhydrazones continues to attract much attention due to their coordination ability to metal ions (Singh et al., 1982; Salem, 1998) and their biological activity (Singh et al., 1982; Carcelli et al., 1995). As an extension of work on the structural characterization of aroylhydrazone derivatives, the title compound was synthesized and its crystal structure is reported here.

The title molecule displays a trans configured C=N double bond (Fig. 1). The crystal structure is stabilized by intramolecular O—H···O and intermolecular N—H···O hydrogen bonds (Table 1. and Fig. 2).

Related literature top

For aroylhydrazones and their biological activity, see: Singh et al. (1982); Salem (1998); Carcelli et al. (1995); .

Experimental top

Benzoylhydrazine (0.02 mol, 2.72 g) was dissolved in anhydrous ethanol (50 ml), and 1-(5-bromo-2-hydroxyphenyl)ethanone (0.02 mol, 4.30 g) was added. The reaction mixture was refluxed for 6 h with stirring, then the resulting precipitate was collected by filtration, washed several times with ethanol and dried in vacuo (yield 85%). The compound (2.0 mmol, 0.67 g) was dissolved in dimethylformamide (30 ml) and kept at room temperature for 30 d to obtain yellow single crystals suitable for X-ray diffraction.

Refinement top

All H atoms were positioned geometrically and treated as riding on their parent atoms,with CH(methyl) = 0.96 Å, C—H(aromatic) = 0.93 Å, O—H = 0.82 Å, and N—H = 0.86 Å and with Uiso(H) =1.5Ueq(Cmethyl,O) and 1.2Ueq(Caromatic,N).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound. Dashed lines show hydrogen bonds.
N'-[(E)-1-(5-Bromo-2-hydroxyphenyl)ethylidene]benzohydrazide top
Crystal data top
C15H13BrN2O2F(000) = 672
Mr = 333.18Dx = 1.383 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1189 reflections
a = 7.3761 (15) Åθ = 2.9–20.7°
b = 28.270 (6) ŵ = 2.57 mm1
c = 8.6089 (13) ÅT = 298 K
β = 116.928 (12)°Block, yellow
V = 1600.5 (5) Å30.12 × 0.08 × 0.06 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
2830 independent reflections
Radiation source: fine-focus sealed tube1490 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ϕ and ω scansθmax = 25.1°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.748, Tmax = 0.861k = 3333
8028 measured reflectionsl = 710
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.188H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.089P)2 + 0.7896P]
where P = (Fo2 + 2Fc2)/3
2830 reflections(Δ/σ)max = 0.002
183 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C15H13BrN2O2V = 1600.5 (5) Å3
Mr = 333.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.3761 (15) ŵ = 2.57 mm1
b = 28.270 (6) ÅT = 298 K
c = 8.6089 (13) Å0.12 × 0.08 × 0.06 mm
β = 116.928 (12)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2830 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1490 reflections with I > 2σ(I)
Tmin = 0.748, Tmax = 0.861Rint = 0.062
8028 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.188H-atom parameters constrained
S = 1.01Δρmax = 0.87 e Å3
2830 reflectionsΔρmin = 0.37 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.81952 (14)1.00196 (2)0.69361 (11)0.0935 (4)
O10.6647 (7)0.79484 (14)0.7321 (5)0.0613 (11)
H10.61830.78200.63650.092*
O20.3297 (6)0.70963 (13)0.4419 (5)0.0602 (11)
N10.4384 (6)0.79657 (14)0.4079 (5)0.0391 (10)
N20.3180 (6)0.76994 (15)0.2660 (5)0.0416 (10)
H20.27200.78100.16200.050*
C10.6935 (8)0.84139 (19)0.7143 (6)0.0442 (13)
C20.6016 (8)0.86503 (17)0.5556 (6)0.0390 (12)
C30.6426 (8)0.91292 (19)0.5540 (7)0.0497 (14)
H30.58290.92940.44910.060*
C40.7677 (8)0.9363 (2)0.7018 (8)0.0555 (15)
C50.8592 (10)0.9132 (2)0.8592 (8)0.0655 (17)
H50.94610.92930.95980.079*
C60.8202 (9)0.8661 (2)0.8654 (8)0.0658 (18)
H60.87890.85030.97160.079*
C70.4633 (7)0.84066 (17)0.3902 (6)0.0370 (12)
C80.2737 (8)0.72504 (18)0.2962 (7)0.0430 (13)
C90.1524 (8)0.69622 (19)0.1385 (7)0.0460 (13)
C100.0099 (8)0.7153 (2)0.0181 (7)0.0509 (14)
H100.01320.74770.02730.061*
C110.0978 (9)0.6865 (2)0.1603 (8)0.0581 (16)
H110.19310.69940.26490.070*
C120.0621 (10)0.6383 (2)0.1449 (9)0.0641 (17)
H120.13350.61860.24000.077*
C130.0790 (11)0.6191 (2)0.0110 (9)0.0618 (16)
H130.10270.58660.02000.074*
C140.1832 (9)0.64743 (19)0.1507 (7)0.0496 (14)
H140.27600.63420.25570.060*
C150.3682 (9)0.86765 (19)0.2249 (6)0.0535 (15)
H15A0.46730.87330.18360.080*
H15B0.31860.89730.24450.080*
H15C0.25710.84980.13950.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1011 (7)0.0462 (5)0.0962 (7)0.0133 (4)0.0123 (5)0.0172 (4)
O10.073 (3)0.058 (3)0.040 (2)0.003 (2)0.014 (2)0.0092 (19)
O20.103 (3)0.040 (2)0.041 (2)0.000 (2)0.037 (2)0.0038 (17)
N10.051 (3)0.036 (3)0.029 (2)0.002 (2)0.0173 (19)0.0012 (19)
N20.054 (3)0.037 (3)0.032 (2)0.006 (2)0.019 (2)0.0022 (19)
C10.043 (3)0.045 (3)0.037 (3)0.003 (2)0.011 (2)0.004 (2)
C20.034 (3)0.039 (3)0.044 (3)0.002 (2)0.017 (2)0.005 (2)
C30.047 (3)0.049 (3)0.040 (3)0.008 (3)0.009 (3)0.005 (3)
C40.047 (3)0.048 (4)0.062 (4)0.001 (3)0.015 (3)0.014 (3)
C50.064 (4)0.067 (4)0.051 (4)0.005 (3)0.013 (3)0.020 (3)
C60.062 (4)0.079 (5)0.040 (3)0.002 (3)0.008 (3)0.003 (3)
C70.044 (3)0.037 (3)0.028 (3)0.004 (2)0.014 (2)0.001 (2)
C80.064 (4)0.032 (3)0.041 (3)0.006 (3)0.031 (3)0.000 (2)
C90.057 (3)0.043 (3)0.049 (3)0.009 (3)0.033 (3)0.004 (3)
C100.057 (3)0.040 (3)0.053 (4)0.006 (3)0.022 (3)0.004 (3)
C110.058 (4)0.052 (4)0.055 (4)0.013 (3)0.017 (3)0.006 (3)
C120.070 (4)0.062 (4)0.064 (4)0.024 (3)0.034 (4)0.027 (3)
C130.082 (4)0.041 (3)0.079 (5)0.009 (3)0.050 (4)0.011 (3)
C140.066 (4)0.036 (3)0.053 (3)0.004 (3)0.033 (3)0.003 (3)
C150.071 (4)0.036 (3)0.034 (3)0.001 (3)0.006 (3)0.002 (2)
Geometric parameters (Å, º) top
Br1—C41.902 (6)C6—H60.9300
O1—C11.353 (6)C7—C151.482 (7)
O1—H10.8200C8—C91.485 (7)
O2—C81.210 (6)C9—C101.389 (7)
N1—C71.279 (6)C9—C141.394 (7)
N1—N21.366 (5)C10—C111.382 (7)
N2—C81.365 (6)C10—H100.9300
N2—H20.8600C11—C121.384 (8)
C1—C21.391 (7)C11—H110.9300
C1—C61.397 (8)C12—C131.383 (9)
C2—C31.389 (7)C12—H120.9300
C2—C71.492 (7)C13—C141.358 (8)
C3—C41.358 (7)C13—H130.9300
C3—H30.9300C14—H140.9300
C4—C51.376 (8)C15—H15A0.9600
C5—C61.367 (9)C15—H15B0.9600
C5—H50.9300C15—H15C0.9600
C1—O1—H1109.5O2—C8—C9122.1 (5)
C7—N1—N2120.1 (4)N2—C8—C9115.7 (4)
C8—N2—N1117.2 (4)C10—C9—C14118.9 (5)
C8—N2—H2121.4C10—C9—C8123.5 (5)
N1—N2—H2121.4C14—C9—C8117.6 (5)
O1—C1—C2123.2 (4)C11—C10—C9120.7 (6)
O1—C1—C6117.0 (5)C11—C10—H10119.6
C2—C1—C6119.8 (5)C9—C10—H10119.6
C3—C2—C1117.8 (5)C10—C11—C12119.1 (6)
C3—C2—C7119.9 (4)C10—C11—H11120.4
C1—C2—C7122.3 (5)C12—C11—H11120.4
C4—C3—C2121.6 (5)C13—C12—C11120.4 (5)
C4—C3—H3119.2C13—C12—H12119.8
C2—C3—H3119.2C11—C12—H12119.8
C3—C4—C5120.9 (6)C14—C13—C12120.2 (6)
C3—C4—Br1120.2 (5)C14—C13—H13119.9
C5—C4—Br1118.9 (4)C12—C13—H13119.9
C6—C5—C4118.9 (6)C13—C14—C9120.7 (6)
C6—C5—H5120.6C13—C14—H14119.7
C4—C5—H5120.6C9—C14—H14119.7
C5—C6—C1121.0 (6)C7—C15—H15A109.5
C5—C6—H6119.5C7—C15—H15B109.5
C1—C6—H6119.5H15A—C15—H15B109.5
N1—C7—C15125.8 (4)C7—C15—H15C109.5
N1—C7—C2114.2 (4)H15A—C15—H15C109.5
C15—C7—C2120.0 (5)H15B—C15—H15C109.5
O2—C8—N2122.2 (5)
C7—N1—N2—C8170.7 (5)C1—C2—C7—N10.3 (7)
O1—C1—C2—C3179.8 (5)C3—C2—C7—C150.6 (7)
C6—C1—C2—C30.8 (8)C1—C2—C7—C15179.6 (5)
O1—C1—C2—C70.4 (8)N1—N2—C8—O23.3 (7)
C6—C1—C2—C7179.4 (5)N1—N2—C8—C9176.6 (4)
C1—C2—C3—C40.2 (8)O2—C8—C9—C10149.0 (5)
C7—C2—C3—C4180.0 (5)N2—C8—C9—C1031.1 (7)
C2—C3—C4—C50.2 (9)O2—C8—C9—C1430.3 (8)
C2—C3—C4—Br1180.0 (4)N2—C8—C9—C14149.6 (5)
C3—C4—C5—C60.8 (9)C14—C9—C10—C110.8 (8)
Br1—C4—C5—C6179.3 (5)C8—C9—C10—C11179.9 (5)
C4—C5—C6—C11.5 (10)C9—C10—C11—C120.0 (8)
O1—C1—C6—C5179.4 (6)C10—C11—C12—C130.3 (9)
C2—C1—C6—C51.5 (9)C11—C12—C13—C140.3 (9)
N2—N1—C7—C151.2 (8)C12—C13—C14—C91.2 (9)
N2—N1—C7—C2178.9 (4)C10—C9—C14—C131.4 (8)
C3—C2—C7—N1179.5 (5)C8—C9—C14—C13179.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.852.522 (6)138
N2—H2···O2i0.862.142.889 (6)146
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H13BrN2O2
Mr333.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.3761 (15), 28.270 (6), 8.6089 (13)
β (°) 116.928 (12)
V3)1600.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.57
Crystal size (mm)0.12 × 0.08 × 0.06
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.748, 0.861
No. of measured, independent and
observed [I > 2σ(I)] reflections
8028, 2830, 1490
Rint0.062
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.188, 1.01
No. of reflections2830
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.87, 0.37

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.8201.8542.522 (6)137.71
N2—H2···O2i0.8602.1382.889 (6)145.55
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

This project was supported by the Postgraduate Foundation of Xi'an Polytechnic University (grant No. Y05–2–09)

References

First citationCarcelli, M., Mazza, P., Pelizzi, G. & Zani, F. (1995). J. Inorg. Biochem. 57, 43–62.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSalem, A. A. (1998). Microchem. J. 60, 51–66.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSingh, R. B., Jain, P. & Singh, R. P. (1982). Talanta, 29, 77–84.  CrossRef PubMed CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds