organic compounds
tert-Butyl 2-(3-acetylamino-2-oxo-1,2-dihydro-1-pyridyl)acetate
aEskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan, Brisbane 4111, Australia, and bSchool of Biomolecular and Physical Sciences and Eskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan, Brisbane 4111, Australia
*Correspondence e-mail: P.Healy@griffith.edu.au
The title compound, C13H18N2O4, crystallizes as discrete molecules associated as N—H⋯O hydrogen-bonded dimers disposed about a crystallographic inversion centre. The structure is the first solid-state structure for a 3-acetylpyridone without C-4 to C-6 substituents. The amide subsituent at C-3 is coplanar with the pyridone ring, while the tert-butyl ester group is orthogonal to the pyridine ring. The amide and ester carbonyl O atoms are not involved in strong hydrogen bonding with only a number of intramolecular and intermolecular C—H⋯O interactions apparent in the structure.
Related literature
For general background, see: Bernstein et al. (1994); Dragovich et al. (2002); Hu et al. (2008); Karis et al. (2007); Kim et al. (2008); Loughlin et al. (2004); Reiner et al. (1999); Semple et al. (1998); Veale et al. (1995). For the synthesis, see: Sanderson et al. (1997); Tamura et al. (1996). For related structures. see: Karis et al. (2006); Yang & Craven (1998).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: MSC/AFC7 Diffractometer Control Software (Molecular Structure Corporation, 1999); cell MSC/AFC7 Diffractometer Control Software; data reduction: TEXSAN for Windows (Molecular Structure Corporation, 2001); program(s) used to solve structure: TEXSAN for Windows; program(s) used to refine structure: TEXSAN for Windows and SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: TEXSAN for Windows and PLATON (Spek, 2003).
Supporting information
10.1107/S1600536808039810/bt2816sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808039810/bt2816Isup2.hkl
Tert-Butyl 2-(3'-amino-2'-oxopyridin-1'(2H)-yl)acetate (compound (I)) was prepared by N-alkylation of nitropyridone with sodium hydride and tert-butyl bromoacetate (Sanderson et al., 1997; Tamura et al., 1996), and subsequent hydrogenation over palladium-on-carbon (Tamura et al., 1996).
For the preparation of compound (II), compound (I) (0.78 g, 3.48 mmol) was dissolved in a mixture of dry dichloromethane (10 ml) and triethylamine (0.97 ml, 6.96 mmol) under nitrogen. Acetyl chloride (0.50 ml, 6.96 mmol) was added dropwise at 295 K. The resulting mixture was stirred for 4 h and then concentrated to give a suspension of the product and triethylamine hydrochloride. The suspension was directly transferred to a silica gel column using dichloromethane with 0.5% triethylamine and eluted with an ethyl acetate /dichloromethane gradient (0 to 20% ethyl acetate, with 0.5% triethyl amine. Red crystals of (II) (m.p. 415–418 K) (0.91 g, 98%) were isolated by slow evaporation from an ethyl acetate /dichloromethane solution. Analysis found: C 58.73, H 6.84, N 10.36%; calculated for C13H18N2O4: C 58.64, H 6.81, N 10.52%. νmax(KBr) cm-1 3318, 2974, 1716, 1646, 1605, 1532, 1512. δH (400 MHz, CDCl3, p.p.m.) 1.49 (9H, s, C(CH3)3), 2.19 (3H, s, CH3), 4.58 (2H, s, H2), 6.27 (1H, dd, J = 7.0, 7.0 Hz, H5'), 6.92 (1H, dd, J = 7.0, 1.6 Hz, H6'), 8.35 (1H, brs, Wh1/2 = 11 Hz, NH), 8.39 (1H, dd, J = 7.2, 1.6 Hz, H4'). δC (100 MHz, CDCl3) 24.7 (CH3), 28.0 (C(CH3)3), 51.6 (C2), 83.1 (C(CH3)3), 106.8 (C5'), 122.4 (C4'), 129.3 (C3'), 130.2 (C6'), 157.4 (C2'), 166.2 (C1), 169.0 (CO). MS (ES+) 289.2 (MNa+, 30%) 273.2 (MLi+, 40%).
Carbon bonded H atoms were included in idealized positions and refined as riding atoms, with C—H set to 0.95–0.96 Å. Uiso(H) values were set to 1.2Ueq (aromatic, methylene) and 1.5Ueq (methyl) of the parent atom. The amide proton was located from difference Fourier maps and refined with N—H set to 0.86Å and Uiso(H) values set to 1.2Ueq of the parent atom. Considerable thermal motion was apparent in the peripheral carbons of the tert-butyl group.
Data collection: MSC/AFC7 Diffractometer Control Software (Molecular Structure Corporation, 1999); cell
MSC/AFC7 Diffractometer Control Software (Molecular Structure Corporation, 1999); data reduction: TEXSAN for Windows (Molecular Structure Corporation, 2001); program(s) used to solve structure: TEXSAN for Windows (Molecular Structure Corporation, 2001); program(s) used to refine structure: TEXSAN for Windows (Molecular Structure Corporation, 2001) and SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: TEXSAN for Windows (Molecular Structure Corporation, 2001) and PLATON (Spek, 2003).C13H18N2O4 | F(000) = 568 |
Mr = 266.29 | Dx = 1.281 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
a = 13.9417 (15) Å | θ = 12.6–17.5° |
b = 5.585 (1) Å | µ = 0.10 mm−1 |
c = 17.861 (2) Å | T = 295 K |
β = 97.039 (9)° | Block, red |
V = 1380.3 (3) Å3 | 0.40 × 0.30 × 0.20 mm |
Z = 4 |
Rigaku AFC-7R diffractometer | Rint = 0.046 |
Radiation source: Rigaku rotating anode | θmax = 25.0°, θmin = 2.6° |
Graphite monochromator | h = −16→16 |
ω–2θ scans | k = −6→0 |
2731 measured reflections | l = −21→10 |
2428 independent reflections | 3 standard reflections every 150 reflections |
1482 reflections with I > 2σ(I) | intensity decay: 0.6% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.162 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0906P)2 + 0.0473P] where P = (Fo2 + 2Fc2)/3 |
2428 reflections | (Δ/σ)max = 0.001 |
176 parameters | Δρmax = 0.27 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
C13H18N2O4 | V = 1380.3 (3) Å3 |
Mr = 266.29 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 13.9417 (15) Å | µ = 0.10 mm−1 |
b = 5.585 (1) Å | T = 295 K |
c = 17.861 (2) Å | 0.40 × 0.30 × 0.20 mm |
β = 97.039 (9)° |
Rigaku AFC-7R diffractometer | Rint = 0.046 |
2731 measured reflections | 3 standard reflections every 150 reflections |
2428 independent reflections | intensity decay: 0.6% |
1482 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.052 | 0 restraints |
wR(F2) = 0.162 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.27 e Å−3 |
2428 reflections | Δρmin = −0.27 e Å−3 |
176 parameters |
Experimental. The scan width was (1.79 + 0.30tanθ)° with an ω scan speed of 16° per minute (up to 4 scans to achieve I/σ(I) > 10). Stationary background counts were recorded at each end of the scan, and the scan time:background time ratio was 2:1. |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O2 | 0.93631 (11) | 0.2790 (3) | 0.03272 (10) | 0.0595 (6) | |
O3 | 1.26910 (13) | 0.2449 (4) | 0.15628 (14) | 0.0940 (9) | |
O11 | 0.79117 (14) | 0.2673 (4) | 0.16249 (13) | 0.0868 (9) | |
O12 | 0.66171 (11) | 0.0894 (3) | 0.09995 (9) | 0.0520 (6) | |
N1 | 0.91347 (13) | −0.0488 (3) | 0.10449 (11) | 0.0487 (6) | |
N3 | 1.12376 (12) | 0.3204 (4) | 0.08928 (11) | 0.0497 (7) | |
C2 | 0.97001 (15) | 0.1321 (4) | 0.08098 (12) | 0.0450 (7) | |
C3 | 1.06936 (15) | 0.1361 (4) | 0.11623 (12) | 0.0450 (7) | |
C4 | 1.10110 (17) | −0.0279 (5) | 0.16998 (14) | 0.0546 (8) | |
C5 | 1.0390 (2) | −0.2076 (5) | 0.19027 (15) | 0.0634 (10) | |
C6 | 0.94768 (18) | −0.2158 (5) | 0.15792 (15) | 0.0580 (9) | |
C11 | 0.81146 (16) | −0.0501 (4) | 0.07545 (14) | 0.0508 (8) | |
C12 | 0.75508 (16) | 0.1222 (4) | 0.11859 (14) | 0.0505 (8) | |
C13 | 0.58947 (17) | 0.2243 (5) | 0.13832 (15) | 0.0569 (9) | |
C14 | 0.4945 (2) | 0.1252 (7) | 0.1020 (2) | 0.0982 (15) | |
C15 | 0.6042 (2) | 0.1659 (8) | 0.22108 (18) | 0.0934 (14) | |
C16 | 0.5968 (3) | 0.4858 (6) | 0.1224 (3) | 0.1150 (18) | |
C31 | 1.21909 (17) | 0.3673 (5) | 0.11050 (15) | 0.0577 (9) | |
C32 | 1.25913 (17) | 0.5768 (6) | 0.07310 (16) | 0.0683 (10) | |
H3 | 1.09400 | 0.41360 | 0.05580 | 0.0590* | |
H4 | 1.16570 | −0.02040 | 0.19410 | 0.0650* | |
H5 | 1.06240 | −0.32280 | 0.22700 | 0.0750* | |
H6 | 0.90590 | −0.33820 | 0.17180 | 0.0690* | |
H14A | 0.44270 | 0.19330 | 0.12570 | 0.1480* | |
H14B | 0.49430 | −0.04570 | 0.10780 | 0.1480* | |
H14C | 0.48610 | 0.16470 | 0.04930 | 0.1480* | |
H15A | 0.66300 | 0.23860 | 0.24400 | 0.1400* | |
H15B | 0.60820 | −0.00460 | 0.22760 | 0.1400* | |
H15C | 0.55080 | 0.22640 | 0.24460 | 0.1400* | |
H16A | 0.65600 | 0.54750 | 0.14840 | 0.1730* | |
H16B | 0.54300 | 0.56810 | 0.13940 | 0.1730* | |
H16C | 0.59610 | 0.50990 | 0.06910 | 0.1730* | |
H32A | 1.31990 | 0.53370 | 0.05670 | 0.1030* | |
H32B | 1.26860 | 0.70740 | 0.10820 | 0.1030* | |
H32C | 1.21470 | 0.62420 | 0.03030 | 0.1030* | |
H111 | 0.78650 | −0.20760 | 0.07980 | 0.0610* | |
H112 | 0.80430 | −0.00530 | 0.02370 | 0.0610* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O2 | 0.0418 (9) | 0.0716 (12) | 0.0638 (10) | −0.0042 (9) | 0.0008 (8) | 0.0138 (10) |
O3 | 0.0447 (10) | 0.1068 (17) | 0.1239 (19) | −0.0035 (11) | −0.0167 (11) | 0.0397 (15) |
O11 | 0.0571 (12) | 0.0988 (16) | 0.1066 (16) | −0.0158 (11) | 0.0190 (11) | −0.0554 (14) |
O12 | 0.0417 (9) | 0.0507 (10) | 0.0646 (10) | 0.0020 (7) | 0.0110 (7) | −0.0070 (9) |
N1 | 0.0405 (10) | 0.0493 (11) | 0.0577 (12) | −0.0012 (9) | 0.0119 (9) | −0.0033 (10) |
N3 | 0.0332 (10) | 0.0621 (13) | 0.0531 (11) | 0.0032 (9) | 0.0028 (8) | 0.0019 (10) |
C2 | 0.0375 (11) | 0.0517 (14) | 0.0468 (12) | 0.0008 (11) | 0.0096 (10) | −0.0036 (12) |
C3 | 0.0375 (11) | 0.0528 (14) | 0.0461 (12) | 0.0056 (10) | 0.0111 (10) | −0.0059 (11) |
C4 | 0.0445 (13) | 0.0635 (16) | 0.0555 (14) | 0.0082 (12) | 0.0052 (11) | −0.0015 (13) |
C5 | 0.0629 (16) | 0.0598 (17) | 0.0673 (17) | 0.0109 (14) | 0.0076 (13) | 0.0107 (14) |
C6 | 0.0583 (15) | 0.0487 (15) | 0.0680 (16) | 0.0000 (12) | 0.0118 (13) | 0.0020 (13) |
C11 | 0.0404 (12) | 0.0517 (14) | 0.0614 (14) | −0.0088 (11) | 0.0112 (11) | −0.0087 (12) |
C12 | 0.0421 (13) | 0.0530 (14) | 0.0575 (14) | −0.0060 (11) | 0.0100 (11) | −0.0062 (12) |
C13 | 0.0495 (14) | 0.0502 (15) | 0.0751 (17) | 0.0081 (11) | 0.0243 (12) | 0.0020 (13) |
C14 | 0.0472 (16) | 0.105 (3) | 0.142 (3) | 0.0181 (17) | 0.0101 (18) | −0.018 (2) |
C15 | 0.083 (2) | 0.122 (3) | 0.083 (2) | 0.014 (2) | 0.0411 (18) | 0.010 (2) |
C16 | 0.127 (3) | 0.0546 (19) | 0.180 (4) | 0.024 (2) | 0.085 (3) | 0.024 (2) |
C31 | 0.0377 (13) | 0.0680 (17) | 0.0671 (16) | 0.0021 (12) | 0.0049 (12) | −0.0023 (14) |
C32 | 0.0407 (13) | 0.081 (2) | 0.0817 (19) | −0.0074 (13) | 0.0020 (13) | 0.0100 (16) |
O2—C2 | 1.240 (3) | C31—C32 | 1.489 (4) |
O3—C31 | 1.218 (3) | C4—H4 | 0.9500 |
O11—C12 | 1.195 (3) | C5—H5 | 0.9500 |
O12—C12 | 1.316 (3) | C6—H6 | 0.9500 |
O12—C13 | 1.490 (3) | C11—H111 | 0.9500 |
N1—C2 | 1.378 (3) | C11—H112 | 0.9500 |
N1—C6 | 1.377 (3) | C14—H14A | 0.9600 |
N1—C11 | 1.453 (3) | C14—H14B | 0.9600 |
N3—C3 | 1.399 (3) | C14—H14C | 0.9600 |
N3—C31 | 1.362 (3) | C15—H15A | 0.9600 |
N3—H3 | 0.8600 | C15—H15B | 0.9600 |
C2—C3 | 1.450 (3) | C15—H15C | 0.9600 |
C3—C4 | 1.361 (3) | C16—H16A | 0.9600 |
C4—C5 | 1.402 (4) | C16—H16B | 0.9600 |
C5—C6 | 1.333 (4) | C16—H16C | 0.9600 |
C11—C12 | 1.512 (3) | C32—H32A | 0.9600 |
C13—C14 | 1.507 (4) | C32—H32B | 0.9600 |
C13—C16 | 1.494 (4) | C32—H32C | 0.9600 |
C13—C15 | 1.503 (4) | ||
O2···N3 | 2.694 (2) | C31···H4 | 2.7800 |
O2···C12 | 3.233 (3) | C32···H112i | 3.0200 |
O2···C32i | 3.222 (3) | H3···O2 | 2.3100 |
O2···N3i | 3.164 (3) | H3···H32C | 2.1500 |
O3···C4 | 2.830 (3) | H3···O2i | 2.3400 |
O11···C2 | 3.130 (3) | H4···O3 | 2.2300 |
O11···N1 | 2.744 (3) | H4···C31 | 2.7800 |
O11···C15 | 2.980 (4) | H4···O11vi | 2.8200 |
O11···C16 | 2.978 (5) | H5···O11vi | 2.7100 |
O11···C5ii | 3.319 (4) | H5···C5vi | 3.0500 |
O11···C4ii | 3.379 (3) | H5···C6vi | 3.0200 |
O2···H3 | 2.3100 | H6···O11vii | 2.7200 |
O2···H32Ci | 2.3300 | H6···H111 | 2.3100 |
O2···H112 | 2.4200 | H6···C4vi | 3.0300 |
O2···H3i | 2.3400 | H14A···O3viii | 2.5600 |
O3···H4 | 2.2300 | H14A···H15C | 2.4600 |
O3···H14Aiii | 2.5600 | H14A···H16B | 2.5100 |
O3···H15Bii | 2.8800 | H14B···C16vii | 2.9800 |
O11···H16A | 2.4400 | H14B···H15B | 2.5100 |
O11···H6iv | 2.7200 | H14B···H16Bvii | 2.3100 |
O11···H15A | 2.4400 | H14C···H16C | 2.4600 |
O11···H4ii | 2.8200 | H15A···O11 | 2.4400 |
O11···H5ii | 2.7100 | H15A···C12 | 2.7900 |
N1···O11 | 2.744 (3) | H15A···H16A | 2.4200 |
N3···O2 | 2.694 (2) | H15B···C12 | 3.0800 |
N3···O2i | 3.164 (3) | H15B···H14B | 2.5100 |
N3···H112v | 2.9400 | H15B···O3vi | 2.8800 |
C2···O11 | 3.130 (3) | H15C···H14A | 2.4600 |
C2···C2v | 3.441 (3) | H16A···O11 | 2.4400 |
C4···O3 | 2.830 (3) | H16A···C12 | 2.8300 |
C4···O11vi | 3.379 (3) | H16A···H15A | 2.4200 |
C5···O11vi | 3.319 (4) | H16B···H14A | 2.5100 |
C12···O2 | 3.233 (3) | H16B···H14Biv | 2.3100 |
C15···O11 | 2.980 (4) | H16C···H14C | 2.4600 |
C16···O11 | 2.978 (5) | H32B···C4iv | 3.0800 |
C32···O2i | 3.222 (3) | H32C···H3 | 2.1500 |
C4···H32Bvii | 3.0800 | H32C···O2i | 2.3300 |
C4···H6ii | 3.0300 | H32C···C11i | 3.0300 |
C5···H5ii | 3.0500 | H32C···C12i | 3.0900 |
C6···H5ii | 3.0200 | H32C···H112i | 2.3400 |
C11···H32Ci | 3.0300 | H111···H6 | 2.3100 |
C12···H15A | 2.7900 | H112···O2 | 2.4200 |
C12···H32Ci | 3.0900 | H112···N3v | 2.9400 |
C12···H16A | 2.8300 | H112···C32i | 3.0200 |
C12···H15B | 3.0800 | H112···H32Ci | 2.3400 |
C16···H14Biv | 2.9800 | ||
C12—O12—C13 | 121.10 (18) | C6—C5—H5 | 120.00 |
C2—N1—C6 | 123.04 (19) | N1—C6—H6 | 120.00 |
C2—N1—C11 | 117.79 (18) | C5—C6—H6 | 120.00 |
C6—N1—C11 | 119.00 (19) | N1—C11—H111 | 109.00 |
C3—N3—C31 | 126.7 (2) | N1—C11—H112 | 109.00 |
C3—N3—H3 | 117.00 | C12—C11—H111 | 109.00 |
C31—N3—H3 | 117.00 | C12—C11—H112 | 109.00 |
N1—C2—C3 | 115.51 (19) | H111—C11—H112 | 109.00 |
O2—C2—N1 | 120.98 (19) | C13—C14—H14A | 109.00 |
O2—C2—C3 | 123.5 (2) | C13—C14—H14B | 109.00 |
N3—C3—C2 | 113.04 (19) | C13—C14—H14C | 109.00 |
N3—C3—C4 | 126.5 (2) | H14A—C14—H14B | 110.00 |
C2—C3—C4 | 120.5 (2) | H14A—C14—H14C | 109.00 |
C3—C4—C5 | 120.4 (2) | H14B—C14—H14C | 109.00 |
C4—C5—C6 | 120.0 (3) | C13—C15—H15A | 110.00 |
N1—C6—C5 | 120.6 (2) | C13—C15—H15B | 109.00 |
N1—C11—C12 | 111.23 (19) | C13—C15—H15C | 110.00 |
O11—C12—C11 | 124.2 (2) | H15A—C15—H15B | 109.00 |
O11—C12—O12 | 125.7 (2) | H15A—C15—H15C | 109.00 |
O12—C12—C11 | 110.02 (19) | H15B—C15—H15C | 109.00 |
O12—C13—C15 | 108.9 (2) | C13—C16—H16A | 109.00 |
O12—C13—C14 | 103.0 (2) | C13—C16—H16B | 109.00 |
C14—C13—C16 | 110.8 (3) | C13—C16—H16C | 109.00 |
C15—C13—C16 | 113.3 (3) | H16A—C16—H16B | 109.00 |
O12—C13—C16 | 109.9 (2) | H16A—C16—H16C | 109.00 |
C14—C13—C15 | 110.5 (2) | H16B—C16—H16C | 109.00 |
N3—C31—C32 | 115.7 (2) | C31—C32—H32A | 109.00 |
O3—C31—N3 | 122.5 (2) | C31—C32—H32B | 109.00 |
O3—C31—C32 | 121.8 (2) | C31—C32—H32C | 109.00 |
C3—C4—H4 | 120.00 | H32A—C32—H32B | 109.00 |
C5—C4—H4 | 120.00 | H32A—C32—H32C | 109.00 |
C4—C5—H5 | 120.00 | H32B—C32—H32C | 110.00 |
C13—O12—C12—O11 | −5.0 (4) | C31—N3—C3—C4 | 1.5 (4) |
C13—O12—C12—C11 | 175.59 (19) | C3—N3—C31—O3 | 1.4 (4) |
C12—O12—C13—C14 | −177.9 (2) | C3—N3—C31—C32 | −179.6 (2) |
C12—O12—C13—C15 | −60.6 (3) | O2—C2—C3—N3 | −1.0 (3) |
C12—O12—C13—C16 | 64.0 (3) | O2—C2—C3—C4 | 178.7 (2) |
C6—N1—C2—O2 | −180.0 (2) | N1—C2—C3—N3 | 178.89 (19) |
C6—N1—C2—C3 | 0.2 (3) | N1—C2—C3—C4 | −1.4 (3) |
C11—N1—C2—O2 | −4.9 (3) | N3—C3—C4—C5 | −178.3 (2) |
C11—N1—C2—C3 | 175.25 (19) | C2—C3—C4—C5 | 2.0 (4) |
C2—N1—C6—C5 | 0.6 (4) | C3—C4—C5—C6 | −1.3 (4) |
C11—N1—C6—C5 | −174.5 (2) | C4—C5—C6—N1 | 0.0 (4) |
C2—N1—C11—C12 | −81.1 (2) | N1—C11—C12—O11 | 11.0 (3) |
C6—N1—C11—C12 | 94.2 (2) | N1—C11—C12—O12 | −169.61 (18) |
C31—N3—C3—C2 | −178.8 (2) |
Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+2, y+1/2, −z+1/2; (iii) x+1, y, z; (iv) x, y+1, z; (v) −x+2, −y, −z; (vi) −x+2, y−1/2, −z+1/2; (vii) x, y−1, z; (viii) x−1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O2i | 0.8600 | 2.3400 | 3.164 (3) | 161.00 |
C4—H4···O3 | 0.9500 | 2.2300 | 2.830 (3) | 120.00 |
C14—H14A···O3viii | 0.96 | 2.56 | 3.465 (4) | 157 |
C15—H15A···O11 | 0.96 | 2.44 | 2.980 (4) | 115 |
C16—H16A···O11 | 0.96 | 2.44 | 2.978 (5) | 115 |
C32—H32C···O2i | 0.96 | 2.33 | 3.222 (3) | 155 |
Symmetry codes: (i) −x+2, −y+1, −z; (viii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C13H18N2O4 |
Mr | 266.29 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 295 |
a, b, c (Å) | 13.9417 (15), 5.585 (1), 17.861 (2) |
β (°) | 97.039 (9) |
V (Å3) | 1380.3 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.40 × 0.30 × 0.20 |
Data collection | |
Diffractometer | Rigaku AFC-7R diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2731, 2428, 1482 |
Rint | 0.046 |
(sin θ/λ)max (Å−1) | 0.594 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.052, 0.162, 1.02 |
No. of reflections | 2428 |
No. of parameters | 176 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.27, −0.27 |
Computer programs: MSC/AFC7 Diffractometer Control Software (Molecular Structure Corporation, 1999), TEXSAN for Windows (Molecular Structure Corporation, 2001) and SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), TEXSAN for Windows (Molecular Structure Corporation, 2001) and PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O2i | 0.8600 | 2.3400 | 3.164 (3) | 161.00 |
C4—H4···O3 | 0.9500 | 2.2300 | 2.830 (3) | 120.00 |
C14—H14A···O3ii | 0.9600 | 2.5600 | 3.465 (4) | 157.00 |
C15—H15A···O11 | 0.9600 | 2.4400 | 2.980 (4) | 115.00 |
C16—H16A···O11 | 0.9600 | 2.4400 | 2.978 (5) | 115.00 |
C32—H32C···O2i | 0.9600 | 2.3300 | 3.222 (3) | 155.00 |
Symmetry codes: (i) −x+2, −y+1, −z; (ii) x−1, y, z. |
Acknowledgements
We acknowledge financial support of this work by Griffith University, Eskitis Institute for Cell and Molecular Therapies, Griffith University, and Natural Product Discovery, Griffith University. We also thank Alan White for professional support in this work.
References
Bernstein, P. R., Andisik, D., Bradley, P. K., Bryant, C. B., Ceccarelli, C., Damewood, J. R. Jr, Earley, R., Edwards, P. D., Feeney, S., Gomes, B. C., Kosmider, B. J., Steelman, G. B., Thomas, R. M., Vacek, E. P., Veale, C. A., Williams, J. C., Wolanin, D. J. & Woolson, S. A. (1994). J. Med. Chem. 37, 3313–3326. CrossRef CAS PubMed Web of Science Google Scholar
Dragovich, P. S., Prins, T. J., Zhou, R., Brown, E. L., Maldonado, F. C., Fuhrman, S. A., Zalman, L. S., Tuntland, T., Lee, C. A., Patick, A. K., Matthews, D. A., Hendrickson, T. F., Kosa, M. B., Liu, B., Batugo, M. R., Gleeson, J.-P. R., Sakata, S. K., Chen, L., Guzman, M. C., Meador, J. W., Ferre, R. A. & Worland, S. T. (2002). J. Med. Chem. 45, 1607–1623. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hu, E., Tasker, A., White, R. D., Kunz, R. K., Human, J., Chen, N., Burli, R., Hungate, R., Novak, P., Itano, A., Zhang, X., Yu, V., Nguyen, Y., Tudor, Y., Plant, M., Flynn, S., Xu, Y., Meagher, K. L., Whittington, D. A. & Ng, G. Y. (2008). J. Med. Chem. 51, 3065–3068. Web of Science CrossRef PubMed CAS Google Scholar
Karis, N. D., Loughlin, W. A. & Jenkins, I. D. (2007). Tetrahedron, 63, 12303–12309. Web of Science CrossRef CAS Google Scholar
Karis, N. D., Loughlin, W. A., Jenkins, I. D. & Healy, P. C. (2006). Acta Cryst. E62, o2714–o2716. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kim, K. S., Zhang, L., Schmidt, R., Cai, Z.-W., Wei, D., Williams, D. K., Lombardo, L. J., Trainor, G. L., Xie, D., Zhang, Y., An, Y., Sack, J. S., Tokarski, J. S., Darienzo, C., Kamath, A., Marathe, P., Zhang, Y., Lippy, J., Jeyaseelan, R., Wautlet, B., Henley, B., Gullo-Brown, J., Manne, V., Hunt, J. T., Fargnoli, J. & Borzilleri, R. M. (2008). J. Med. Chem. 51, 5330–5341. Web of Science CrossRef PubMed CAS Google Scholar
Loughlin, W. A., Tyndall, J. D. A., Glenn, M. P. & Fairlie, D. P. (2004). Chem. Rev. 104, 6085–6117. Web of Science CrossRef PubMed CAS Google Scholar
Molecular Structure Corporation (1999). MSC/AFC7 Diffractometer Control for Windows. MSC, The Woodlands, Texas, USA. Google Scholar
Molecular Structure Corporation. (2001). TEXSAN for Windows. MSC, The Woodlands, Texas, USA. Google Scholar
Reiner, J. E., Lim-Wilby, M. S., Brunck, T. K., Ha-Uong, T., Goldman, E. A., Abelman, M. A., Nutt, R. F., Semple, J. E. & Tamura, S. Y. (1999). Bioorg. Med. Chem. Lett. 9, 895–900. Web of Science CrossRef PubMed CAS Google Scholar
Sanderson, P. E., Naylor-Olsen, A. M., Dyer, D. L., Vacca, J. P., Isaacs, R. C. A., Dorsey, B. D. & Frayler, M. E. (1997). PCT Int. Appl. WO 9 701 338. Google Scholar
Semple, G., Ashwoth, D. M., Batt, A. R., Baxter, A. J., Benzies, D. W. M., Elliot, L. H., Evans, D. M., Franklin, R. J., Hudson, P., Jenkins, P. D., Pitt, G. R., Rooker, D. P., Yamamoto, S. & Isomura, Y. (1998). Bioorg. Med. Chem. Lett. 8, 959–964. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tamura, S. Y., Semple, J. E., Ripka, W. C., Ardecky, R. J., Ge, Y., Carpenter, S. H., Brunck, T. K., Lim-Wilby, M. S., Nutt, R. F. & Abelman, M. M. (1996). PCT Int. Appl. WO 9 618 644. Google Scholar
Veale, C. A., Bernstein, P. R., Bryant, C., Ceccarelli, C., Damewood, J. R. Jr, Earley, R., Feeney, S. W., Gomes, B., Kosmider, B. J., Steelman, G. B., Thomas, R. M., Vacek, E. P., Williams, J. C., Wolanin, D. J. & Woolson, S. A. (1995). J. Med. Chem. 38, 98–108. CrossRef CAS PubMed Web of Science Google Scholar
Yang, H. W. & Craven, B. M. (1998). Acta Cryst. B54, 912–920. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Increased binding affinity of pyridone based scaffolds as P4—P2 conformational restraints (Dragovich et al., 2002; Reiner et al., 1999; Semple et al., 1998; Veale et al., 1995; Bernstein et al., 1994) in peptidiomimetics (Loughlin et al., 2004, and references therein) is often associated with the substituent functionality at N1 and C3 of the pyridone ring. This has been reflected by enzyme-ligand crystal structures of a C3-amidoaryl pyridone with human rhinovirus (HRV) 3 C protease (3CP) (Dragovich et al., 2002), and a C3-sulfonylamide pyridone with porcine pancreatic elastase (Bernstein et al., 1994). Similiarly, other enzyme-ligand interactions have been observed in the solid state with kinases; a N1-aryl pyridone with Met kinase (Kim et al., 2008) and a N1-aryl C3-aryl pyridone with KDR kinase (Hu et al., 2008). Thus an understanding of the structure of substituted pyridone compounds is important. Elsewhere, the facile synthesis of N1, C3-substituted pyridones is reported (Karis et al., 2007). Herein we report the first solid state structure (II) for a 3-acetylpyridone without C4 to C6 substituents.
The structure of (II) consists of discrete molecular units (Fig. 1) which form N3—H3···O2 hydrogen bonded dimers disposed about a crystallographic centre of symmetry (Figure 2, Table 1). The amide N3—C31—O3—C32 is co-planar with the pyridone ring with the O3···H4 contact distance 2.23 Å. The tert-butyl ester group attached to N1 lies orthogonal to the pyridone ring with the C2—N1—C11—C12 torsion angle -81.1 (2)°. The geometry of the pyridone ring is in accord with related structures (Yang & Craven, 1998; Karis et al., 2006) with the C2—C3 distance 1.440 (3)Å while the other C—C and C—N distance range from 1.333 (4) - 1.402 (4) Å. The N3—C31 distance of 1.362 (3)Å is shorter than the N3—C3 distance of 1.399 (3) Å; indicating a preference for involvement of N3 in conjugation with the amide rather than the pyridone. The carbonyl groups C31—O3 and C21—O11 are not involved in strong hydrogen bonding interactions with only a number of C—H···O interactions apparent in the crystal lattice (Table 2).