organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Naphthalene-2,3-diylbis[(2-thien­yl)methanone]

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: a_spandian@yahoo.com

(Received 15 October 2008; accepted 19 November 2008; online 26 November 2008)

The asymmetric unit of the title compound, C20H12O2S2, contains two crystallographically independent mol­ecules which differ in the orientations of thienylmethanone units with respect to the naphthalene ring system [dihedral angles of 65.30 (11) and 50.94 (11)° in one molecule, 41.94 (12) and 69.61 (13)° in the other]. The crystal structure is stabilized by C—H⋯O and C—H⋯π inter­actions.

Related literature

For a related structure, see: Labat & Halfpenny (2005[Labat, G. & Halfpenny, J. (2005). Acta Cryst. E61, o2813-o2814.]). For general background, see: Pellis & West (1968[Pellis, G. & West, G. B. (1968). Progress in Medicinal Chemistry, Vol. 5, pp. 320-324. London: Butterworth & Co. Ltd.]); Cohen et al. (1977[Cohen, V. I., Rist, N. & Duponchel, C. (1977). J. Pharm. Sci. 66, 1322-1334.]); Csaszar & Morvay (1983[Csaszar, J. & Morvay, J. (1983). Acta Pharm. Hung. 53, 121-128.]); Lakshmi et al. (1985[Lakshmi, V. V., Sridhar, P. & Polasa, H. (1985). Indian J. Pharm. Sci. 47, 202-204.]); EI-Maghraby et al. (1984[EI-Maghraby, A. A., Haroun, B. & Mohammed, N. A. (1984). Egypt. J. Pharm. Sci. 23, 327-336.]); Dzhurayev et al. (1992[Dzhurayev, A. D., Karimkulov, K. M., Makhsumov, A. G. & Amanov, N. (1992). Khim. Form. Zh. 26, 73-75.]); Gewald et al. (1996[Gewald, K., Schinke, E. & Botcher, H. (1996). Chem. Ber. 99, 99-100.]); Jones et al. (1984[Jones, C. D., Jevnikar, M. G., Pike, A. J., Peters, M. K., Black, L. J., Thompson, A. R., Falcone, J. F. & Clemens, J. A. (1984). J. Med. Chem. 27, 1057-1066.]); Palani et al. (2006[Palani, K., Amaladass, P., Mohanakrishnan, A. K. & Ponnuswamy, M. N. (2006). Acta Cryst. E62, o49-o51.]).

[Scheme 1]

Experimental

Crystal data
  • C20H12O2S2

  • Mr = 348.42

  • Monoclinic, P 21

  • a = 9.7638 (3) Å

  • b = 11.1418 (4) Å

  • c = 15.4496 (6) Å

  • β = 90.266 (1)°

  • V = 1680.69 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 293 (2) K

  • 0.21 × 0.19 × 0.16 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.800, Tmax = 0.950

  • 21289 measured reflections

  • 8580 independent reflections

  • 6591 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.112

  • S = 1.01

  • 8580 reflections

  • 433 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.32 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3970 Friedel pairs

  • Flack parameter: 0.02 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.93 2.53 3.407 (3) 158
C13—H13⋯Cg1ii 0.93 2.86 3.737 (2) 157
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) [-x+1, y-{\script{1\over 2}}, -z+1]. Cg1 is the S2/C17–C20 ring centroid.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Sulfur containing Schiff bases (Pellis & West, 1968; Cohen et al., 1977; Csaszar & Morvay,1983; Lakshmi et al., 1985), and their thiophene derivatives (EI-Maghraby et al., 1984; Dzhurayev et al., 1992), possess pharmacological activities such as anti-bacterial, anti-cancer, anti-inflammatory and anti-toxic properties (Gewald et al., 1996). Benzo(b)thiophene analogs have been shown to possess interesting estrogenic and antiestrogenic effects. Some of these compounds inhibit estradiol with greater potency than tamoxifen, and inhibition of the growth of DMBA induced mammary tumors by such compounds has been reported (Jones et al., 1984). Some of the thiophene derivatives were screened against gram-positive, gram-negative bacteria and have shown promising anti-bacterial activity (Palani et al., 2006). In view of this biological importance, the crystal structure of the title compound has been determined and the results are presented here.

The asymmetric unit of the title compound contains two crystallographically independent molecules (Fig. 1). The corresponding bond lengths and angles of the two molecules agree with each other, and are comparable to those observed in the structure of 1,5-bis(3-thienyloxy)-3-oxapentane (Labat & Halfpenny, 2005). The two independent molecules differ in the orientations of thienylmethanone units with respect to the naphthalene ring system. The S1/C12-C15 and S2/C17-C20 rings form dihedral angles of 65.30 (11)° and 50.94 (11)°, respectively, with the C1-C10 naphthalene ring system, whereas, the S1'/C12'-C15' and S2'/C17'-C20' rings form dihedral angles of 41.94 (12)° and 69.61 (13)°, respectively, with the C1'-C10' naphthalene ring system.

The crystal structure is stabilized by C–H···O and C–H···π interactions (Table 1 and Fig.2).

Related literature top

For a related structure, see: Labat & Halfpenny (2005). For general background, see: Pellis & West (1968); Cohen et al. (1977); Csaszar & Morvay (1983); Lakshmi et al. (1985); EI-Maghraby et al. (1984); Dzhurayev et al. (1992); Gewald et al. (1996); Jones et al. (1984); Palani et al. (2006). Cg1 is the S2/C17–C20 ring centroid.

Experimental top

A mixture of phthalaldehyde (1 g, 7.46 mmol) and 1,4-di(thiophene-2-yl)butane- 1,4-diane (1.86 g 7.46 mmol) was dissolved in ethanol and tertiary-butane oxide (2.08 g, 18.6 mmol), and then allowed to stir for 4 h at room temperature to get the product. The crude product was filtered and then recrystallized in chloroform. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a chloroform solution at room temperature.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C-H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the b axis. Hydrogen bonds are shown as dashed lines.
Naphthalene-2,3-diylbis[(2-thienyl)methanone] top
Crystal data top
C20H12O2S2F(000) = 720
Mr = 348.42Dx = 1.377 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 8580 reflections
a = 9.7638 (3) Åθ = 1.3–28.9°
b = 11.1418 (4) ŵ = 0.33 mm1
c = 15.4496 (6) ÅT = 293 K
β = 90.266 (1)°Block, colourless
V = 1680.69 (10) Å30.21 × 0.19 × 0.16 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
8580 independent reflections
Radiation source: fine-focus sealed tube6591 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 28.9°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.800, Tmax = 0.950k = 1514
21289 measured reflectionsl = 2017
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0499P)2 + 0.3545P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
8580 reflectionsΔρmax = 0.44 e Å3
433 parametersΔρmin = 0.32 e Å3
1 restraintAbsolute structure: Flack (1983), 3970 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (5)
Crystal data top
C20H12O2S2V = 1680.69 (10) Å3
Mr = 348.42Z = 4
Monoclinic, P21Mo Kα radiation
a = 9.7638 (3) ŵ = 0.33 mm1
b = 11.1418 (4) ÅT = 293 K
c = 15.4496 (6) Å0.21 × 0.19 × 0.16 mm
β = 90.266 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
8580 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6591 reflections with I > 2σ(I)
Tmin = 0.800, Tmax = 0.950Rint = 0.024
21289 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.112Δρmax = 0.44 e Å3
S = 1.01Δρmin = 0.32 e Å3
8580 reflectionsAbsolute structure: Flack (1983), 3970 Friedel pairs
433 parametersAbsolute structure parameter: 0.02 (5)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.06339 (8)0.02637 (6)0.45118 (6)0.0657 (2)
S20.33739 (8)0.44467 (8)0.69777 (5)0.0644 (2)
O10.0949 (2)0.24092 (19)0.44816 (17)0.0822 (7)
O20.3446 (3)0.24071 (18)0.57466 (14)0.0815 (7)
C10.4852 (3)0.3351 (2)0.18008 (17)0.0542 (6)
H10.44680.27850.14290.065*
C20.5757 (3)0.4164 (3)0.14849 (18)0.0609 (7)
H20.59840.41480.09010.073*
C30.6350 (3)0.5021 (3)0.20256 (18)0.0571 (6)
H30.69660.55740.18000.069*
C40.6032 (2)0.5053 (2)0.28836 (17)0.0488 (6)
H40.64300.56310.32390.059*
C50.5102 (2)0.42129 (19)0.32380 (15)0.0398 (5)
C60.4485 (2)0.3350 (2)0.26773 (16)0.0421 (5)
C70.3516 (2)0.2545 (2)0.30259 (16)0.0451 (5)
H70.31270.19660.26680.054*
C80.3135 (2)0.25942 (19)0.38716 (16)0.0434 (5)
C90.3768 (2)0.3442 (2)0.44373 (16)0.0442 (5)
C100.4727 (2)0.4227 (2)0.41136 (15)0.0428 (5)
H100.51370.47790.44840.051*
C110.1943 (3)0.1879 (2)0.42024 (19)0.0508 (6)
C120.2010 (2)0.0578 (2)0.41656 (16)0.0448 (5)
C130.3071 (2)0.0134 (2)0.39437 (17)0.0484 (6)
H130.39030.01560.37410.058*
C140.2781 (3)0.1368 (2)0.4053 (2)0.0608 (7)
H140.33970.19800.39290.073*
C150.1515 (3)0.1553 (3)0.4355 (2)0.0653 (8)
H150.11580.23100.44670.078*
C160.3484 (3)0.3376 (2)0.53847 (17)0.0506 (6)
C170.3315 (2)0.4492 (2)0.58672 (15)0.0456 (5)
C180.3095 (3)0.5646 (2)0.55646 (19)0.0521 (6)
H180.30260.58540.49830.062*
C190.2991 (3)0.6466 (3)0.6262 (2)0.0696 (8)
H190.28410.72840.61860.084*
C200.3127 (3)0.5957 (3)0.7037 (2)0.0722 (9)
H200.30910.63810.75550.087*
S1'0.36488 (7)0.50071 (8)0.93775 (5)0.0670 (2)
S2'1.03585 (9)0.72925 (8)0.94344 (7)0.0795 (3)
O1'0.6344 (2)0.55500 (17)0.87437 (16)0.0701 (6)
O2'0.8753 (3)0.5098 (2)0.99329 (14)0.0745 (6)
C1'0.7926 (3)0.0907 (2)0.7211 (2)0.0694 (9)
H1'0.70530.05750.71970.083*
C2'0.8959 (4)0.0362 (2)0.6773 (2)0.0730 (9)
H2'0.87770.03190.64450.088*
C3'1.0280 (3)0.0812 (2)0.6812 (2)0.0677 (8)
H3'1.09810.04210.65210.081*
C4'1.0559 (3)0.1833 (2)0.7278 (2)0.0597 (7)
H4'1.14490.21300.73000.072*
C5'0.9510 (3)0.2433 (2)0.77216 (17)0.0469 (6)
C6'0.8160 (3)0.1970 (2)0.76870 (18)0.0498 (6)
C7'0.7096 (3)0.2617 (2)0.80915 (18)0.0526 (6)
H7'0.62070.23200.80610.063*
C8'0.7328 (2)0.3666 (2)0.85265 (17)0.0450 (5)
C9'0.8698 (2)0.40998 (19)0.85839 (16)0.0433 (5)
C10'0.9736 (3)0.3506 (2)0.81877 (18)0.0491 (6)
H10'1.06200.38140.82240.059*
C11'0.6203 (3)0.4464 (2)0.88117 (17)0.0490 (6)
C12'0.4927 (3)0.3989 (2)0.91630 (17)0.0484 (6)
C13'0.4546 (3)0.2823 (3)0.93971 (18)0.0561 (7)
H13'0.50980.21480.93400.067*
C14'0.3192 (3)0.2820 (3)0.9735 (2)0.0713 (9)
H14'0.27520.21260.99210.086*
C15'0.2605 (3)0.3915 (3)0.9763 (2)0.0723 (9)
H15'0.17270.40560.99700.087*
C16'0.9038 (3)0.5142 (2)0.91669 (18)0.0495 (6)
C17'0.9723 (2)0.6167 (2)0.87875 (19)0.0511 (6)
C18'0.9843 (3)0.6463 (2)0.7926 (2)0.0577 (7)
H18'0.95810.59640.74720.069*
C19'1.0413 (4)0.7619 (3)0.7816 (3)0.0902 (12)
H19'1.05480.79750.72780.108*
C20'1.0736 (4)0.8144 (3)0.8562 (3)0.0952 (14)
H20'1.11300.89020.86000.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0555 (4)0.0583 (4)0.0835 (5)0.0129 (3)0.0201 (4)0.0068 (4)
S20.0706 (5)0.0755 (5)0.0471 (4)0.0149 (4)0.0070 (3)0.0040 (4)
O10.0665 (13)0.0542 (12)0.126 (2)0.0072 (10)0.0366 (13)0.0069 (13)
O20.135 (2)0.0491 (11)0.0603 (13)0.0066 (12)0.0098 (13)0.0124 (10)
C10.0642 (17)0.0556 (15)0.0428 (15)0.0048 (12)0.0067 (12)0.0048 (12)
C20.0709 (19)0.0683 (18)0.0437 (15)0.0089 (15)0.0013 (14)0.0006 (13)
C30.0580 (15)0.0573 (15)0.0562 (16)0.0080 (13)0.0039 (13)0.0054 (13)
C40.0466 (13)0.0469 (12)0.0527 (15)0.0022 (11)0.0047 (11)0.0053 (11)
C50.0392 (11)0.0353 (10)0.0448 (13)0.0058 (9)0.0047 (10)0.0025 (9)
C60.0440 (12)0.0368 (10)0.0455 (14)0.0039 (9)0.0051 (10)0.0031 (9)
C70.0466 (13)0.0396 (11)0.0491 (15)0.0017 (9)0.0061 (11)0.0072 (10)
C80.0438 (12)0.0333 (10)0.0530 (15)0.0032 (9)0.0011 (11)0.0019 (10)
C90.0478 (13)0.0389 (11)0.0460 (14)0.0070 (10)0.0008 (11)0.0008 (10)
C100.0462 (12)0.0382 (11)0.0439 (13)0.0019 (9)0.0068 (10)0.0060 (10)
C110.0481 (14)0.0435 (12)0.0610 (17)0.0015 (10)0.0054 (12)0.0060 (11)
C120.0433 (13)0.0437 (11)0.0474 (14)0.0074 (10)0.0008 (11)0.0020 (10)
C130.0421 (12)0.0449 (12)0.0582 (16)0.0006 (10)0.0013 (11)0.0002 (11)
C140.0656 (18)0.0427 (13)0.074 (2)0.0007 (12)0.0019 (15)0.0039 (13)
C150.074 (2)0.0439 (13)0.078 (2)0.0143 (13)0.0014 (16)0.0052 (14)
C160.0563 (15)0.0479 (13)0.0477 (15)0.0002 (11)0.0008 (12)0.0014 (11)
C170.0433 (12)0.0505 (13)0.0429 (13)0.0061 (10)0.0021 (10)0.0061 (11)
C180.0522 (15)0.0505 (13)0.0536 (16)0.0017 (11)0.0036 (12)0.0111 (12)
C190.082 (2)0.0509 (15)0.076 (2)0.0088 (14)0.0077 (17)0.0145 (15)
C200.085 (2)0.0714 (19)0.061 (2)0.0177 (17)0.0105 (17)0.0213 (16)
S1'0.0518 (4)0.0751 (5)0.0741 (5)0.0064 (4)0.0049 (3)0.0109 (4)
S2'0.0642 (5)0.0705 (5)0.1039 (7)0.0178 (4)0.0145 (4)0.0433 (5)
O1'0.0608 (12)0.0444 (10)0.1051 (18)0.0024 (8)0.0171 (12)0.0143 (10)
O2'0.1087 (17)0.0605 (11)0.0544 (13)0.0031 (12)0.0069 (12)0.0051 (10)
C1'0.0614 (17)0.0451 (14)0.102 (3)0.0143 (13)0.0104 (17)0.0143 (15)
C2'0.077 (2)0.0430 (15)0.099 (3)0.0012 (13)0.0106 (18)0.0220 (15)
C3'0.0627 (18)0.0486 (15)0.092 (2)0.0101 (13)0.0075 (16)0.0179 (15)
C4'0.0483 (14)0.0480 (14)0.083 (2)0.0035 (11)0.0085 (14)0.0124 (14)
C5'0.0477 (13)0.0370 (11)0.0559 (15)0.0005 (10)0.0089 (11)0.0013 (11)
C6'0.0494 (13)0.0375 (11)0.0624 (16)0.0048 (10)0.0072 (12)0.0010 (11)
C7'0.0459 (14)0.0474 (13)0.0645 (17)0.0124 (11)0.0019 (12)0.0012 (12)
C8'0.0424 (12)0.0398 (12)0.0528 (15)0.0050 (9)0.0026 (11)0.0064 (10)
C9'0.0453 (13)0.0356 (11)0.0489 (14)0.0034 (9)0.0055 (11)0.0015 (9)
C10'0.0417 (13)0.0427 (12)0.0629 (17)0.0068 (10)0.0077 (12)0.0056 (12)
C11'0.0474 (13)0.0449 (12)0.0547 (15)0.0022 (10)0.0015 (11)0.0052 (11)
C12'0.0455 (13)0.0548 (13)0.0447 (14)0.0021 (10)0.0032 (11)0.0053 (11)
C13'0.0575 (16)0.0607 (15)0.0502 (16)0.0155 (12)0.0022 (13)0.0066 (13)
C14'0.0674 (19)0.080 (2)0.067 (2)0.0244 (17)0.0051 (16)0.0108 (17)
C15'0.0505 (16)0.097 (2)0.070 (2)0.0097 (16)0.0056 (15)0.0123 (18)
C16'0.0467 (13)0.0436 (12)0.0580 (17)0.0035 (10)0.0070 (12)0.0038 (12)
C17'0.0399 (13)0.0418 (11)0.0717 (18)0.0020 (10)0.0014 (12)0.0172 (12)
C18'0.0589 (16)0.0415 (13)0.073 (2)0.0023 (11)0.0052 (14)0.0020 (12)
C19'0.102 (3)0.0523 (18)0.116 (3)0.0066 (17)0.041 (2)0.0019 (19)
C20'0.080 (2)0.0568 (18)0.150 (4)0.0257 (17)0.051 (2)0.027 (2)
Geometric parameters (Å, º) top
S1—C151.692 (3)S1'—C15'1.697 (3)
S1—C121.726 (2)S1'—C12'1.720 (3)
S2—C201.702 (4)S2'—C20'1.690 (4)
S2—C171.717 (2)S2'—C17'1.718 (2)
O1—C111.216 (3)O1'—C11'1.222 (3)
O2—C161.216 (3)O2'—C16'1.218 (3)
C1—C21.358 (4)C1'—C2'1.361 (5)
C1—C61.402 (4)C1'—C6'1.412 (4)
C1—H10.93C1'—H1'0.93
C2—C31.393 (4)C2'—C3'1.384 (4)
C2—H20.93C2'—H2'0.93
C3—C41.363 (4)C3'—C4'1.373 (4)
C3—H30.93C3'—H3'0.93
C4—C51.416 (3)C4'—C5'1.404 (4)
C4—H40.93C4'—H4'0.93
C5—C101.403 (3)C5'—C10'1.413 (3)
C5—C61.426 (3)C5'—C6'1.416 (3)
C6—C71.412 (3)C6'—C7'1.412 (4)
C7—C81.361 (4)C7'—C8'1.366 (3)
C7—H70.93C7'—H7'0.93
C8—C91.425 (3)C8'—C9'1.424 (3)
C8—C111.503 (4)C8'—C11'1.482 (4)
C9—C101.377 (3)C9'—C10'1.359 (4)
C9—C161.493 (4)C9'—C16'1.506 (3)
C10—H100.93C10'—H10'0.93
C11—C121.452 (3)C11'—C12'1.461 (4)
C12—C131.350 (3)C12'—C13'1.398 (4)
C13—C141.414 (4)C13'—C14'1.424 (4)
C13—H130.93C13'—H13'0.93
C14—C151.339 (4)C14'—C15'1.348 (5)
C14—H140.93C14'—H14'0.93
C15—H150.93C15'—H15'0.93
C16—C171.459 (4)C16'—C17'1.448 (4)
C17—C181.385 (4)C17'—C18'1.377 (4)
C18—C191.418 (4)C18'—C19'1.414 (4)
C18—H180.93C18'—H18'0.93
C19—C201.330 (5)C19'—C20'1.329 (6)
C19—H190.93C19'—H19'0.93
C20—H200.93C20'—H20'0.93
C15—S1—C1291.10 (14)C15'—S1'—C12'91.82 (16)
C20—S2—C1791.19 (15)C20'—S2'—C17'91.46 (17)
C2—C1—C6121.1 (2)C2'—C1'—C6'121.0 (3)
C2—C1—H1119.4C2'—C1'—H1'119.5
C6—C1—H1119.4C6'—C1'—H1'119.5
C1—C2—C3120.7 (3)C1'—C2'—C3'120.6 (3)
C1—C2—H2119.6C1'—C2'—H2'119.7
C3—C2—H2119.6C3'—C2'—H2'119.7
C4—C3—C2120.4 (3)C4'—C3'—C2'120.4 (3)
C4—C3—H3119.8C4'—C3'—H3'119.8
C2—C3—H3119.8C2'—C3'—H3'119.8
C3—C4—C5120.5 (2)C3'—C4'—C5'120.4 (3)
C3—C4—H4119.7C3'—C4'—H4'119.8
C5—C4—H4119.7C5'—C4'—H4'119.8
C10—C5—C4122.4 (2)C4'—C5'—C10'122.6 (2)
C10—C5—C6118.8 (2)C4'—C5'—C6'119.3 (2)
C4—C5—C6118.7 (2)C10'—C5'—C6'118.1 (2)
C1—C6—C7122.9 (2)C1'—C6'—C7'122.8 (2)
C1—C6—C5118.5 (2)C1'—C6'—C5'118.2 (3)
C7—C6—C5118.6 (2)C7'—C6'—C5'118.9 (2)
C8—C7—C6121.8 (2)C8'—C7'—C6'122.3 (2)
C8—C7—H7119.1C8'—C7'—H7'118.9
C6—C7—H7119.1C6'—C7'—H7'118.9
C7—C8—C9119.7 (2)C7'—C8'—C9'118.3 (2)
C7—C8—C11121.4 (2)C7'—C8'—C11'122.5 (2)
C9—C8—C11118.5 (2)C9'—C8'—C11'118.4 (2)
C10—C9—C8119.4 (2)C10'—C9'—C8'120.6 (2)
C10—C9—C16121.1 (2)C10'—C9'—C16'118.8 (2)
C8—C9—C16119.1 (2)C8'—C9'—C16'120.2 (2)
C9—C10—C5121.6 (2)C9'—C10'—C5'121.8 (2)
C9—C10—H10119.2C9'—C10'—H10'119.1
C5—C10—H10119.2C5'—C10'—H10'119.1
O1—C11—C12122.4 (3)O1'—C11'—C12'119.2 (2)
O1—C11—C8118.9 (2)O1'—C11'—C8'119.0 (2)
C12—C11—C8118.7 (2)C12'—C11'—C8'121.8 (2)
C13—C12—C11129.1 (2)C13'—C12'—C11'131.4 (3)
C13—C12—S1111.06 (19)C13'—C12'—S1'111.6 (2)
C11—C12—S1119.6 (2)C11'—C12'—S1'116.94 (19)
C12—C13—C14112.7 (2)C12'—C13'—C14'110.2 (3)
C12—C13—H13123.6C12'—C13'—H13'124.9
C14—C13—H13123.6C14'—C13'—H13'124.9
C15—C14—C13112.1 (3)C15'—C14'—C13'113.9 (3)
C15—C14—H14123.9C15'—C14'—H14'123.1
C13—C14—H14123.9C13'—C14'—H14'123.1
C14—C15—S1113.0 (2)C14'—C15'—S1'112.5 (3)
C14—C15—H15123.5C14'—C15'—H15'123.8
S1—C15—H15123.5S1'—C15'—H15'123.8
O2—C16—C17121.2 (2)O2'—C16'—C17'122.2 (2)
O2—C16—C9120.0 (2)O2'—C16'—C9'120.0 (2)
C17—C16—C9118.7 (2)C17'—C16'—C9'117.8 (2)
C18—C17—C16129.5 (2)C18'—C17'—C16'128.5 (2)
C18—C17—S2111.64 (19)C18'—C17'—S2'110.8 (2)
C16—C17—S2118.83 (19)C16'—C17'—S2'120.4 (2)
C17—C18—C19110.7 (3)C17'—C18'—C19'111.8 (3)
C17—C18—H18124.6C17'—C18'—H18'124.1
C19—C18—H18124.6C19'—C18'—H18'124.1
C20—C19—C18113.7 (3)C20'—C19'—C18'112.8 (4)
C20—C19—H19123.2C20'—C19'—H19'123.6
C18—C19—H19123.2C18'—C19'—H19'123.6
C19—C20—S2112.8 (2)C19'—C20'—S2'113.2 (3)
C19—C20—H20123.6C19'—C20'—H20'123.4
S2—C20—H20123.6S2'—C20'—H20'123.4
C6—C1—C2—C30.1 (4)C6'—C1'—C2'—C3'2.6 (6)
C1—C2—C3—C40.2 (4)C1'—C2'—C3'—C4'1.5 (6)
C2—C3—C4—C50.3 (4)C2'—C3'—C4'—C5'0.1 (5)
C3—C4—C5—C10178.8 (2)C3'—C4'—C5'—C10'178.0 (3)
C3—C4—C5—C61.2 (3)C3'—C4'—C5'—C6'0.3 (4)
C2—C1—C6—C7177.9 (3)C2'—C1'—C6'—C7'174.7 (3)
C2—C1—C6—C51.0 (4)C2'—C1'—C6'—C5'2.1 (5)
C10—C5—C6—C1179.2 (2)C4'—C5'—C6'—C1'0.7 (4)
C4—C5—C6—C11.5 (3)C10'—C5'—C6'—C1'179.1 (3)
C10—C5—C6—C70.3 (3)C4'—C5'—C6'—C7'176.3 (2)
C4—C5—C6—C7177.5 (2)C10'—C5'—C6'—C7'2.1 (4)
C1—C6—C7—C8177.3 (2)C1'—C6'—C7'—C8'177.8 (3)
C5—C6—C7—C81.6 (3)C5'—C6'—C7'—C8'1.0 (4)
C6—C7—C8—C92.8 (3)C6'—C7'—C8'—C9'1.3 (4)
C6—C7—C8—C11169.7 (2)C6'—C7'—C8'—C11'168.4 (2)
C7—C8—C9—C102.0 (3)C7'—C8'—C9'—C10'2.4 (4)
C11—C8—C9—C10170.7 (2)C11'—C8'—C9'—C10'167.7 (2)
C7—C8—C9—C16171.7 (2)C7'—C8'—C9'—C16'170.7 (2)
C11—C8—C9—C1615.6 (3)C11'—C8'—C9'—C16'19.2 (3)
C8—C9—C10—C50.1 (3)C8'—C9'—C10'—C5'1.2 (4)
C16—C9—C10—C5173.5 (2)C16'—C9'—C10'—C5'171.9 (2)
C4—C5—C10—C9176.6 (2)C4'—C5'—C10'—C9'177.3 (3)
C6—C5—C10—C91.0 (3)C6'—C5'—C10'—C9'1.0 (4)
C7—C8—C11—O1116.2 (3)C7'—C8'—C11'—O1'139.6 (3)
C9—C8—C11—O156.4 (4)C9'—C8'—C11'—O1'30.0 (4)
C7—C8—C11—C1263.0 (3)C7'—C8'—C11'—C12'39.7 (4)
C9—C8—C11—C12124.5 (3)C9'—C8'—C11'—C12'150.6 (2)
O1—C11—C12—C13173.9 (3)O1'—C11'—C12'—C13'172.2 (3)
C8—C11—C12—C137.0 (4)C8'—C11'—C12'—C13'8.4 (4)
O1—C11—C12—S11.0 (4)O1'—C11'—C12'—S1'5.0 (4)
C8—C11—C12—S1178.11 (18)C8'—C11'—C12'—S1'174.30 (19)
C15—S1—C12—C130.2 (2)C15'—S1'—C12'—C13'0.6 (2)
C15—S1—C12—C11175.6 (2)C15'—S1'—C12'—C11'178.4 (2)
C11—C12—C13—C14175.2 (3)C11'—C12'—C13'—C14'178.2 (3)
S1—C12—C13—C140.1 (3)S1'—C12'—C13'—C14'0.9 (3)
C12—C13—C14—C150.2 (4)C12'—C13'—C14'—C15'0.8 (4)
C13—C14—C15—S10.3 (4)C13'—C14'—C15'—S1'0.3 (4)
C12—S1—C15—C140.3 (3)C12'—S1'—C15'—C14'0.1 (3)
C10—C9—C16—O2131.8 (3)C10'—C9'—C16'—O2'117.6 (3)
C8—C9—C16—O241.8 (4)C8'—C9'—C16'—O2'55.6 (3)
C10—C9—C16—C1745.5 (3)C10'—C9'—C16'—C17'61.4 (3)
C8—C9—C16—C17140.8 (2)C8'—C9'—C16'—C17'125.4 (2)
O2—C16—C17—C18167.8 (3)O2'—C16'—C17'—C18'164.4 (3)
C9—C16—C17—C1814.9 (4)C9'—C16'—C17'—C18'16.6 (4)
O2—C16—C17—S211.8 (4)O2'—C16'—C17'—S2'8.2 (4)
C9—C16—C17—S2165.52 (19)C9'—C16'—C17'—S2'170.75 (18)
C20—S2—C17—C180.6 (2)C20'—S2'—C17'—C18'1.2 (2)
C20—S2—C17—C16179.7 (2)C20'—S2'—C17'—C16'172.6 (2)
C16—C17—C18—C19180.0 (3)C16'—C17'—C18'—C19'171.4 (3)
S2—C17—C18—C190.4 (3)S2'—C17'—C18'—C19'1.8 (3)
C17—C18—C19—C200.1 (4)C17'—C18'—C19'—C20'1.6 (4)
C18—C19—C20—S20.6 (4)C18'—C19'—C20'—S2'0.7 (5)
C17—S2—C20—C190.7 (3)C17'—S2'—C20'—C19'0.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.533.407 (3)158
C13—H13···Cg1ii0.932.863.737 (2)157
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC20H12O2S2
Mr348.42
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)9.7638 (3), 11.1418 (4), 15.4496 (6)
β (°) 90.266 (1)
V3)1680.69 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.21 × 0.19 × 0.16
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.800, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
21289, 8580, 6591
Rint0.024
(sin θ/λ)max1)0.679
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.112, 1.01
No. of reflections8580
No. of parameters433
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.32
Absolute structureFlack (1983), 3970 Friedel pairs
Absolute structure parameter0.02 (5)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.533.407 (3)158
C13—H13···Cg1ii0.932.863.737 (2)157
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y1/2, z+1.
 

Acknowledgements

ST and ASP thank Dr J. Jothi Kumar, Principal of Presidency College (Autonomous), Chennai, for providing computer and internet facilities. Dr Babu Vargheese, SAIF, IIT, Madras, India, is thanked for his help with the data collection.

References

First citationBruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCohen, V. I., Rist, N. & Duponchel, C. (1977). J. Pharm. Sci. 66, 1322–1334.  PubMed Web of Science Google Scholar
First citationCsaszar, J. & Morvay, J. (1983). Acta Pharm. Hung. 53, 121–128.  CAS PubMed Google Scholar
First citationDzhurayev, A. D., Karimkulov, K. M., Makhsumov, A. G. & Amanov, N. (1992). Khim. Form. Zh. 26, 73–75.  CAS Google Scholar
First citationEI-Maghraby, A. A., Haroun, B. & Mohammed, N. A. (1984). Egypt. J. Pharm. Sci. 23, 327–336.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGewald, K., Schinke, E. & Botcher, H. (1996). Chem. Ber. 99, 99–100.  Google Scholar
First citationJones, C. D., Jevnikar, M. G., Pike, A. J., Peters, M. K., Black, L. J., Thompson, A. R., Falcone, J. F. & Clemens, J. A. (1984). J. Med. Chem. 27, 1057–1066.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLabat, G. & Halfpenny, J. (2005). Acta Cryst. E61, o2813–o2814.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLakshmi, V. V., Sridhar, P. & Polasa, H. (1985). Indian J. Pharm. Sci. 47, 202–204.  CAS Google Scholar
First citationPalani, K., Amaladass, P., Mohanakrishnan, A. K. & Ponnuswamy, M. N. (2006). Acta Cryst. E62, o49–o51.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPellis, G. & West, G. B. (1968). Progress in Medicinal Chemistry, Vol. 5, pp. 320–324. London: Butterworth & Co. Ltd.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds