organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 3-(4-hy­droxy­phen­­oxy)-2-(4-meth­oxy­phen­yl)acrylate

aDepartment of Chemistry and Chemical Engineering, South-East University, Nanjing 211189, and Nantong Entry-Exit Inspection and Quarantine Bureau, Nantong 226005, People's Republic of China
*Correspondence e-mail: jinhou_jinhou@yahoo.com.cn

(Received 19 October 2008; accepted 31 October 2008; online 8 November 2008)

In the title compound, C18H18O5, the dihedral angle between the two benzene rings is 55.2 (3)°. The ethyl acrylate linkage is planar and forms dihedral angles of 21.3 (3) and 41.0 (3)°, respectively, with the hydroxy­phenyl and methoxy­phenyl rings. In the crystal structure, mol­ecules are linked into zigzag chains along the b axis by O—H⋯O hydrogen bonds.

Related literature

For general background, see: Huang et al. (2008[Huang, X.-F., Li, H.-Q., Shi, L., Xue, J.-Y. & Zhu, H.-L. (2008). Chem. Biodiver. 5, 636-642.]); Li et al. (2008[Li, H.-Q., Xue, J.-Y., Shi, L., Gui, S.-Y. & Zhu, H.-L. (2008). Eur. J. Med. Chem. 43, 662-667.]); Liu et al. (2008[Liu, X.-H., Lv, P.-C., Li, B. & Zhu, H.-L. (2008). Aust. J. Chem. 61, 223-230.]); Shi et al. (2008[Shi, L., Huang, X.-F., Zhu, Z.-W., Li, H.-Q., Xue, J.-Y. & Zhu, H.-L. (2008). Aust. J. Chem. 61, 472-475.]); Xiao et al. (2008[Xiao, Z.-P., Li, H.-Q., Xue, J.-Y., Shi, L. & Zhu, H.-L. (2008). Synth. Commun. 38, 525-529.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18O5

  • Mr = 314.33

  • Orthorhombic, P 21 21 21

  • a = 7.4773 (16) Å

  • b = 11.661 (2) Å

  • c = 18.417 (4) Å

  • V = 1605.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 (2) K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.963, Tmax = 0.981

  • 5527 measured reflections

  • 1822 independent reflections

  • 1486 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.134

  • S = 1.05

  • 1822 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O1i 0.82 2.00 2.812 (3) 169
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Phenylacetate and styrene derivetives are important for their extensive biological activities. Recently a great deal of such kinds of compounds were synthesized, which were found to exhibit good activities (Huang et al., 2008; Li et al., 2008; Liu et al., 2008; Shi et al., 2008; Xiao et al., 2008)

Bond lengths in the title compound (Fig.1) are within normal ranges (Allen et al., 1987). The dihedral angle between the C1—C6 and C7—C12 benzene rings is 55.2 (3)°. The O1/O2/C13—C17 plane forms dihedral angles of 21.3 (3)° and 41.0 (3)°, respectively, with C1—C6 and C7—C12 benzene rings. In the crytal structure, O—H···O hydrogen bonds (Table 1) link the molecules into zigzag chains along the b axis (Fig. 2).

Related literature top

For general background, see: Huang et al. (2008); Li et al. (2008); Liu et al. (2008); Shi et al. (2008); Xiao et al. (2008). For bond-length data, see: Allen et al. (1987).

Experimental top

Equimolar ethyl 3-bromo-2-(4-methoxyphenyl)acrylate and hydroquinone reacted in chloroform overnight, gave the title compound in high yield (88%). Colourless crystals of the title compound were grown by slow evaparation of a methanol solution.

Refinement top

H atoms were positioned geometrically (O—H = 0.82 Å and C—H = 0.93 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O). In the absence of significant anomalous scattering, Friedel pairs were merged prior to the final refinement.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines.
Ethyl 3-(4-hydroxyphenoxy)-2-(4-methoxyphenyl)acrylate top
Crystal data top
C18H18O5F(000) = 664
Mr = 314.33Dx = 1.304 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1213 reflections
a = 7.4773 (16) Åθ = 3.2–26.1°
b = 11.661 (2) ŵ = 0.10 mm1
c = 18.417 (4) ÅT = 298 K
V = 1605.8 (6) Å3Prism, colourless
Z = 40.40 × 0.30 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1822 independent reflections
Radiation source: fine-focus sealed tube1486 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.963, Tmax = 0.981k = 1014
5527 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0689P)2 + 0.4887P]
where P = (Fo2 + 2Fc2)/3
1822 reflections(Δ/σ)max = 0.001
211 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C18H18O5V = 1605.8 (6) Å3
Mr = 314.33Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.4773 (16) ŵ = 0.10 mm1
b = 11.661 (2) ÅT = 298 K
c = 18.417 (4) Å0.40 × 0.30 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1822 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1486 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.981Rint = 0.032
5527 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.05Δρmax = 0.26 e Å3
1822 reflectionsΔρmin = 0.34 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0040 (5)0.4964 (3)0.73124 (16)0.0401 (8)
C20.0773 (6)0.4306 (3)0.78656 (17)0.0485 (9)
H20.14630.36690.77500.058*
C30.0490 (6)0.4589 (3)0.85909 (18)0.0489 (10)
H30.09900.41440.89570.059*
C40.0543 (6)0.5537 (3)0.87635 (17)0.0444 (9)
C50.1311 (5)0.6181 (3)0.82193 (17)0.0454 (9)
H50.20190.68100.83350.054*
C60.1024 (5)0.5887 (3)0.74921 (17)0.0471 (9)
H60.15560.63190.71260.057*
C70.0419 (5)0.6087 (3)0.47594 (16)0.0370 (7)
C80.0503 (5)0.5959 (3)0.41071 (17)0.0407 (8)
H80.09700.52460.39840.049*
C90.0734 (5)0.6872 (3)0.36402 (17)0.0462 (9)
H90.13360.67620.32040.055*
C100.0083 (5)0.7946 (3)0.38124 (18)0.0441 (9)
C110.0842 (5)0.8107 (3)0.44550 (19)0.0463 (9)
H110.12870.88260.45780.056*
C120.1095 (5)0.7176 (3)0.49137 (19)0.0440 (9)
H120.17410.72820.53400.053*
C130.0301 (5)0.5385 (3)0.60130 (17)0.0415 (8)
H130.00000.61380.61230.050*
C140.0590 (5)0.5141 (3)0.52943 (17)0.0394 (8)
C150.1049 (5)0.3973 (3)0.50927 (17)0.0397 (8)
C160.1644 (7)0.2682 (3)0.41167 (18)0.0513 (10)
H16A0.07750.21210.42810.062*
H16B0.28140.24620.42970.062*
C170.1658 (6)0.2743 (3)0.33027 (17)0.0549 (10)
H17A0.04550.28260.31280.082*
H17B0.21700.20530.31090.082*
H17C0.23570.33900.31500.082*
C180.0024 (7)0.9941 (3)0.3518 (3)0.0668 (13)
H18A0.06561.01390.39540.100*
H18B0.03741.04500.31340.100*
H18C0.12391.00080.36000.100*
O50.0407 (4)0.4650 (3)0.65807 (14)0.0662 (8)
O10.1315 (4)0.3188 (2)0.55214 (12)0.0541 (7)
O20.1174 (4)0.3810 (2)0.43764 (12)0.0468 (7)
O30.0441 (5)0.8795 (2)0.33197 (14)0.0618 (8)
O40.0756 (5)0.5803 (2)0.94804 (12)0.0601 (8)
H40.10190.64830.95200.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.047 (2)0.0446 (17)0.0288 (16)0.0058 (17)0.0002 (15)0.0054 (14)
C20.062 (2)0.0465 (19)0.0373 (17)0.003 (2)0.0026 (18)0.0020 (15)
C30.071 (3)0.0439 (18)0.0320 (16)0.008 (2)0.0065 (18)0.0043 (15)
C40.060 (2)0.0450 (19)0.0281 (15)0.011 (2)0.0040 (16)0.0038 (14)
C50.053 (2)0.0458 (19)0.0379 (18)0.0008 (19)0.0010 (17)0.0091 (16)
C60.054 (2)0.056 (2)0.0313 (16)0.002 (2)0.0039 (16)0.0043 (16)
C70.0403 (17)0.0406 (17)0.0302 (15)0.0005 (17)0.0009 (15)0.0029 (14)
C80.046 (2)0.0405 (18)0.0352 (17)0.0062 (17)0.0021 (16)0.0060 (14)
C90.058 (2)0.052 (2)0.0282 (15)0.004 (2)0.0067 (16)0.0010 (15)
C100.048 (2)0.0461 (19)0.0376 (18)0.0014 (18)0.0041 (17)0.0001 (15)
C110.053 (2)0.0395 (17)0.0464 (19)0.0077 (18)0.0007 (18)0.0043 (16)
C120.045 (2)0.049 (2)0.0385 (18)0.0055 (18)0.0048 (17)0.0065 (16)
C130.048 (2)0.0437 (18)0.0329 (16)0.0006 (18)0.0030 (15)0.0030 (15)
C140.0419 (19)0.0441 (18)0.0321 (16)0.0035 (17)0.0041 (16)0.0026 (14)
C150.048 (2)0.0404 (17)0.0303 (16)0.0023 (18)0.0012 (16)0.0017 (14)
C160.081 (3)0.0400 (19)0.0332 (17)0.001 (2)0.002 (2)0.0028 (15)
C170.075 (3)0.055 (2)0.0348 (18)0.005 (2)0.0052 (19)0.0094 (17)
C180.068 (3)0.047 (2)0.086 (3)0.000 (2)0.000 (3)0.014 (2)
O50.080 (2)0.0751 (18)0.0436 (14)0.0007 (19)0.0009 (15)0.0010 (14)
O10.087 (2)0.0428 (13)0.0328 (12)0.0010 (15)0.0023 (14)0.0029 (11)
O20.0716 (17)0.0392 (12)0.0296 (11)0.0028 (13)0.0012 (13)0.0037 (10)
O30.092 (2)0.0451 (14)0.0488 (14)0.0026 (16)0.0042 (16)0.0095 (12)
O40.098 (2)0.0527 (15)0.0292 (12)0.0039 (18)0.0073 (14)0.0048 (11)
Geometric parameters (Å, º) top
C1—C61.379 (5)C11—C121.388 (5)
C1—C21.388 (5)C11—H110.93
C1—O51.423 (4)C12—H120.93
C2—C31.392 (5)C13—O51.354 (4)
C2—H20.93C13—C141.371 (4)
C3—C41.386 (5)C13—H130.93
C3—H30.93C14—C151.454 (4)
C4—O41.366 (4)C15—O11.225 (4)
C4—C51.377 (5)C15—O21.336 (4)
C5—C61.399 (5)C16—O21.444 (4)
C5—H50.93C16—C171.501 (5)
C6—H60.93C16—H16A0.97
C7—C81.393 (5)C16—H16B0.97
C7—C121.396 (4)C17—H17A0.96
C7—C141.484 (4)C17—H17B0.96
C8—C91.379 (5)C17—H17C0.96
C8—H80.93C18—O31.420 (5)
C9—C101.381 (5)C18—H18A0.96
C9—H90.93C18—H18B0.96
C10—O31.369 (4)C18—H18C0.96
C10—C111.384 (5)O4—H40.82
C6—C1—C2118.9 (3)C11—C12—H12118.7
C6—C1—O5122.7 (3)C7—C12—H12118.7
C2—C1—O5118.5 (3)O5—C13—C14127.3 (3)
C1—C2—C3120.9 (4)O5—C13—H13116.4
C1—C2—H2119.6C14—C13—H13116.4
C3—C2—H2119.6C13—C14—C15118.5 (3)
C4—C3—C2119.6 (3)C13—C14—C7118.3 (3)
C4—C3—H3120.2C15—C14—C7123.2 (3)
C2—C3—H3120.2O1—C15—O2121.3 (3)
O4—C4—C5122.1 (3)O1—C15—C14125.0 (3)
O4—C4—C3117.9 (3)O2—C15—C14113.7 (3)
C5—C4—C3120.0 (3)O2—C16—C17106.8 (3)
C4—C5—C6120.0 (3)O2—C16—H16A110.4
C4—C5—H5120.0C17—C16—H16A110.4
C6—C5—H5120.0O2—C16—H16B110.4
C1—C6—C5120.6 (3)C17—C16—H16B110.4
C1—C6—H6119.7H16A—C16—H16B108.6
C5—C6—H6119.7C16—C17—H17A109.5
C8—C7—C12116.9 (3)C16—C17—H17B109.5
C8—C7—C14122.3 (3)H17A—C17—H17B109.5
C12—C7—C14120.7 (3)C16—C17—H17C109.5
C9—C8—C7121.1 (3)H17A—C17—H17C109.5
C9—C8—H8119.4H17B—C17—H17C109.5
C7—C8—H8119.4O3—C18—H18A109.5
C8—C9—C10120.9 (3)O3—C18—H18B109.5
C8—C9—H9119.6H18A—C18—H18B109.5
C10—C9—H9119.6O3—C18—H18C109.5
O3—C10—C9115.8 (3)H18A—C18—H18C109.5
O3—C10—C11124.5 (3)H18B—C18—H18C109.5
C9—C10—C11119.7 (3)C13—O5—C1123.8 (3)
C10—C11—C12118.9 (3)C15—O2—C16118.3 (3)
C10—C11—H11120.6C10—O3—C18117.8 (3)
C12—C11—H11120.6C4—O4—H4109.5
C11—C12—C7122.5 (3)
C6—C1—C2—C31.9 (6)C14—C7—C12—C11174.8 (3)
O5—C1—C2—C3178.6 (3)O5—C13—C14—C150.5 (6)
C1—C2—C3—C40.2 (6)O5—C13—C14—C7179.4 (3)
C2—C3—C4—O4178.4 (4)C8—C7—C14—C13134.7 (4)
C2—C3—C4—C51.2 (6)C12—C7—C14—C1341.3 (5)
O4—C4—C5—C6178.7 (4)C8—C7—C14—C1545.3 (5)
C3—C4—C5—C61.0 (6)C12—C7—C14—C15138.6 (4)
C2—C1—C6—C52.2 (6)C13—C14—C15—O14.9 (6)
O5—C1—C6—C5178.4 (3)C7—C14—C15—O1175.0 (4)
C4—C5—C6—C10.7 (6)C13—C14—C15—O2175.4 (3)
C12—C7—C8—C90.2 (5)C7—C14—C15—O24.7 (5)
C14—C7—C8—C9176.0 (3)C14—C13—O5—C1178.3 (4)
C7—C8—C9—C101.1 (6)C6—C1—O5—C1323.2 (6)
C8—C9—C10—O3178.0 (4)C2—C1—O5—C13157.3 (4)
C8—C9—C10—C111.2 (6)O1—C15—O2—C160.4 (6)
O3—C10—C11—C12179.1 (4)C14—C15—O2—C16179.3 (3)
C9—C10—C11—C120.0 (6)C17—C16—O2—C15179.1 (3)
C10—C11—C12—C71.4 (6)C9—C10—O3—C18171.3 (4)
C8—C7—C12—C111.5 (6)C11—C10—O3—C187.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O1i0.822.002.812 (3)169
Symmetry code: (i) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC18H18O5
Mr314.33
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)7.4773 (16), 11.661 (2), 18.417 (4)
V3)1605.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.963, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
5527, 1822, 1486
Rint0.032
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.134, 1.05
No. of reflections1822
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.34

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O1i0.822.002.812 (3)169
Symmetry code: (i) x, y+1/2, z+3/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuang, X.-F., Li, H.-Q., Shi, L., Xue, J.-Y. & Zhu, H.-L. (2008). Chem. Biodiver. 5, 636–642.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, H.-Q., Xue, J.-Y., Shi, L., Gui, S.-Y. & Zhu, H.-L. (2008). Eur. J. Med. Chem. 43, 662–667.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, X.-H., Lv, P.-C., Li, B. & Zhu, H.-L. (2008). Aust. J. Chem. 61, 223–230.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, L., Huang, X.-F., Zhu, Z.-W., Li, H.-Q., Xue, J.-Y. & Zhu, H.-L. (2008). Aust. J. Chem. 61, 472–475.  Web of Science CrossRef CAS Google Scholar
First citationXiao, Z.-P., Li, H.-Q., Xue, J.-Y., Shi, L. & Zhu, H.-L. (2008). Synth. Commun. 38, 525–529.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds