organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6β-Acetamido-5α-hy­droxy­cholestan-3β-yl acetate

aLaboratório de Química Farmacêutica, Faculdade de Farmácia, Universidade de Coimbra, P-3000-295 Coimbra, Portugal, and bCEMDRX, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, P-3004-516 Coimbra, Portugal
*Correspondence e-mail: jap@pollux.fis.uc.pt

(Received 20 October 2008; accepted 30 October 2008; online 8 November 2008)

The title steroid, C31H53NO4, was prepared from the corresponding 5α,6α-epoxy­cholestane. The conformation of the six-membered rings is close to a chair form, while the five-membered ring adopts a twist conformation. The hydroxyl and acetamide groups are in axial positions. The nucleophilic species bound to the steroid nucleus at position 6 by the β-face, whereas the hydroxyl group at position 5 has α-orientation. All rings are trans-fused. The crystal packing shows that the mol­ecules related by twofold symmetry exist as O—H⋯O hydrogen-bonded dimers.

Related literature

For epoxy­steroid chemistry, see: Salvador et al. (2006[Salvador, J. A. R., Silvestre, S. M. & Moreira, V. M. (2006). Curr. Org. Chem. 10, 2227-2257.], 2008[Salvador, J. A. R., Silvestre, S. M. & Moreira, V. M. (2008). Curr. Org. Chem. 12, 492-522.]); Pinto et al. (2008a[Pinto, R. M. A., Salvador, J. A. R. & Paixão, J. A. (2008a). Acta Cryst. C64, o279-o282.]). For the synthesis of vicinal N-acyl hydroxy­amines, see: Pinto et al. (2006[Pinto, R. M. A., Salvador, J. A. R. & Le Roux, C. (2006). Synlett, 13, 2047-2050.]). For related steroid structures, see: Pinto et al. (2007a[Pinto, R. M. A., Ramos Silva, M., Matos Beja, A., Salvador, J. A. R. & Paixão, J. A. (2007a). Acta Cryst. E63, o3321.],b[Pinto, R. M. A., Ramos Silva, M., Matos Beja, A. & Salvador, J. A. R. (2007b). Acta Cryst. E63, o2138-o2139.], 2008b[Pinto, R. M. A., Salvador, J. A. R., Paixão, J. A., Matos Beja, A. & Ramos Silva, M. (2008b). Acta Cryst. E64, o1420.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C31H53NO4

  • Mr = 503.74

  • Monoclinic, C 2

  • a = 31.4800 (12) Å

  • b = 10.0043 (4) Å

  • c = 9.7681 (4) Å

  • β = 94.276 (3)°

  • V = 3067.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 (2) K

  • 0.40 × 0.20 × 0.14 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.840, Tmax = 0.990

  • 43053 measured reflections

  • 4691 independent reflections

  • 2907 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.162

  • S = 1.03

  • 4691 reflections

  • 333 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O6i 0.82 1.99 2.804 (3) 172
Symmetry code: (i) -x+2, y, -z+1.

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Epoxysteroids are useful synthetic intermediates in the synthesis of important biologically active molecules (Salvador et al., 2006, 2008; Pinto et al., 2008a). In fact, it is the stereochemistry of the starting epoxide that rules its nucleophilic ring-opening. Recently, using epoxides as substrates, we described an efficient one-pot procedure for the synthesis of vicinal N-acyl hydroxyamines by a bismuth(III) salt-promoted reaction (Pinto et al., 2006). Later, we reported the X-ray crystal structure of 5α-acetamido-6β-hydroxy-20-oxoandrostan-3β-yl acetate obtained by the above mentioned reaction (Pinto et al., 2007a). Since the starting epoxide has a 5β,6β-conformation, the nucleophile attacked the steroid nucleus at C5 by the α-face. The title compound has been obtained from the corresponding 5α,6α-epoxycholestane derivative, under similar reaction conditions, in 90% yield (Pinto et al., 2006). The present communication unequivocally demonstrated the trans-diaxial nature of the 5α,6α-epoxide ring-opening by the bismuth(III) salt-catalyzed Ritter reaction. Related X-ray diffraction studies on 5α-hydroxy-6β-substituted steroids have been recently published by our group (Pinto et al., 2007b, 2008b).

The conformations of the six-membered rings are close to a chair form, as shown by the Cremer & Pople (1975) puckering parameters [ring A: Q = 0.580 (3) Å, θ = 4.7 (4)° and ϕ = 276 (4)°; ring B: Q = 0.554 (3) Å, θ = 4.4 (3)° and ϕ = 318 (4)°; ring C: Q = 0.583 (3) Å, θ = 1.3 (3)° and ϕ = 20 (7)°]. The D-ring has a twisted conformation around the C13—C14 bond with puckering parameters q2 = 0.459 (3)Å and ϕ2 = 192.9 (4)°. All rings of the molecule are trans fused. The acetoxy group at C3 is equatorial to the A ring, and both substituents at ring B are axial. The amide group adopts the usual trans conformation.

The molecules are hydrogen-bonded through the hydroxyl group at C5, acting as donor towards the carbonyl O atom of the amide moiety. Remarkably, the H atom attached to the amide N atom is not involved in any hydrogen bond. This may arise from steric hindrance caused by the C19-methyl group. The following short intramolecular distances are also spotted in the structure: H1B···O5 2.42 Å, H9···O5 2.42 Å and H6···O6 2.39 Å.

The anisotropic displacement tensor of the terminal atoms of the 3β-acetoxy group are strongly anisotropic, suggesting a large amplitude of vibration of these atoms perpendicular to the mean plane of this group.

Related literature top

For epoxysteroid chemistry, see: Salvador et al. (2006, 2008); Pinto et al. (2008a). For the synthesis of vicinal N-acyl hydroxyamines, see: Pinto et al. (2006). For related steroid structures, see: Pinto et al. (2007a,b, 2008b). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

The synthesis of 6β-acetamido-5α-hydroxycholestan-3β-yl acetate was efficiently accomplished by nucleophilic ring-opening of the corresponding 5α,6α-epoxycholestane catalyzed by BiBr3 in acetonitrile (Pinto et al., 2006). The product of this reaction was isolated in 90% yield and identified as the title compound from IR, 1H and 13C NMR spectroscopy data (Pinto et al., 2006). Recrystallization from acetonitrile at room temperature gave colourless single crystals suitable for X-ray diffraction analysis.

Refinement top

H atoms were fixed geometrically (O—H = 0.82 Å, N—H = 0.86 Å and C—H = 0.96–0.98 Å) and treated as riding with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O and methyl C). In the absence of significant anomalous scattering, Friedel pairs were merged prior to the final refinement. Though the absolute configuration was not determined from the X-ray data but was known from the synthetic route.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
6β-Acetamido-5α-hydroxycholestan-3β-yl acetate top
Crystal data top
C31H53NO4F(000) = 1112
Mr = 503.74Dx = 1.091 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 5555 reflections
a = 31.4800 (12) Åθ = 2.4–22.9°
b = 10.0043 (4) ŵ = 0.07 mm1
c = 9.7681 (4) ÅT = 293 K
β = 94.276 (3)°Truncated parallelipiped, clear colourless
V = 3067.8 (2) Å30.40 × 0.20 × 0.14 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4691 independent reflections
Radiation source: fine-focus sealed tube2907 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ϕ and ω scansθmax = 30.1°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 4344
Tmin = 0.840, Tmax = 0.990k = 1313
43053 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0835P)2 + 0.6891P]
where P = (Fo2 + 2Fc2)/3
4691 reflections(Δ/σ)max = 0.001
333 parametersΔρmax = 0.34 e Å3
1 restraintΔρmin = 0.24 e Å3
Crystal data top
C31H53NO4V = 3067.8 (2) Å3
Mr = 503.74Z = 4
Monoclinic, C2Mo Kα radiation
a = 31.4800 (12) ŵ = 0.07 mm1
b = 10.0043 (4) ÅT = 293 K
c = 9.7681 (4) Å0.40 × 0.20 × 0.14 mm
β = 94.276 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4691 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
2907 reflections with I > 2σ(I)
Tmin = 0.840, Tmax = 0.990Rint = 0.045
43053 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0501 restraint
wR(F2) = 0.162H-atom parameters constrained
S = 1.03Δρmax = 0.34 e Å3
4691 reflectionsΔρmin = 0.24 e Å3
333 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.87141 (10)0.0088 (3)0.1952 (3)0.0615 (8)
H1A0.84210.03610.17410.074*
H1B0.88060.03910.11630.074*
C20.89921 (11)0.1341 (3)0.2196 (4)0.0727 (9)
H2A0.88800.18760.29160.087*
H2B0.89780.18740.13650.087*
C30.94513 (11)0.0993 (4)0.2603 (4)0.0678 (9)
H30.95830.05980.18200.081*
C40.94903 (10)0.0042 (3)0.3809 (3)0.0592 (7)
H4A0.97860.02170.39910.071*
H4B0.94000.04900.46180.071*
C50.92162 (8)0.1215 (3)0.3521 (3)0.0484 (6)
C60.92943 (8)0.2272 (3)0.4659 (3)0.0500 (6)
H60.95950.25260.46640.060*
C70.90374 (8)0.3533 (3)0.4310 (3)0.0508 (6)
H7A0.91560.39760.35410.061*
H7B0.90660.41360.50890.061*
C80.85643 (8)0.3267 (3)0.3944 (3)0.0424 (5)
H80.84340.29710.47730.051*
C90.84930 (8)0.2180 (3)0.2834 (3)0.0443 (5)
H90.86100.25300.20050.053*
C100.87356 (8)0.0865 (3)0.3205 (3)0.0466 (6)
C110.80110 (9)0.1986 (3)0.2483 (3)0.0550 (7)
H11A0.79680.13210.17630.066*
H11B0.78820.16530.32870.066*
C120.77895 (9)0.3288 (3)0.2008 (3)0.0525 (7)
H12A0.78980.35710.11520.063*
H12B0.74870.31230.18360.063*
C130.78570 (8)0.4407 (3)0.3063 (3)0.0421 (6)
C140.83406 (8)0.4540 (3)0.3415 (3)0.0424 (5)
H140.84620.47430.25430.051*
C150.83868 (9)0.5810 (3)0.4253 (3)0.0549 (7)
H15A0.86670.62010.41980.066*
H15B0.83400.56420.52090.066*
C160.80370 (9)0.6726 (3)0.3580 (3)0.0601 (7)
H16A0.81640.74480.30890.072*
H16B0.78690.71090.42740.072*
C170.77525 (8)0.5856 (3)0.2575 (3)0.0451 (6)
H170.78640.59530.16700.054*
C180.76160 (9)0.4092 (3)0.4336 (3)0.0542 (7)
H18A0.73190.39720.40670.081*
H18B0.76500.48200.49760.081*
H18C0.77280.32890.47610.081*
C190.85347 (10)0.0158 (3)0.4394 (3)0.0579 (7)
H19A0.82720.02540.40580.087*
H19B0.84800.07990.50900.087*
H19C0.87270.05140.47750.087*
C200.72882 (8)0.6341 (3)0.2425 (3)0.0500 (6)
H200.71780.63020.33370.060*
C210.70059 (12)0.5469 (4)0.1483 (5)0.0822 (12)
H21A0.71300.53720.06210.123*
H21B0.67300.58740.13350.123*
H21C0.69780.46050.18950.123*
C220.72669 (9)0.7808 (3)0.1956 (3)0.0543 (7)
H22A0.74500.83350.25910.065*
H22B0.73800.78690.10610.065*
C230.68225 (10)0.8419 (3)0.1864 (4)0.0604 (8)
H23A0.66560.80260.10900.072*
H23B0.66850.81930.26890.072*
C240.68225 (10)0.9932 (3)0.1698 (3)0.0602 (8)
H24A0.69561.01520.08620.072*
H24B0.69961.03180.24600.072*
C250.63810 (11)1.0583 (4)0.1637 (4)0.0655 (8)
H250.62351.02510.24200.079*
C260.61094 (14)1.0219 (5)0.0335 (4)0.0889 (12)
H26A0.62411.05610.04490.133*
H26B0.58311.06030.03690.133*
H26C0.60850.92650.02650.133*
C270.64222 (15)1.2093 (4)0.1785 (5)0.0938 (13)
H27A0.65861.24370.10730.141*
H27B0.65631.23040.26640.141*
H27C0.61441.24910.17100.141*
O3A0.96596 (8)0.2259 (3)0.2984 (3)0.0831 (7)
C3A1.00685 (17)0.2395 (6)0.2845 (7)0.118 (2)
C3B1.0213 (2)0.3779 (7)0.3176 (9)0.162 (3)
H3BA1.04900.37540.36560.242*
H3BB1.02260.42790.23410.242*
H3BC1.00150.41990.37430.242*
O3B1.02871 (13)0.1488 (5)0.2544 (7)0.169 (2)
O50.93451 (6)0.1818 (2)0.2284 (2)0.0583 (5)
H5A0.95940.20620.24020.087*
N60.92306 (7)0.1766 (3)0.6033 (2)0.0574 (6)
H6A0.90090.12870.61380.069*
O60.98188 (8)0.2694 (4)0.7050 (3)0.0856 (8)
C6A0.94987 (10)0.2006 (4)0.7137 (3)0.0608 (8)
C6B0.93864 (13)0.1416 (6)0.8461 (4)0.0881 (12)
H6BA0.95950.07560.87570.132*
H6BB0.91110.10040.83390.132*
H6BC0.93810.21060.91420.132*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0589 (17)0.0517 (17)0.0728 (19)0.0080 (14)0.0019 (14)0.0103 (15)
C20.070 (2)0.0522 (18)0.095 (2)0.0131 (16)0.0014 (17)0.0149 (17)
C30.0612 (18)0.0521 (17)0.091 (2)0.0156 (15)0.0111 (16)0.0011 (16)
C40.0463 (15)0.0544 (17)0.077 (2)0.0114 (13)0.0071 (13)0.0047 (15)
C50.0400 (13)0.0490 (14)0.0561 (15)0.0049 (11)0.0040 (11)0.0057 (12)
C60.0358 (12)0.0532 (16)0.0604 (16)0.0013 (11)0.0005 (11)0.0039 (12)
C70.0416 (13)0.0474 (15)0.0627 (16)0.0027 (11)0.0015 (11)0.0031 (13)
C80.0371 (12)0.0432 (13)0.0467 (13)0.0005 (10)0.0022 (10)0.0014 (10)
C90.0394 (12)0.0420 (13)0.0510 (14)0.0014 (10)0.0005 (10)0.0037 (10)
C100.0399 (13)0.0411 (13)0.0582 (15)0.0009 (11)0.0008 (11)0.0016 (11)
C110.0461 (14)0.0497 (16)0.0670 (17)0.0003 (12)0.0101 (12)0.0092 (13)
C120.0451 (14)0.0510 (15)0.0594 (16)0.0052 (12)0.0083 (12)0.0098 (13)
C130.0389 (12)0.0424 (13)0.0450 (13)0.0002 (10)0.0042 (10)0.0006 (10)
C140.0412 (13)0.0404 (12)0.0453 (13)0.0013 (10)0.0022 (10)0.0006 (10)
C150.0482 (15)0.0448 (14)0.0704 (18)0.0002 (12)0.0042 (13)0.0082 (13)
C160.0506 (15)0.0471 (15)0.082 (2)0.0019 (13)0.0019 (14)0.0093 (15)
C170.0444 (13)0.0452 (13)0.0462 (13)0.0028 (11)0.0056 (10)0.0035 (11)
C180.0461 (14)0.0585 (16)0.0587 (16)0.0008 (13)0.0087 (12)0.0103 (13)
C190.0488 (15)0.0455 (15)0.079 (2)0.0035 (12)0.0051 (14)0.0035 (14)
C200.0467 (14)0.0486 (14)0.0546 (15)0.0056 (12)0.0024 (11)0.0031 (12)
C210.063 (2)0.062 (2)0.116 (3)0.0088 (17)0.030 (2)0.008 (2)
C220.0556 (15)0.0533 (16)0.0545 (15)0.0110 (13)0.0067 (12)0.0078 (13)
C230.0563 (17)0.0579 (18)0.0671 (18)0.0147 (14)0.0054 (13)0.0103 (14)
C240.0612 (18)0.0575 (18)0.0628 (18)0.0135 (14)0.0099 (14)0.0073 (14)
C250.0664 (19)0.0594 (19)0.0717 (19)0.0188 (16)0.0113 (16)0.0060 (16)
C260.084 (3)0.083 (3)0.097 (3)0.030 (2)0.008 (2)0.001 (2)
C270.100 (3)0.064 (2)0.117 (3)0.027 (2)0.003 (2)0.000 (2)
O3A0.0696 (15)0.0601 (14)0.122 (2)0.0235 (12)0.0206 (13)0.0056 (14)
C3A0.088 (3)0.082 (3)0.191 (6)0.038 (3)0.054 (3)0.027 (4)
C3B0.134 (5)0.105 (4)0.253 (9)0.077 (4)0.064 (5)0.042 (5)
O3B0.091 (3)0.117 (4)0.308 (7)0.035 (2)0.077 (3)0.051 (4)
O50.0489 (10)0.0654 (13)0.0616 (11)0.0037 (10)0.0108 (8)0.0083 (11)
N60.0421 (12)0.0699 (16)0.0593 (13)0.0037 (12)0.0022 (10)0.0048 (13)
O60.0545 (13)0.125 (2)0.0768 (15)0.0114 (15)0.0017 (11)0.0260 (16)
C6A0.0482 (15)0.072 (2)0.0617 (17)0.0159 (15)0.0013 (13)0.0125 (15)
C6B0.084 (2)0.115 (3)0.064 (2)0.013 (3)0.0005 (17)0.002 (2)
Geometric parameters (Å, º) top
C1—C21.537 (4)C17—C201.536 (4)
C1—C101.549 (4)C17—H170.98
C1—H1A0.97C18—H18A0.96
C1—H1B0.97C18—H18B0.96
C2—C31.511 (5)C18—H18C0.96
C2—H2A0.97C19—H19A0.96
C2—H2B0.97C19—H19B0.96
C3—O3A1.461 (4)C19—H19C0.96
C3—C41.512 (5)C20—C211.509 (5)
C3—H30.98C20—C221.537 (4)
C4—C51.539 (4)C20—H200.98
C4—H4A0.97C21—H21A0.96
C4—H4B0.97C21—H21B0.96
C5—O51.436 (3)C21—H21C0.96
C5—C61.541 (4)C22—C231.523 (4)
C5—C101.561 (4)C22—H22A0.97
C6—N61.461 (4)C22—H22B0.97
C6—C71.523 (4)C23—C241.523 (5)
C6—H60.98C23—H23A0.97
C7—C81.528 (4)C23—H23B0.97
C7—H7A0.97C24—C251.532 (4)
C7—H7B0.97C24—H24A0.97
C8—C141.527 (4)C24—H24B0.97
C8—C91.540 (3)C25—C271.522 (6)
C8—H80.98C25—C261.522 (6)
C9—C111.543 (4)C25—H250.98
C9—C101.551 (4)C26—H26A0.96
C9—H90.98C26—H26B0.96
C10—C191.535 (4)C26—H26C0.96
C11—C121.532 (4)C27—H27A0.96
C11—H11A0.97C27—H27B0.96
C11—H11B0.97C27—H27C0.96
C12—C131.526 (4)O3A—C3A1.312 (5)
C12—H12A0.97C3A—O3B1.190 (7)
C12—H12B0.97C3A—C3B1.485 (7)
C13—C181.537 (4)C3B—H3BA0.96
C13—C141.541 (3)C3B—H3BB0.96
C13—C171.554 (4)C3B—H3BC0.96
C14—C151.513 (4)O5—H5A0.82
C14—H140.98N6—C6A1.341 (4)
C15—C161.542 (4)N6—H6A0.86
C15—H15A0.97O6—C6A1.228 (4)
C15—H15B0.97C6A—C6B1.488 (5)
C16—C171.547 (4)C6B—H6BA0.96
C16—H16A0.97C6B—H6BB0.96
C16—H16B0.97C6B—H6BC0.96
C2—C1—C10112.9 (3)C15—C16—H16B110.2
C2—C1—H1A109.0C17—C16—H16B110.2
C10—C1—H1A109.0H16A—C16—H16B108.5
C2—C1—H1B109.0C20—C17—C16112.6 (2)
C10—C1—H1B109.0C20—C17—C13120.1 (2)
H1A—C1—H1B107.8C16—C17—C13103.3 (2)
C3—C2—C1112.1 (3)C20—C17—H17106.7
C3—C2—H2A109.2C16—C17—H17106.7
C1—C2—H2A109.2C13—C17—H17106.7
C3—C2—H2B109.2C13—C18—H18A109.5
C1—C2—H2B109.2C13—C18—H18B109.5
H2A—C2—H2B107.9H18A—C18—H18B109.5
O3A—C3—C2105.7 (3)C13—C18—H18C109.5
O3A—C3—C4109.8 (3)H18A—C18—H18C109.5
C2—C3—C4111.7 (3)H18B—C18—H18C109.5
O3A—C3—H3109.9C10—C19—H19A109.5
C2—C3—H3109.9C10—C19—H19B109.5
C4—C3—H3109.9H19A—C19—H19B109.5
C3—C4—C5111.1 (3)C10—C19—H19C109.5
C3—C4—H4A109.4H19A—C19—H19C109.5
C5—C4—H4A109.4H19B—C19—H19C109.5
C3—C4—H4B109.4C21—C20—C17112.8 (3)
C5—C4—H4B109.4C21—C20—C22111.1 (3)
H4A—C4—H4B108.0C17—C20—C22110.5 (2)
O5—C5—C4107.9 (2)C21—C20—H20107.4
O5—C5—C6106.2 (2)C17—C20—H20107.4
C4—C5—C6111.9 (2)C22—C20—H20107.4
O5—C5—C10105.0 (2)C20—C21—H21A109.5
C4—C5—C10112.0 (2)C20—C21—H21B109.5
C6—C5—C10113.4 (2)H21A—C21—H21B109.5
N6—C6—C7112.7 (2)C20—C21—H21C109.5
N6—C6—C5113.5 (2)H21A—C21—H21C109.5
C7—C6—C5110.7 (2)H21B—C21—H21C109.5
N6—C6—H6106.5C23—C22—C20114.9 (3)
C7—C6—H6106.5C23—C22—H22A108.6
C5—C6—H6106.5C20—C22—H22A108.6
C6—C7—C8113.6 (2)C23—C22—H22B108.6
C6—C7—H7A108.9C20—C22—H22B108.6
C8—C7—H7A108.9H22A—C22—H22B107.5
C6—C7—H7B108.9C24—C23—C22113.5 (3)
C8—C7—H7B108.9C24—C23—H23A108.9
H7A—C7—H7B107.7C22—C23—H23A108.9
C14—C8—C7110.5 (2)C24—C23—H23B108.9
C14—C8—C9108.11 (19)C22—C23—H23B108.9
C7—C8—C9112.1 (2)H23A—C23—H23B107.7
C14—C8—H8108.7C23—C24—C25114.8 (3)
C7—C8—H8108.7C23—C24—H24A108.6
C9—C8—H8108.7C25—C24—H24A108.6
C8—C9—C11109.6 (2)C23—C24—H24B108.6
C8—C9—C10113.0 (2)C25—C24—H24B108.6
C11—C9—C10113.8 (2)H24A—C24—H24B107.5
C8—C9—H9106.6C27—C25—C26110.8 (3)
C11—C9—H9106.6C27—C25—C24110.3 (3)
C10—C9—H9106.6C26—C25—C24112.5 (3)
C19—C10—C1108.5 (3)C27—C25—H25107.7
C19—C10—C9110.1 (2)C26—C25—H25107.7
C1—C10—C9110.2 (2)C24—C25—H25107.7
C19—C10—C5113.7 (2)C25—C26—H26A109.5
C1—C10—C5106.2 (2)C25—C26—H26B109.5
C9—C10—C5108.0 (2)H26A—C26—H26B109.5
C12—C11—C9112.2 (2)C25—C26—H26C109.5
C12—C11—H11A109.2H26A—C26—H26C109.5
C9—C11—H11A109.2H26B—C26—H26C109.5
C12—C11—H11B109.2C25—C27—H27A109.5
C9—C11—H11B109.2C25—C27—H27B109.5
H11A—C11—H11B107.9H27A—C27—H27B109.5
C13—C12—C11112.4 (2)C25—C27—H27C109.5
C13—C12—H12A109.1H27A—C27—H27C109.5
C11—C12—H12A109.1H27B—C27—H27C109.5
C13—C12—H12B109.1C3A—O3A—C3119.3 (4)
C11—C12—H12B109.1O3B—C3A—O3A122.4 (5)
H12A—C12—H12B107.8O3B—C3A—C3B126.3 (5)
C12—C13—C18110.1 (2)O3A—C3A—C3B111.2 (5)
C12—C13—C14107.4 (2)C3A—C3B—H3BA109.5
C18—C13—C14112.1 (2)C3A—C3B—H3BB109.5
C12—C13—C17117.5 (2)H3BA—C3B—H3BB109.5
C18—C13—C17109.5 (2)C3A—C3B—H3BC109.5
C14—C13—C1799.84 (19)H3BA—C3B—H3BC109.5
C15—C14—C8119.6 (2)H3BB—C3B—H3BC109.5
C15—C14—C13104.3 (2)C5—O5—H5A109.5
C8—C14—C13115.2 (2)C6A—N6—C6123.7 (3)
C15—C14—H14105.5C6A—N6—H6A118.1
C8—C14—H14105.5C6—N6—H6A118.1
C13—C14—H14105.5O6—C6A—N6121.0 (3)
C14—C15—C16103.4 (2)O6—C6A—C6B122.2 (3)
C14—C15—H15A111.1N6—C6A—C6B116.9 (3)
C16—C15—H15A111.1C6A—C6B—H6BA109.5
C14—C15—H15B111.1C6A—C6B—H6BB109.5
C16—C15—H15B111.1H6BA—C6B—H6BB109.5
H15A—C15—H15B109.1C6A—C6B—H6BC109.5
C15—C16—C17107.3 (2)H6BA—C6B—H6BC109.5
C15—C16—H16A110.2H6BB—C6B—H6BC109.5
C17—C16—H16A110.2
C10—C1—C2—C355.8 (4)C11—C12—C13—C1869.1 (3)
C1—C2—C3—O3A172.3 (3)C11—C12—C13—C1453.2 (3)
C1—C2—C3—C452.9 (4)C11—C12—C13—C17164.6 (2)
O3A—C3—C4—C5171.2 (2)C7—C8—C14—C1552.3 (3)
C2—C3—C4—C554.3 (4)C9—C8—C14—C15175.3 (2)
C3—C4—C5—O556.5 (3)C7—C8—C14—C13177.8 (2)
C3—C4—C5—C6172.9 (2)C9—C8—C14—C1359.2 (3)
C3—C4—C5—C1058.5 (3)C12—C13—C14—C15170.2 (2)
O5—C5—C6—N6172.7 (2)C18—C13—C14—C1568.7 (3)
C4—C5—C6—N655.2 (3)C17—C13—C14—C1547.1 (2)
C10—C5—C6—N672.6 (3)C12—C13—C14—C856.7 (3)
O5—C5—C6—C759.5 (3)C18—C13—C14—C864.4 (3)
C4—C5—C6—C7176.9 (2)C17—C13—C14—C8179.8 (2)
C10—C5—C6—C755.3 (3)C8—C14—C15—C16166.5 (2)
N6—C6—C7—C876.5 (3)C13—C14—C15—C1636.0 (3)
C5—C6—C7—C851.8 (3)C14—C15—C16—C1710.6 (3)
C6—C7—C8—C14172.1 (2)C15—C16—C17—C20149.3 (2)
C6—C7—C8—C951.4 (3)C15—C16—C17—C1318.2 (3)
C14—C8—C9—C1156.4 (3)C12—C13—C17—C2078.9 (3)
C7—C8—C9—C11178.5 (2)C18—C13—C17—C2047.6 (3)
C14—C8—C9—C10175.5 (2)C14—C13—C17—C20165.5 (2)
C7—C8—C9—C1053.4 (3)C12—C13—C17—C16154.7 (2)
C2—C1—C10—C1966.1 (3)C18—C13—C17—C1678.8 (3)
C2—C1—C10—C9173.3 (3)C14—C13—C17—C1639.0 (2)
C2—C1—C10—C556.5 (3)C16—C17—C20—C21178.0 (3)
C8—C9—C10—C1970.0 (3)C13—C17—C20—C2156.0 (4)
C11—C9—C10—C1955.8 (3)C16—C17—C20—C2256.9 (3)
C8—C9—C10—C1170.2 (2)C13—C17—C20—C22179.0 (2)
C11—C9—C10—C163.9 (3)C21—C20—C22—C2357.8 (4)
C8—C9—C10—C554.6 (3)C17—C20—C22—C23176.2 (2)
C11—C9—C10—C5179.5 (2)C20—C22—C23—C24167.7 (3)
O5—C5—C10—C19178.1 (2)C22—C23—C24—C25178.6 (3)
C4—C5—C10—C1961.3 (3)C23—C24—C25—C27167.7 (4)
C6—C5—C10—C1966.4 (3)C23—C24—C25—C2668.1 (4)
O5—C5—C10—C158.8 (3)C2—C3—O3A—C3A152.4 (5)
C4—C5—C10—C158.0 (3)C4—C3—O3A—C3A87.0 (5)
C6—C5—C10—C1174.3 (2)C3—O3A—C3A—O3B7.4 (10)
O5—C5—C10—C959.4 (3)C3—O3A—C3A—C3B175.4 (5)
C4—C5—C10—C9176.2 (2)C7—C6—N6—C6A98.2 (3)
C6—C5—C10—C956.1 (3)C5—C6—N6—C6A135.0 (3)
C8—C9—C11—C1257.1 (3)C6—N6—C6A—O60.7 (5)
C10—C9—C11—C12175.3 (2)C6—N6—C6A—C6B180.0 (3)
C9—C11—C12—C1356.5 (3)C19—C10—C13—C186.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O6i0.821.992.804 (3)172
Symmetry code: (i) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC31H53NO4
Mr503.74
Crystal system, space groupMonoclinic, C2
Temperature (K)293
a, b, c (Å)31.4800 (12), 10.0043 (4), 9.7681 (4)
β (°) 94.276 (3)
V3)3067.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.40 × 0.20 × 0.14
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.840, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
43053, 4691, 2907
Rint0.045
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.162, 1.03
No. of reflections4691
No. of parameters333
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.24

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O6i0.821.992.804 (3)172
Symmetry code: (i) x+2, y, z+1.
 

Acknowledgements

This work was supported by Fundação para a Ciência e Tecnologia. RMAP thanks FCT for a grant (SFRH/BD/18013/2004).

References

First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationPinto, R. M. A., Ramos Silva, M., Matos Beja, A. & Salvador, J. A. R. (2007b). Acta Cryst. E63, o2138–o2139.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPinto, R. M. A., Ramos Silva, M., Matos Beja, A., Salvador, J. A. R. & Paixão, J. A. (2007a). Acta Cryst. E63, o3321.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPinto, R. M. A., Salvador, J. A. R. & Le Roux, C. (2006). Synlett, 13, 2047–2050.  Google Scholar
First citationPinto, R. M. A., Salvador, J. A. R. & Paixão, J. A. (2008a). Acta Cryst. C64, o279–o282.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPinto, R. M. A., Salvador, J. A. R., Paixão, J. A., Matos Beja, A. & Ramos Silva, M. (2008b). Acta Cryst. E64, o1420.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSalvador, J. A. R., Silvestre, S. M. & Moreira, V. M. (2006). Curr. Org. Chem. 10, 2227–2257.  Web of Science CrossRef CAS Google Scholar
First citationSalvador, J. A. R., Silvestre, S. M. & Moreira, V. M. (2008). Curr. Org. Chem. 12, 492–522.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds