organic compounds
trans-4-[(2,6-Dimethylphenoxy)methyl]cyclohexanecarboxylic acid
aDepartment of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
*Correspondence e-mail: hwc@scu.edu.cn
The title compound, C16H22O3, is a useful intermediate in the synthesis of poly(amidoamine) dendrimers. The cyclohexane ring adopts a chair conformation. In the molecules are linked into centrosymmetric dimers by pairs of O—H⋯O hydrogen bonds.
Related literature
For general background on poly(amidoamine) dendrimers, see: Ahmed et al. (2001); Grabchev et al. (2003); Wang et al. (2004). For related structures, see: Bucourt & Hainaut (1965); Dunitz & Strickler (1966); Luger et al. (1972).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: DIFRAC (Gabe & White, 1993); cell DIFRAC; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808035502/ci2698sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808035502/ci2698Isup2.hkl
Methyl trans-4-(tosylmethyl)cyclohexanecarboxylate (3.26 g, 10 mmol), 2,6-dimethylphenol (3.66 g, 30 mmol) and potassium phosphate (10.6 g, 50 mmol) were suspended in dry DMF (20 ml) and heated at 368 K for 8 h, and then water (30 ml) and toluene (30 ml) were added. After agitation, the water layer separated was washed twice with toluene and the organic layer combined was washed with water and then dried with sodium sulfate. After filtration and distillation under vaccum, the crude product obtained was further purified by
to give pure methyl ester. The ester was then hydrolyzed in a ethanol (15 ml)–1 N NaOH (15 ml) solution for 5 h at 313 K. After cooling and acidification with hydrochloride, the white solid precipitated was collected. Colourless crystals were obtained by slow evaporation in chloroform at room temperature.H atoms were positioned geometrically (O—H = 0.82 Å and C—H = 0.93–0.98 Å) and refined using a riding model, with Uiso(H) = 1.2–1.5Ueq(C). A rotating group model was used for methyl and hydroxyl groups.
Data collection: DIFRAC (Gabe & White, 1993); cell
DIFRAC (Gabe & White, 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. |
C16H22O3 | Z = 2 |
Mr = 262.34 | F(000) = 284 |
Triclinic, P1 | Dx = 1.167 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.162 (3) Å | Cell parameters from 26 reflections |
b = 7.680 (4) Å | θ = 4.3–7.4° |
c = 14.451 (4) Å | µ = 0.08 mm−1 |
α = 95.26 (4)° | T = 292 K |
β = 98.35 (4)° | Block, colourless |
γ = 106.44 (3)° | 0.60 × 0.52 × 0.42 mm |
V = 746.9 (6) Å3 |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.013 |
Radiation source: fine-focus sealed tube | θmax = 25.5°, θmin = 1.4° |
Graphite monochromator | h = −8→8 |
ω/2θ scans | k = −5→9 |
2886 measured reflections | l = −17→17 |
2715 independent reflections | 3 standard reflections every 250 reflections |
1461 reflections with I > 2σ(I) | intensity decay: 2.3% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.066 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.196 | H-atom parameters constrained |
S = 1.16 | w = 1/[σ2(Fo2) + (0.0902P)2 + 0.0605P] where P = (Fo2 + 2Fc2)/3 |
2715 reflections | (Δ/σ)max = 0.001 |
175 parameters | Δρmax = 0.18 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
C16H22O3 | γ = 106.44 (3)° |
Mr = 262.34 | V = 746.9 (6) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.162 (3) Å | Mo Kα radiation |
b = 7.680 (4) Å | µ = 0.08 mm−1 |
c = 14.451 (4) Å | T = 292 K |
α = 95.26 (4)° | 0.60 × 0.52 × 0.42 mm |
β = 98.35 (4)° |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.013 |
2886 measured reflections | 3 standard reflections every 250 reflections |
2715 independent reflections | intensity decay: 2.3% |
1461 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.066 | 0 restraints |
wR(F2) = 0.196 | H-atom parameters constrained |
S = 1.16 | Δρmax = 0.18 e Å−3 |
2715 reflections | Δρmin = −0.20 e Å−3 |
175 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.8686 (2) | 0.1188 (2) | 0.70598 (13) | 0.0678 (5) | |
O2 | 1.2419 (3) | −0.5645 (3) | 0.96803 (18) | 0.0922 (7) | |
H2 | 1.3381 | −0.5780 | 1.0015 | 0.138* | |
O3 | 1.4736 (3) | −0.3312 (3) | 0.93470 (18) | 0.0964 (8) | |
C1 | 0.7116 (4) | 0.1817 (3) | 0.6701 (2) | 0.0628 (7) | |
C2 | 0.5908 (4) | 0.2148 (4) | 0.7308 (2) | 0.0769 (8) | |
C3 | 0.4398 (5) | 0.2823 (5) | 0.6941 (4) | 0.1122 (14) | |
H3 | 0.3518 | 0.3017 | 0.7324 | 0.135* | |
C4 | 0.4162 (6) | 0.3209 (5) | 0.6047 (5) | 0.1232 (17) | |
H4 | 0.3148 | 0.3684 | 0.5828 | 0.148* | |
C5 | 0.5403 (6) | 0.2907 (4) | 0.5465 (3) | 0.1052 (13) | |
H5 | 0.5235 | 0.3191 | 0.4853 | 0.126* | |
C6 | 0.6931 (4) | 0.2174 (4) | 0.5772 (2) | 0.0728 (8) | |
C7 | 0.8312 (6) | 0.1882 (5) | 0.5141 (2) | 0.1050 (11) | |
H7A | 0.9250 | 0.1368 | 0.5466 | 0.157* | |
H7B | 0.9000 | 0.3034 | 0.4965 | 0.157* | |
H7C | 0.7576 | 0.1056 | 0.4584 | 0.157* | |
C8 | 0.6272 (6) | 0.1818 (5) | 0.8314 (3) | 0.1143 (13) | |
H8A | 0.6137 | 0.0542 | 0.8333 | 0.171* | |
H8B | 0.5326 | 0.2158 | 0.8642 | 0.171* | |
H8C | 0.7585 | 0.2541 | 0.8612 | 0.171* | |
C9 | 0.8238 (4) | −0.0765 (3) | 0.6916 (2) | 0.0710 (8) | |
H9A | 0.8080 | −0.1196 | 0.6249 | 0.085* | |
H9B | 0.7005 | −0.1320 | 0.7125 | 0.085* | |
C10 | 0.9881 (4) | −0.1320 (3) | 0.74612 (18) | 0.0610 (7) | |
H10 | 1.1123 | −0.0654 | 0.7276 | 0.073* | |
C11 | 0.9560 (4) | −0.3349 (4) | 0.7197 (2) | 0.0764 (8) | |
H11A | 0.9530 | −0.3606 | 0.6524 | 0.092* | |
H11B | 0.8287 | −0.4032 | 0.7329 | 0.092* | |
C12 | 1.1171 (4) | −0.3994 (4) | 0.7733 (2) | 0.0746 (8) | |
H12A | 1.2426 | −0.3407 | 0.7551 | 0.089* | |
H12B | 1.0871 | −0.5308 | 0.7564 | 0.089* | |
C13 | 1.1352 (4) | −0.3548 (4) | 0.8800 (2) | 0.0712 (8) | |
H13 | 1.0096 | −0.4209 | 0.8974 | 0.085* | |
C14 | 1.1699 (5) | −0.1513 (4) | 0.9070 (2) | 0.0838 (9) | |
H14A | 1.2980 | −0.0839 | 0.8942 | 0.101* | |
H14B | 1.1718 | −0.1259 | 0.9742 | 0.101* | |
C15 | 1.0103 (5) | −0.0858 (4) | 0.8526 (2) | 0.0789 (8) | |
H15A | 1.0425 | 0.0460 | 0.8689 | 0.095* | |
H15B | 0.8849 | −0.1419 | 0.8716 | 0.095* | |
C16 | 1.2952 (4) | −0.4194 (4) | 0.9309 (2) | 0.0679 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0677 (12) | 0.0521 (10) | 0.0835 (12) | 0.0263 (9) | −0.0042 (9) | 0.0107 (8) |
O2 | 0.0857 (14) | 0.0824 (15) | 0.1224 (19) | 0.0393 (12) | 0.0165 (13) | 0.0434 (13) |
O3 | 0.0695 (14) | 0.0986 (16) | 0.136 (2) | 0.0373 (12) | 0.0181 (12) | 0.0551 (14) |
C1 | 0.0573 (15) | 0.0486 (14) | 0.0804 (18) | 0.0191 (12) | −0.0007 (13) | 0.0088 (12) |
C2 | 0.0742 (19) | 0.0565 (17) | 0.104 (2) | 0.0234 (15) | 0.0221 (17) | 0.0078 (15) |
C3 | 0.083 (3) | 0.071 (2) | 0.193 (5) | 0.0338 (19) | 0.041 (3) | 0.013 (3) |
C4 | 0.074 (3) | 0.079 (3) | 0.216 (6) | 0.037 (2) | −0.010 (3) | 0.029 (3) |
C5 | 0.103 (3) | 0.074 (2) | 0.122 (3) | 0.024 (2) | −0.038 (2) | 0.027 (2) |
C6 | 0.0754 (19) | 0.0592 (17) | 0.0762 (19) | 0.0179 (14) | −0.0078 (15) | 0.0131 (14) |
C7 | 0.130 (3) | 0.105 (3) | 0.085 (2) | 0.038 (2) | 0.024 (2) | 0.0224 (19) |
C8 | 0.154 (3) | 0.100 (3) | 0.102 (3) | 0.040 (2) | 0.062 (3) | 0.012 (2) |
C9 | 0.0734 (18) | 0.0548 (16) | 0.0841 (19) | 0.0268 (13) | −0.0026 (14) | 0.0088 (13) |
C10 | 0.0652 (16) | 0.0495 (14) | 0.0686 (16) | 0.0217 (12) | 0.0039 (12) | 0.0087 (12) |
C11 | 0.0809 (19) | 0.0603 (17) | 0.090 (2) | 0.0345 (14) | −0.0016 (15) | 0.0030 (14) |
C12 | 0.0780 (19) | 0.0602 (17) | 0.090 (2) | 0.0348 (14) | 0.0035 (15) | 0.0051 (14) |
C13 | 0.0676 (17) | 0.0716 (18) | 0.090 (2) | 0.0353 (14) | 0.0230 (14) | 0.0304 (15) |
C14 | 0.112 (2) | 0.081 (2) | 0.0727 (19) | 0.0588 (19) | 0.0024 (16) | 0.0080 (15) |
C15 | 0.098 (2) | 0.0747 (19) | 0.079 (2) | 0.0534 (17) | 0.0075 (15) | 0.0093 (15) |
C16 | 0.0757 (19) | 0.0644 (17) | 0.0816 (19) | 0.0397 (15) | 0.0238 (15) | 0.0268 (15) |
O1—C1 | 1.397 (3) | C8—H8C | 0.96 |
O1—C9 | 1.431 (3) | C9—C10 | 1.505 (3) |
O2—C16 | 1.266 (3) | C9—H9A | 0.97 |
O2—H2 | 0.82 | C9—H9B | 0.97 |
O3—C16 | 1.256 (3) | C10—C11 | 1.513 (4) |
C1—C2 | 1.373 (4) | C10—C15 | 1.522 (4) |
C1—C6 | 1.390 (4) | C10—H10 | 0.98 |
C2—C3 | 1.386 (5) | C11—C12 | 1.521 (4) |
C2—C8 | 1.496 (5) | C11—H11A | 0.97 |
C3—C4 | 1.350 (6) | C11—H11B | 0.97 |
C3—H3 | 0.93 | C12—C13 | 1.526 (4) |
C4—C5 | 1.359 (6) | C12—H12A | 0.97 |
C4—H4 | 0.93 | C12—H12B | 0.97 |
C5—C6 | 1.402 (5) | C13—C16 | 1.498 (4) |
C5—H5 | 0.93 | C13—C14 | 1.516 (4) |
C6—C7 | 1.487 (5) | C13—H13 | 0.98 |
C7—H7A | 0.96 | C14—C15 | 1.521 (4) |
C7—H7B | 0.96 | C14—H14A | 0.97 |
C7—H7C | 0.96 | C14—H14B | 0.97 |
C8—H8A | 0.96 | C15—H15A | 0.97 |
C8—H8B | 0.96 | C15—H15B | 0.97 |
C1—O1—C9 | 113.91 (18) | C9—C10—C15 | 113.2 (2) |
C16—O2—H2 | 109.5 | C11—C10—C15 | 110.1 (2) |
C2—C1—C6 | 123.7 (3) | C9—C10—H10 | 107.8 |
C2—C1—O1 | 117.7 (3) | C11—C10—H10 | 107.8 |
C6—C1—O1 | 118.5 (3) | C15—C10—H10 | 107.8 |
C1—C2—C3 | 116.5 (3) | C10—C11—C12 | 112.2 (2) |
C1—C2—C8 | 120.4 (3) | C10—C11—H11A | 109.2 |
C3—C2—C8 | 123.1 (3) | C12—C11—H11A | 109.2 |
C4—C3—C2 | 122.2 (4) | C10—C11—H11B | 109.2 |
C4—C3—H3 | 118.9 | C12—C11—H11B | 109.2 |
C2—C3—H3 | 118.9 | H11A—C11—H11B | 107.9 |
C3—C4—C5 | 120.2 (4) | C11—C12—C13 | 111.6 (2) |
C3—C4—H4 | 119.9 | C11—C12—H12A | 109.3 |
C5—C4—H4 | 119.9 | C13—C12—H12A | 109.3 |
C4—C5—C6 | 121.2 (4) | C11—C12—H12B | 109.3 |
C4—C5—H5 | 119.4 | C13—C12—H12B | 109.3 |
C6—C5—H5 | 119.4 | H12A—C12—H12B | 108.0 |
C1—C6—C5 | 116.2 (3) | C16—C13—C14 | 112.1 (2) |
C1—C6—C7 | 122.8 (3) | C16—C13—C12 | 110.4 (2) |
C5—C6—C7 | 121.0 (3) | C14—C13—C12 | 110.0 (2) |
C6—C7—H7A | 109.5 | C16—C13—H13 | 108.1 |
C6—C7—H7B | 109.5 | C14—C13—H13 | 108.1 |
H7A—C7—H7B | 109.5 | C12—C13—H13 | 108.1 |
C6—C7—H7C | 109.5 | C13—C14—C15 | 111.7 (2) |
H7A—C7—H7C | 109.5 | C13—C14—H14A | 109.3 |
H7B—C7—H7C | 109.5 | C15—C14—H14A | 109.3 |
C2—C8—H8A | 109.5 | C13—C14—H14B | 109.3 |
C2—C8—H8B | 109.5 | C15—C14—H14B | 109.3 |
H8A—C8—H8B | 109.5 | H14A—C14—H14B | 107.9 |
C2—C8—H8C | 109.5 | C14—C15—C10 | 112.6 (2) |
H8A—C8—H8C | 109.5 | C14—C15—H15A | 109.1 |
H8B—C8—H8C | 109.5 | C10—C15—H15A | 109.1 |
O1—C9—C10 | 109.9 (2) | C14—C15—H15B | 109.1 |
O1—C9—H9A | 109.7 | C10—C15—H15B | 109.1 |
C10—C9—H9A | 109.7 | H15A—C15—H15B | 107.8 |
O1—C9—H9B | 109.7 | O3—C16—O2 | 122.8 (2) |
C10—C9—H9B | 109.7 | O3—C16—C13 | 119.9 (2) |
H9A—C9—H9B | 108.2 | O2—C16—C13 | 117.3 (3) |
C9—C10—C11 | 109.9 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O3i | 0.82 | 1.86 | 2.658 (3) | 166 |
Symmetry code: (i) −x+3, −y−1, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C16H22O3 |
Mr | 262.34 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 292 |
a, b, c (Å) | 7.162 (3), 7.680 (4), 14.451 (4) |
α, β, γ (°) | 95.26 (4), 98.35 (4), 106.44 (3) |
V (Å3) | 746.9 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.60 × 0.52 × 0.42 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2886, 2715, 1461 |
Rint | 0.013 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.066, 0.196, 1.16 |
No. of reflections | 2715 |
No. of parameters | 175 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.18, −0.20 |
Computer programs: DIFRAC (Gabe & White, 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O3i | 0.82 | 1.86 | 2.658 (3) | 166 |
Symmetry code: (i) −x+3, −y−1, −z+2. |
References
Ahmed, S. M., Budd, P. M., McKeown, N. B., Evans, K. P., Beaumont, G. L., Donaldson, C. & Brennan, C. M. (2001). Polymer, 42, 889–896. Web of Science CrossRef CAS Google Scholar
Bucourt, R. & Hainaut, D. (1965). Bull. Soc. Chim. Fr. 5, 1366–1378. Google Scholar
Dunitz, J. D. & Strickler, P. (1966). Helv. Chim. Acta, 49, 290–291. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association Meeting, Pittsburgh, Abstract PA 104. Google Scholar
Grabchev, I., Chovelon, J. M., Bojinov, V. & Ivanova, G. (2003). Tetrahedron, 59, 9591–9598. Web of Science CrossRef CAS Google Scholar
Luger, P., Plieth, K. & Ruban, G. (1972). Acta Cryst. B28, 706–710. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, B.-B., Zhang, X., Jia, X.-R., Luo, Y.-F., Sun, Z., Yang, L., Ji, Y. & Wei, Y. (2004). Polymer, 45, 8395–8402. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Poly(amidoamine) [PAMAM] dendrimers have attracted much interest for their symmetry, high degree of branching and high density of terminal functional groups, and with different structures they could be used in different fields. Various modifications of periphery of PAMAM dendrimers to change its physical or chemical properties have been reported recently (Wang et al., 2004; Grabchev et al., 2003; Ahmed et al., 2001). To change the lipophilicity of PAMAM dendrimers and provide a new type of linker with special stereostructure, a series of cyclohexanic acid derivatives were synthesized. In our synthetic work the title compound was obtained and here we report its crystal structure.
The cyclohexane ring of the title compound (Fig. 1) adopts a chair conformation. The average C—C bond length of the cyclohexane ring is 1.517 (4) Å, which is close to that of trans-1,4-cyclohexane dicarboxylic acid (1.523 (3) Å, Luger et al., 1972). The mean endocyclic angle of the cyclohexane is 111.1 (3)°, which is close to that observed for cyclohexane rings (111.1°, Bucourt & Hainaut, 1965; 111.4 (4)°, Dunitz & Strickler, 1966; Luger et al., 1972).
In the crystal structure, the molecules are linked into centrosymmetric dimers by O—H···O hydrogen bonds (Table 1).