organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-4-[(2,6-Di­methyl­phen­­oxy)methyl]cyclo­hexa­ne­carboxylic acid

aDepartment of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
*Correspondence e-mail: hwc@scu.edu.cn

(Received 28 October 2008; accepted 30 October 2008; online 8 November 2008)

The title compound, C16H22O3, is a useful inter­mediate in the synthesis of poly(amido­amine) dendrimers. The cyclo­hexane ring adopts a chair conformation. In the crystal structure, mol­ecules are linked into centrosymmetric dimers by pairs of O—H⋯O hydrogen bonds.

Related literature

For general background on poly(amido­amine) dendrimers, see: Ahmed et al. (2001[Ahmed, S. M., Budd, P. M., McKeown, N. B., Evans, K. P., Beaumont, G. L., Donaldson, C. & Brennan, C. M. (2001). Polymer, 42, 889-896.]); Grabchev et al. (2003[Grabchev, I., Chovelon, J. M., Bojinov, V. & Ivanova, G. (2003). Tetrahedron, 59, 9591-9598.]); Wang et al. (2004[Wang, B.-B., Zhang, X., Jia, X.-R., Luo, Y.-F., Sun, Z., Yang, L., Ji, Y. & Wei, Y. (2004). Polymer, 45, 8395-8402.]). For related structures, see: Bucourt & Hainaut (1965[Bucourt, R. & Hainaut, D. (1965). Bull. Soc. Chim. Fr. 5, 1366-1378.]); Dunitz & Strickler (1966[Dunitz, J. D. & Strickler, P. (1966). Helv. Chim. Acta, 49, 290-291.]); Luger et al. (1972[Luger, P., Plieth, K. & Ruban, G. (1972). Acta Cryst. B28, 706-710.]).

[Scheme 1]

Experimental

Crystal data
  • C16H22O3

  • Mr = 262.34

  • Triclinic, [P \overline 1]

  • a = 7.162 (3) Å

  • b = 7.680 (4) Å

  • c = 14.451 (4) Å

  • α = 95.26 (4)°

  • β = 98.35 (4)°

  • γ = 106.44 (3)°

  • V = 746.9 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 292 (2) K

  • 0.60 × 0.52 × 0.42 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 2886 measured reflections

  • 2715 independent reflections

  • 1461 reflections with I > 2σ(I)

  • Rint = 0.013

  • 3 standard reflections every 250 reflections intensity decay: 2.3%

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.196

  • S = 1.16

  • 2715 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3i 0.82 1.86 2.658 (3) 166
Symmetry code: (i) -x+3, -y-1, -z+2.

Data collection: DIFRAC (Gabe & White, 1993[Gabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association Meeting, Pittsburgh, Abstract PA 104.]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Poly(amidoamine) [PAMAM] dendrimers have attracted much interest for their symmetry, high degree of branching and high density of terminal functional groups, and with different structures they could be used in different fields. Various modifications of periphery of PAMAM dendrimers to change its physical or chemical properties have been reported recently (Wang et al., 2004; Grabchev et al., 2003; Ahmed et al., 2001). To change the lipophilicity of PAMAM dendrimers and provide a new type of linker with special stereostructure, a series of cyclohexanic acid derivatives were synthesized. In our synthetic work the title compound was obtained and here we report its crystal structure.

The cyclohexane ring of the title compound (Fig. 1) adopts a chair conformation. The average C—C bond length of the cyclohexane ring is 1.517 (4) Å, which is close to that of trans-1,4-cyclohexane dicarboxylic acid (1.523 (3) Å, Luger et al., 1972). The mean endocyclic angle of the cyclohexane is 111.1 (3)°, which is close to that observed for cyclohexane rings (111.1°, Bucourt & Hainaut, 1965; 111.4 (4)°, Dunitz & Strickler, 1966; Luger et al., 1972).

In the crystal structure, the molecules are linked into centrosymmetric dimers by O—H···O hydrogen bonds (Table 1).

Related literature top

For general background on poly(amidoamine) dendrimers, see: Ahmed et al. (2001); Grabchev et al. (2003); Wang et al. (2004). For related structures, see: Bucourt & Hainaut (1965); Dunitz & Strickler (1966); Luger et al. (1972)

Experimental top

Methyl trans-4-(tosylmethyl)cyclohexanecarboxylate (3.26 g, 10 mmol), 2,6-dimethylphenol (3.66 g, 30 mmol) and potassium phosphate (10.6 g, 50 mmol) were suspended in dry DMF (20 ml) and heated at 368 K for 8 h, and then water (30 ml) and toluene (30 ml) were added. After agitation, the water layer separated was washed twice with toluene and the organic layer combined was washed with water and then dried with sodium sulfate. After filtration and distillation under vaccum, the crude product obtained was further purified by column chromatography to give pure methyl ester. The ester was then hydrolyzed in a ethanol (15 ml)–1 N NaOH (15 ml) solution for 5 h at 313 K. After cooling and acidification with hydrochloride, the white solid precipitated was collected. Colourless crystals were obtained by slow evaporation in chloroform at room temperature.

Refinement top

H atoms were positioned geometrically (O—H = 0.82 Å and C—H = 0.93–0.98 Å) and refined using a riding model, with Uiso(H) = 1.2–1.5Ueq(C). A rotating group model was used for methyl and hydroxyl groups.

Computing details top

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC (Gabe & White, 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
trans-4-[(2,6-Dimethylphenoxy)methyl]cyclohexanecarboxylic acid top
Crystal data top
C16H22O3Z = 2
Mr = 262.34F(000) = 284
Triclinic, P1Dx = 1.167 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.162 (3) ÅCell parameters from 26 reflections
b = 7.680 (4) Åθ = 4.3–7.4°
c = 14.451 (4) ŵ = 0.08 mm1
α = 95.26 (4)°T = 292 K
β = 98.35 (4)°Block, colourless
γ = 106.44 (3)°0.60 × 0.52 × 0.42 mm
V = 746.9 (6) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.013
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 1.4°
Graphite monochromatorh = 88
ω/2θ scansk = 59
2886 measured reflectionsl = 1717
2715 independent reflections3 standard reflections every 250 reflections
1461 reflections with I > 2σ(I) intensity decay: 2.3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.196H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0902P)2 + 0.0605P]
where P = (Fo2 + 2Fc2)/3
2715 reflections(Δ/σ)max = 0.001
175 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C16H22O3γ = 106.44 (3)°
Mr = 262.34V = 746.9 (6) Å3
Triclinic, P1Z = 2
a = 7.162 (3) ÅMo Kα radiation
b = 7.680 (4) ŵ = 0.08 mm1
c = 14.451 (4) ÅT = 292 K
α = 95.26 (4)°0.60 × 0.52 × 0.42 mm
β = 98.35 (4)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.013
2886 measured reflections3 standard reflections every 250 reflections
2715 independent reflections intensity decay: 2.3%
1461 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.196H-atom parameters constrained
S = 1.16Δρmax = 0.18 e Å3
2715 reflectionsΔρmin = 0.20 e Å3
175 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8686 (2)0.1188 (2)0.70598 (13)0.0678 (5)
O21.2419 (3)0.5645 (3)0.96803 (18)0.0922 (7)
H21.33810.57801.00150.138*
O31.4736 (3)0.3312 (3)0.93470 (18)0.0964 (8)
C10.7116 (4)0.1817 (3)0.6701 (2)0.0628 (7)
C20.5908 (4)0.2148 (4)0.7308 (2)0.0769 (8)
C30.4398 (5)0.2823 (5)0.6941 (4)0.1122 (14)
H30.35180.30170.73240.135*
C40.4162 (6)0.3209 (5)0.6047 (5)0.1232 (17)
H40.31480.36840.58280.148*
C50.5403 (6)0.2907 (4)0.5465 (3)0.1052 (13)
H50.52350.31910.48530.126*
C60.6931 (4)0.2174 (4)0.5772 (2)0.0728 (8)
C70.8312 (6)0.1882 (5)0.5141 (2)0.1050 (11)
H7A0.92500.13680.54660.157*
H7B0.90000.30340.49650.157*
H7C0.75760.10560.45840.157*
C80.6272 (6)0.1818 (5)0.8314 (3)0.1143 (13)
H8A0.61370.05420.83330.171*
H8B0.53260.21580.86420.171*
H8C0.75850.25410.86120.171*
C90.8238 (4)0.0765 (3)0.6916 (2)0.0710 (8)
H9A0.80800.11960.62490.085*
H9B0.70050.13200.71250.085*
C100.9881 (4)0.1320 (3)0.74612 (18)0.0610 (7)
H101.11230.06540.72760.073*
C110.9560 (4)0.3349 (4)0.7197 (2)0.0764 (8)
H11A0.95300.36060.65240.092*
H11B0.82870.40320.73290.092*
C121.1171 (4)0.3994 (4)0.7733 (2)0.0746 (8)
H12A1.24260.34070.75510.089*
H12B1.08710.53080.75640.089*
C131.1352 (4)0.3548 (4)0.8800 (2)0.0712 (8)
H131.00960.42090.89740.085*
C141.1699 (5)0.1513 (4)0.9070 (2)0.0838 (9)
H14A1.29800.08390.89420.101*
H14B1.17180.12590.97420.101*
C151.0103 (5)0.0858 (4)0.8526 (2)0.0789 (8)
H15A1.04250.04600.86890.095*
H15B0.88490.14190.87160.095*
C161.2952 (4)0.4194 (4)0.9309 (2)0.0679 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0677 (12)0.0521 (10)0.0835 (12)0.0263 (9)0.0042 (9)0.0107 (8)
O20.0857 (14)0.0824 (15)0.1224 (19)0.0393 (12)0.0165 (13)0.0434 (13)
O30.0695 (14)0.0986 (16)0.136 (2)0.0373 (12)0.0181 (12)0.0551 (14)
C10.0573 (15)0.0486 (14)0.0804 (18)0.0191 (12)0.0007 (13)0.0088 (12)
C20.0742 (19)0.0565 (17)0.104 (2)0.0234 (15)0.0221 (17)0.0078 (15)
C30.083 (3)0.071 (2)0.193 (5)0.0338 (19)0.041 (3)0.013 (3)
C40.074 (3)0.079 (3)0.216 (6)0.037 (2)0.010 (3)0.029 (3)
C50.103 (3)0.074 (2)0.122 (3)0.024 (2)0.038 (2)0.027 (2)
C60.0754 (19)0.0592 (17)0.0762 (19)0.0179 (14)0.0078 (15)0.0131 (14)
C70.130 (3)0.105 (3)0.085 (2)0.038 (2)0.024 (2)0.0224 (19)
C80.154 (3)0.100 (3)0.102 (3)0.040 (2)0.062 (3)0.012 (2)
C90.0734 (18)0.0548 (16)0.0841 (19)0.0268 (13)0.0026 (14)0.0088 (13)
C100.0652 (16)0.0495 (14)0.0686 (16)0.0217 (12)0.0039 (12)0.0087 (12)
C110.0809 (19)0.0603 (17)0.090 (2)0.0345 (14)0.0016 (15)0.0030 (14)
C120.0780 (19)0.0602 (17)0.090 (2)0.0348 (14)0.0035 (15)0.0051 (14)
C130.0676 (17)0.0716 (18)0.090 (2)0.0353 (14)0.0230 (14)0.0304 (15)
C140.112 (2)0.081 (2)0.0727 (19)0.0588 (19)0.0024 (16)0.0080 (15)
C150.098 (2)0.0747 (19)0.079 (2)0.0534 (17)0.0075 (15)0.0093 (15)
C160.0757 (19)0.0644 (17)0.0816 (19)0.0397 (15)0.0238 (15)0.0268 (15)
Geometric parameters (Å, º) top
O1—C11.397 (3)C8—H8C0.96
O1—C91.431 (3)C9—C101.505 (3)
O2—C161.266 (3)C9—H9A0.97
O2—H20.82C9—H9B0.97
O3—C161.256 (3)C10—C111.513 (4)
C1—C21.373 (4)C10—C151.522 (4)
C1—C61.390 (4)C10—H100.98
C2—C31.386 (5)C11—C121.521 (4)
C2—C81.496 (5)C11—H11A0.97
C3—C41.350 (6)C11—H11B0.97
C3—H30.93C12—C131.526 (4)
C4—C51.359 (6)C12—H12A0.97
C4—H40.93C12—H12B0.97
C5—C61.402 (5)C13—C161.498 (4)
C5—H50.93C13—C141.516 (4)
C6—C71.487 (5)C13—H130.98
C7—H7A0.96C14—C151.521 (4)
C7—H7B0.96C14—H14A0.97
C7—H7C0.96C14—H14B0.97
C8—H8A0.96C15—H15A0.97
C8—H8B0.96C15—H15B0.97
C1—O1—C9113.91 (18)C9—C10—C15113.2 (2)
C16—O2—H2109.5C11—C10—C15110.1 (2)
C2—C1—C6123.7 (3)C9—C10—H10107.8
C2—C1—O1117.7 (3)C11—C10—H10107.8
C6—C1—O1118.5 (3)C15—C10—H10107.8
C1—C2—C3116.5 (3)C10—C11—C12112.2 (2)
C1—C2—C8120.4 (3)C10—C11—H11A109.2
C3—C2—C8123.1 (3)C12—C11—H11A109.2
C4—C3—C2122.2 (4)C10—C11—H11B109.2
C4—C3—H3118.9C12—C11—H11B109.2
C2—C3—H3118.9H11A—C11—H11B107.9
C3—C4—C5120.2 (4)C11—C12—C13111.6 (2)
C3—C4—H4119.9C11—C12—H12A109.3
C5—C4—H4119.9C13—C12—H12A109.3
C4—C5—C6121.2 (4)C11—C12—H12B109.3
C4—C5—H5119.4C13—C12—H12B109.3
C6—C5—H5119.4H12A—C12—H12B108.0
C1—C6—C5116.2 (3)C16—C13—C14112.1 (2)
C1—C6—C7122.8 (3)C16—C13—C12110.4 (2)
C5—C6—C7121.0 (3)C14—C13—C12110.0 (2)
C6—C7—H7A109.5C16—C13—H13108.1
C6—C7—H7B109.5C14—C13—H13108.1
H7A—C7—H7B109.5C12—C13—H13108.1
C6—C7—H7C109.5C13—C14—C15111.7 (2)
H7A—C7—H7C109.5C13—C14—H14A109.3
H7B—C7—H7C109.5C15—C14—H14A109.3
C2—C8—H8A109.5C13—C14—H14B109.3
C2—C8—H8B109.5C15—C14—H14B109.3
H8A—C8—H8B109.5H14A—C14—H14B107.9
C2—C8—H8C109.5C14—C15—C10112.6 (2)
H8A—C8—H8C109.5C14—C15—H15A109.1
H8B—C8—H8C109.5C10—C15—H15A109.1
O1—C9—C10109.9 (2)C14—C15—H15B109.1
O1—C9—H9A109.7C10—C15—H15B109.1
C10—C9—H9A109.7H15A—C15—H15B107.8
O1—C9—H9B109.7O3—C16—O2122.8 (2)
C10—C9—H9B109.7O3—C16—C13119.9 (2)
H9A—C9—H9B108.2O2—C16—C13117.3 (3)
C9—C10—C11109.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.821.862.658 (3)166
Symmetry code: (i) x+3, y1, z+2.

Experimental details

Crystal data
Chemical formulaC16H22O3
Mr262.34
Crystal system, space groupTriclinic, P1
Temperature (K)292
a, b, c (Å)7.162 (3), 7.680 (4), 14.451 (4)
α, β, γ (°)95.26 (4), 98.35 (4), 106.44 (3)
V3)746.9 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.60 × 0.52 × 0.42
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2886, 2715, 1461
Rint0.013
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.196, 1.16
No. of reflections2715
No. of parameters175
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.20

Computer programs: DIFRAC (Gabe & White, 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.821.862.658 (3)166
Symmetry code: (i) x+3, y1, z+2.
 

References

First citationAhmed, S. M., Budd, P. M., McKeown, N. B., Evans, K. P., Beaumont, G. L., Donaldson, C. & Brennan, C. M. (2001). Polymer, 42, 889–896.  Web of Science CrossRef CAS Google Scholar
First citationBucourt, R. & Hainaut, D. (1965). Bull. Soc. Chim. Fr. 5, 1366–1378.  Google Scholar
First citationDunitz, J. D. & Strickler, P. (1966). Helv. Chim. Acta, 49, 290–291.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association Meeting, Pittsburgh, Abstract PA 104.  Google Scholar
First citationGrabchev, I., Chovelon, J. M., Bojinov, V. & Ivanova, G. (2003). Tetrahedron, 59, 9591–9598.  Web of Science CrossRef CAS Google Scholar
First citationLuger, P., Plieth, K. & Ruban, G. (1972). Acta Cryst. B28, 706–710.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, B.-B., Zhang, X., Jia, X.-R., Luo, Y.-F., Sun, Z., Yang, L., Ji, Y. & Wei, Y. (2004). Polymer, 45, 8395–8402.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds