metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1591-m1592

Di­aqua­(2,9-di­methyl-1,10-phenanthroline-κ2N,N′)(4-hy­droxy­benzoato-κ2O,O′)cobalt(II) nitrate dihydrate

aCollege of Chemistry and Chemical Engineering, Henan University, Kaifeng 475001, People's Republic of China, bDepartment of Chemistry and Chemical Engineering, Huanghuai University, Zhumadian 463000, People's Republic of China, and cCollege of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, People's Republic of China
*Correspondence e-mail: pz_zhao@hotmail.com

(Received 28 October 2008; accepted 16 November 2008; online 22 November 2008)

In the title compound, [Co(C7H5O3)(C14H12N2)(H2O)2]NO3·2H2O, the CoII ion is six-coordinated by two N atoms of a 2,9-dimethyl-1,10-phenanthroline (dmphen) ligand, two carboxyl­ate O atoms of one 4-hydroxy­benzoate anion and two O atoms of two water mol­ecules, in a distorted octa­hedral environment; the two water mol­ecules occupy the apical positions. In the crystal structure, the ionic units and water mol­ecules are linked through O—H⋯O hydrogen bonds, leading to the formation of a three-dimensional network. In addition, ππ inter­actions between a pyridine ring of the dmphen ligand and the benzene ring of the hydroxy­benzoate anion [centroid–centroid separation = 3.6861 (3) Å] are observed.

Related literature

For related structures, see: Xuan et al. (2007[Xuan, X.-P., Zhao, P.-Z. & Tang, Q.-H. (2007). Acta Cryst. E63, m2405.]); Xuan & Zhao (2007a[Xuan, X. & Zhao, P. (2007a). Acta Cryst. E63, m2856.],b[Xuan, X. & Zhao, P. (2007b). Acta Cryst. E63, m3009.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C7H5O3)(C14H12N2)(H2O)2]NO3·2H2O

  • Mr = 538.37

  • Monoclinic, P 21 /c

  • a = 9.8001 (8) Å

  • b = 22.2638 (19) Å

  • c = 10.8676 (9) Å

  • β = 94.602 (1)°

  • V = 2363.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.79 mm−1

  • T = 291 (2) K

  • 0.35 × 0.25 × 0.14 mm

Data collection
  • Buker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.771, Tmax = 0.899

  • 17391 measured reflections

  • 4385 independent reflections

  • 3689 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.081

  • S = 1.01

  • 4385 reflections

  • 319 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O5 2.0685 (14)
Co1—O4 2.1187 (14)
Co1—N1 2.1213 (15)
Co1—N2 2.1357 (15)
Co1—O1 2.1425 (13)
Co1—O2 2.2311 (13)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H8W⋯O6 0.83 2.26 2.960 (3) 142
O9—H5W⋯O6 0.83 2.09 2.904 (3) 169
O9—H6W⋯O7i 0.83 2.09 2.888 (3) 161
O10—H7W⋯O8ii 0.83 2.01 2.829 (3) 169
O5—H4W⋯O10 0.81 1.93 2.720 (2) 167
O4—H2W⋯O2iii 0.83 2.01 2.846 (2) 180
O5—H3W⋯O1iv 0.82 2.05 2.826 (2) 157
O4—H1W⋯O9v 0.82 1.96 2.758 (2) 164
O3—H3⋯O8vi 0.82 2.57 3.133 (3) 127
O3—H3⋯O7vi 0.82 2.07 2.861 (3) 164
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1; (iii) -x+1, -y+1, -z+2; (iv) -x, -y+1, -z+2; (v) x, y, z+1; (vi) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

We have recently reported the syntheses and crystal structures of [Ni(dmphen)(3-OH-benzoate)(H2O)NO3] (Xuan & Zhao, 2007a), [Ni(dmphen)(benzoate)(H2O)NO3] (Xuan et al., 2007) and [Co(dmphen)(3-OH-benzoate)(H2O)NO3](Xuan & Zhao, 2007b) complexes. Now, we report here the crystal structure of the title compound.

Each CoII ion is six-coordinated by two N atoms from a dmphen ligand, and two O atoms from two water molecules and two O atoms from carboxylate group of one 4-hydroxy-benzoate anion (Fig.1). The CoO4N2 unit forms a distorted octahedral geometry, with two O atoms of two water molecules occupying the axial positions at 2.0685 (14) or 2.1187 (14) Å (Table 1). The equatorial plane is defined by the N atoms of dmphen and carboxy O atoms of the 3-hydroxybenzoate anion.

In the crystal structure, an extensive series of O—H···O hydrogen bonds, involving the coordinated and solvent water molecules, 4-hydroxybenzoate and nitrate anions, lead to a supramolecular network structure (Table 2 and Fig. 2). In addition, inversion related molecules are linked via π-π interactions involving the pyridine ring of the dmphen (N1/C1-C4/C12; centroid Cg1) ligand and the benzene ring of the hydroxybenzoate (C15—C20; centroid Cg2) anion (Fig.3); the Cg1—Cg2iii distance is 3.6861 (11) Å (symmetry code is given in Table 2). This combination of hydrogen bonds and stacking interactions build a three-dimensional network.

Related literature top

For related structures, see: Xuan et al. (2007); Xuan & Zhao (2007a,b).

Experimental top

To a solution of 2,9-dimethyl-1,10-phenanthroline (0.1095 g, 0.5 mmol), 4-hydroxy-benzoate (0.1382 g, 1 mmol) and sodium hydroxide (0.03740 g, 1 mmol) in ethanol-water (v:v 1:1, 15 ml) was added a solution of Ni(NO3)2.6H2O (0.1457 g, 0.5 mmol) in distilled water (10 ml). The resulting solution was stirred for 5 h at 323 K and then the precipitate obtained was filtered. Pink single crystals of the title compound were obtained by slow evaporation of the filtrate over 80 d.

Refinement top

C-bound H atoms were placed in calculated positions and were included in the refinement in the riding-model approximation, with C-H distances of 0.93 or 0.96 Å and Uiso(H) values of 1.2 or 1.5 times Ueq(C). The hydroxyl H atom was also placed in the calculated position (O-H = 0.82 Å) and refined with free torsion angles to fit the electron density. Water H atoms were located in a difference Fourier map and were allowed to ride on the parent atoms. For all O-bound H atoms the Uiso(H) values were set at 1.5 Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines.
Diaqua(2,9-dimethyl-1,10-phenanthroline-κ2N,N')(4- hydroxybenzoato-κ2O,O')cobalt(II) nitrate dihydrate top
Crystal data top
[Co(C7H5O3)(C14H12N2)(H2O)2]NO3·2H2OF(000) = 1116
Mr = 538.37Dx = 1.513 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6780 reflections
a = 9.8001 (8) Åθ = 2.3–27.4°
b = 22.2638 (19) ŵ = 0.79 mm1
c = 10.8676 (9) ÅT = 291 K
β = 94.602 (1)°Block, pink
V = 2363.5 (3) Å30.35 × 0.25 × 0.14 mm
Z = 4
Data collection top
Buker SMART CCD area-detector
diffractometer
4385 independent reflections
Radiation source: fine-focus sealed tube3689 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1111
Tmin = 0.771, Tmax = 0.899k = 2626
17391 measured reflectionsl = 1213
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0425P)2 + 0.9518P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.002
4385 reflectionsΔρmax = 0.36 e Å3
319 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0047 (4)
Crystal data top
[Co(C7H5O3)(C14H12N2)(H2O)2]NO3·2H2OV = 2363.5 (3) Å3
Mr = 538.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.8001 (8) ŵ = 0.79 mm1
b = 22.2638 (19) ÅT = 291 K
c = 10.8676 (9) Å0.35 × 0.25 × 0.14 mm
β = 94.602 (1)°
Data collection top
Buker SMART CCD area-detector
diffractometer
4385 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
3689 reflections with I > 2σ(I)
Tmin = 0.771, Tmax = 0.899Rint = 0.024
17391 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.01Δρmax = 0.36 e Å3
4385 reflectionsΔρmin = 0.24 e Å3
319 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.24510 (2)0.564923 (11)0.97828 (2)0.02979 (10)
O10.17733 (13)0.49074 (6)1.08320 (12)0.0366 (3)
O20.33021 (13)0.47337 (6)0.95100 (12)0.0374 (3)
O30.2669 (2)0.21307 (7)1.18959 (16)0.0605 (5)
H30.29220.19021.13680.091*
O40.41725 (13)0.57880 (6)1.10585 (13)0.0393 (3)
H1W0.39850.56851.17490.059*
H2W0.49110.56351.08900.059*
O50.08164 (14)0.54783 (7)0.85063 (13)0.0463 (4)
H3W0.01200.54310.88660.070*
H4W0.07240.55130.77660.070*
O60.2587 (2)0.46630 (9)0.4839 (2)0.0894 (7)
O70.3605 (2)0.38408 (10)0.5460 (2)0.0809 (6)
O80.1450 (2)0.38603 (9)0.5079 (2)0.0793 (6)
N10.32511 (15)0.62761 (7)0.85585 (14)0.0318 (3)
N20.15796 (15)0.64623 (7)1.04080 (15)0.0335 (4)
N30.2548 (2)0.41299 (10)0.51267 (18)0.0539 (5)
C10.40177 (19)0.61783 (9)0.76179 (18)0.0365 (4)
C20.4510 (2)0.66576 (10)0.6932 (2)0.0453 (5)
H20.50280.65780.62700.054*
C30.4234 (2)0.72318 (10)0.7231 (2)0.0488 (5)
H3A0.45800.75470.67880.059*
C40.3424 (2)0.73521 (9)0.8210 (2)0.0411 (5)
C50.3063 (2)0.79459 (9)0.8560 (2)0.0508 (6)
H5A0.34280.82740.81700.061*
C60.2207 (3)0.80379 (9)0.9444 (2)0.0522 (6)
H6A0.19750.84280.96490.063*
C70.1645 (2)0.75432 (9)1.0074 (2)0.0425 (5)
C80.0722 (2)0.76153 (10)1.0991 (2)0.0523 (6)
H8A0.04270.79971.11950.063*
C90.0264 (2)0.71247 (10)1.1575 (2)0.0495 (6)
H90.03530.71721.21760.059*
C100.07125 (19)0.65450 (9)1.12827 (19)0.0393 (5)
C110.20282 (19)0.69525 (8)0.98025 (18)0.0343 (4)
C120.29325 (18)0.68556 (8)0.88414 (18)0.0334 (4)
C130.4357 (2)0.55479 (10)0.7305 (2)0.0475 (5)
H13A0.52020.54340.77520.071*
H13B0.44500.55170.64350.071*
H13C0.36380.52860.75270.071*
C140.0247 (2)0.60129 (10)1.1968 (2)0.0500 (6)
H14A0.02720.57511.14060.075*
H14B0.03170.61441.25990.075*
H14C0.10280.58021.23400.075*
C150.25751 (18)0.38985 (8)1.06962 (18)0.0315 (4)
C160.21346 (19)0.37361 (8)1.18382 (18)0.0350 (4)
H160.18130.40301.23500.042*
C170.2169 (2)0.31459 (9)1.22188 (19)0.0398 (5)
H170.18870.30441.29890.048*
C180.2626 (2)0.27028 (9)1.1450 (2)0.0401 (5)
C190.3045 (2)0.28577 (9)1.03029 (19)0.0408 (5)
H190.33340.25610.97810.049*
C200.3033 (2)0.34506 (9)0.99351 (19)0.0374 (4)
H200.33330.35520.91720.045*
C210.25521 (18)0.45407 (9)1.03250 (17)0.0326 (4)
O90.38611 (19)0.56246 (7)0.35357 (16)0.0590 (4)
H5W0.35200.53200.38240.089*
H6W0.46320.56960.38840.089*
O100.0934 (2)0.55782 (10)0.60222 (17)0.0801 (6)
H7W0.01950.56970.56950.120*
H8W0.10890.52280.58090.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02697 (15)0.02584 (15)0.03723 (16)0.00085 (9)0.00663 (10)0.00142 (10)
O10.0339 (7)0.0294 (7)0.0479 (8)0.0028 (5)0.0117 (6)0.0027 (6)
O20.0354 (7)0.0328 (7)0.0457 (8)0.0002 (6)0.0131 (6)0.0061 (6)
O30.0890 (13)0.0308 (8)0.0644 (11)0.0015 (8)0.0237 (10)0.0087 (7)
O40.0313 (7)0.0439 (8)0.0428 (8)0.0022 (6)0.0042 (6)0.0025 (6)
O50.0323 (7)0.0644 (10)0.0423 (8)0.0086 (7)0.0028 (6)0.0030 (7)
O60.123 (2)0.0482 (12)0.1012 (16)0.0095 (11)0.0364 (15)0.0098 (10)
O70.0641 (12)0.0851 (14)0.0940 (16)0.0112 (11)0.0088 (11)0.0044 (12)
O80.0701 (13)0.0730 (13)0.0944 (15)0.0149 (11)0.0030 (11)0.0118 (11)
N10.0275 (8)0.0300 (8)0.0381 (9)0.0009 (6)0.0030 (6)0.0036 (7)
N20.0275 (8)0.0311 (8)0.0421 (9)0.0027 (6)0.0030 (7)0.0035 (7)
N30.0643 (14)0.0494 (12)0.0491 (12)0.0014 (10)0.0115 (10)0.0038 (9)
C10.0293 (10)0.0426 (11)0.0375 (11)0.0018 (8)0.0022 (8)0.0050 (9)
C20.0391 (11)0.0553 (14)0.0422 (12)0.0014 (10)0.0080 (9)0.0113 (10)
C30.0433 (12)0.0488 (13)0.0542 (14)0.0077 (10)0.0030 (10)0.0193 (11)
C40.0393 (11)0.0342 (11)0.0484 (12)0.0040 (8)0.0049 (9)0.0097 (9)
C50.0586 (14)0.0299 (11)0.0622 (15)0.0052 (10)0.0047 (12)0.0104 (10)
C60.0642 (15)0.0247 (10)0.0656 (16)0.0058 (10)0.0087 (12)0.0015 (10)
C70.0411 (12)0.0333 (11)0.0516 (13)0.0077 (9)0.0055 (9)0.0022 (9)
C80.0513 (13)0.0366 (12)0.0684 (16)0.0153 (10)0.0008 (11)0.0092 (11)
C90.0425 (12)0.0484 (13)0.0589 (14)0.0131 (10)0.0111 (10)0.0110 (11)
C100.0298 (10)0.0410 (11)0.0472 (12)0.0036 (8)0.0041 (8)0.0066 (9)
C110.0306 (9)0.0285 (10)0.0426 (11)0.0013 (8)0.0044 (8)0.0010 (8)
C120.0277 (9)0.0306 (10)0.0411 (11)0.0005 (7)0.0028 (8)0.0034 (8)
C130.0509 (13)0.0468 (12)0.0471 (13)0.0047 (10)0.0180 (10)0.0009 (10)
C140.0475 (13)0.0481 (13)0.0576 (14)0.0002 (10)0.0235 (11)0.0060 (11)
C150.0272 (9)0.0291 (9)0.0385 (10)0.0024 (7)0.0041 (8)0.0015 (8)
C160.0323 (10)0.0337 (10)0.0396 (11)0.0005 (8)0.0071 (8)0.0011 (8)
C170.0419 (11)0.0371 (11)0.0416 (11)0.0036 (9)0.0109 (9)0.0064 (9)
C180.0424 (11)0.0292 (10)0.0489 (12)0.0045 (8)0.0041 (9)0.0052 (9)
C190.0455 (11)0.0324 (10)0.0453 (12)0.0011 (9)0.0082 (9)0.0059 (9)
C200.0389 (11)0.0373 (11)0.0369 (11)0.0017 (9)0.0090 (8)0.0007 (9)
C210.0283 (9)0.0324 (10)0.0373 (11)0.0018 (8)0.0028 (8)0.0009 (8)
O90.0772 (12)0.0438 (9)0.0572 (10)0.0025 (8)0.0119 (9)0.0023 (7)
O100.0746 (13)0.1064 (17)0.0584 (12)0.0092 (11)0.0001 (10)0.0031 (11)
Geometric parameters (Å, º) top
Co1—O52.0685 (14)C6—C71.430 (3)
Co1—O42.1187 (14)C6—H6A0.93
Co1—N12.1213 (15)C7—C111.406 (3)
Co1—N22.1357 (15)C7—C81.407 (3)
Co1—O12.1425 (13)C8—C91.358 (3)
Co1—O22.2311 (13)C8—H8A0.93
O1—C211.273 (2)C9—C101.408 (3)
O2—C211.270 (2)C9—H90.93
O3—C181.362 (2)C10—C141.490 (3)
O3—H30.82C11—C121.439 (3)
O4—H1W0.82C13—H13A0.96
O4—H2W0.83C13—H13B0.96
O5—H3W0.82C13—H13C0.96
O5—H4W0.81C14—H14A0.96
O6—N31.229 (3)C14—H14B0.96
O7—N31.249 (3)C14—H14C0.96
O8—N31.229 (3)C15—C201.392 (3)
N1—C11.334 (2)C15—C161.394 (3)
N1—C121.368 (2)C15—C211.485 (3)
N2—C101.338 (2)C16—C171.377 (3)
N2—C111.365 (2)C16—H160.93
C1—C21.409 (3)C17—C181.390 (3)
C1—C131.488 (3)C17—H170.93
C2—C31.352 (3)C18—C191.386 (3)
C2—H20.93C19—C201.379 (3)
C3—C41.403 (3)C19—H190.93
C3—H3A0.93C20—H200.93
C4—C121.407 (3)O9—H5W0.83
C4—C51.428 (3)O9—H6W0.83
C5—C61.341 (3)O10—H7W0.82
C5—H5A0.93O10—H8W0.83
O5—Co1—O4177.28 (6)C11—C7—C6120.0 (2)
O5—Co1—N190.33 (6)C8—C7—C6123.0 (2)
O4—Co1—N189.97 (6)C9—C8—C7119.7 (2)
O5—Co1—N293.52 (6)C9—C8—H8A120.2
O4—Co1—N289.19 (6)C7—C8—H8A120.2
N1—Co1—N279.59 (6)C8—C9—C10120.7 (2)
O5—Co1—O187.63 (6)C8—C9—H9119.7
O4—Co1—O191.65 (5)C10—C9—H9119.7
N1—Co1—O1170.71 (6)N2—C10—C9120.96 (19)
N2—Co1—O1109.58 (6)N2—C10—C14118.91 (17)
O5—Co1—O291.17 (6)C9—C10—C14120.12 (19)
O4—Co1—O286.19 (5)N2—C11—C7123.02 (19)
N1—Co1—O2110.90 (5)N2—C11—C12118.08 (16)
N2—Co1—O2168.50 (6)C7—C11—C12118.90 (18)
O1—Co1—O260.11 (5)N1—C12—C4122.56 (18)
C21—O1—Co192.40 (11)N1—C12—C11118.00 (16)
C21—O2—Co188.46 (11)C4—C12—C11119.42 (18)
C18—O3—H3109.5C1—C13—H13A109.5
Co1—O4—H1W109.5C1—C13—H13B109.5
Co1—O4—H2W117.1H13A—C13—H13B109.5
H1W—O4—H2W110.5C1—C13—H13C109.5
Co1—O5—H3W109.5H13A—C13—H13C109.5
Co1—O5—H4W132.1H13B—C13—H13C109.5
H3W—O5—H4W117.1C10—C14—H14A109.5
C1—N1—C12118.60 (16)C10—C14—H14B109.5
C1—N1—Co1129.23 (13)H14A—C14—H14B109.5
C12—N1—Co1112.14 (12)C10—C14—H14C109.5
C10—N2—C11118.69 (16)H14A—C14—H14C109.5
C10—N2—Co1129.48 (13)H14B—C14—H14C109.5
C11—N2—Co1111.83 (12)C20—C15—C16118.73 (17)
O6—N3—O8120.4 (2)C20—C15—C21121.77 (17)
O6—N3—O7122.0 (2)C16—C15—C21119.49 (17)
O8—N3—O7117.6 (2)C17—C16—C15120.86 (18)
N1—C1—C2121.30 (19)C17—C16—H16119.6
N1—C1—C13118.61 (17)C15—C16—H16119.6
C2—C1—C13120.09 (19)C16—C17—C18119.85 (18)
C3—C2—C1120.4 (2)C16—C17—H17120.1
C3—C2—H2119.8C18—C17—H17120.1
C1—C2—H2119.8O3—C18—C19123.33 (19)
C2—C3—C4119.94 (19)O3—C18—C17116.85 (18)
C2—C3—H3A120.0C19—C18—C17119.79 (18)
C4—C3—H3A120.0C20—C19—C18120.15 (19)
C3—C4—C12117.17 (19)C20—C19—H19119.9
C3—C4—C5123.1 (2)C18—C19—H19119.9
C12—C4—C5119.7 (2)C19—C20—C15120.59 (19)
C6—C5—C4121.0 (2)C19—C20—H20119.7
C6—C5—H5A119.5C15—C20—H20119.7
C4—C5—H5A119.5O2—C21—O1119.03 (18)
C5—C6—C7120.8 (2)O2—C21—C15121.20 (17)
C5—C6—H6A119.6O1—C21—C15119.77 (16)
C7—C6—H6A119.6H5W—O9—H6W111.3
C11—C7—C8116.9 (2)H7W—O10—H8W110.8
O5—Co1—O1—C2193.01 (11)C11—N2—C10—C90.2 (3)
O4—Co1—O1—C2184.36 (11)Co1—N2—C10—C9179.14 (15)
N2—Co1—O1—C21174.09 (11)C11—N2—C10—C14178.51 (18)
O2—Co1—O1—C210.29 (10)Co1—N2—C10—C140.4 (3)
O5—Co1—O2—C2186.88 (11)C8—C9—C10—N21.2 (3)
O4—Co1—O2—C2193.81 (11)C8—C9—C10—C14177.5 (2)
N1—Co1—O2—C21177.68 (10)C10—N2—C11—C71.4 (3)
N2—Co1—O2—C2127.2 (3)Co1—N2—C11—C7177.69 (15)
O1—Co1—O2—C210.29 (10)C10—N2—C11—C12178.40 (17)
O5—Co1—N1—C183.02 (16)Co1—N2—C11—C122.5 (2)
O4—Co1—N1—C194.28 (16)C8—C7—C11—N22.0 (3)
N2—Co1—N1—C1176.54 (17)C6—C7—C11—N2176.94 (19)
O2—Co1—N1—C18.36 (18)C8—C7—C11—C12177.86 (18)
O5—Co1—N1—C1298.92 (13)C6—C7—C11—C123.2 (3)
O4—Co1—N1—C1283.79 (12)C1—N1—C12—C42.5 (3)
N2—Co1—N1—C125.40 (12)Co1—N1—C12—C4175.82 (14)
O2—Co1—N1—C12169.70 (11)C1—N1—C12—C11175.81 (17)
O5—Co1—N2—C1087.09 (17)Co1—N1—C12—C115.9 (2)
O4—Co1—N2—C1093.10 (17)C3—C4—C12—N12.1 (3)
N1—Co1—N2—C10176.78 (18)C5—C4—C12—N1179.36 (18)
O1—Co1—N2—C101.64 (18)C3—C4—C12—C11176.18 (18)
O2—Co1—N2—C1026.8 (4)C5—C4—C12—C112.4 (3)
O5—Co1—N2—C1193.90 (13)N2—C11—C12—N12.4 (3)
O4—Co1—N2—C1185.91 (13)C7—C11—C12—N1177.50 (17)
N1—Co1—N2—C114.21 (12)N2—C11—C12—C4179.31 (17)
O1—Co1—N2—C11177.37 (12)C7—C11—C12—C40.8 (3)
O2—Co1—N2—C11152.2 (2)C20—C15—C16—C171.0 (3)
C12—N1—C1—C20.8 (3)C21—C15—C16—C17178.71 (17)
Co1—N1—C1—C2177.17 (14)C15—C16—C17—C181.1 (3)
C12—N1—C1—C13179.64 (17)C16—C17—C18—O3178.27 (19)
Co1—N1—C1—C132.4 (3)C16—C17—C18—C190.0 (3)
N1—C1—C2—C31.2 (3)O3—C18—C19—C20176.9 (2)
C13—C1—C2—C3178.3 (2)C17—C18—C19—C201.2 (3)
C1—C2—C3—C41.6 (3)C18—C19—C20—C151.4 (3)
C2—C3—C4—C120.0 (3)C16—C15—C20—C190.2 (3)
C2—C3—C4—C5178.5 (2)C21—C15—C20—C19179.93 (18)
C3—C4—C5—C6175.1 (2)Co1—O2—C21—O10.49 (17)
C12—C4—C5—C63.3 (3)Co1—O2—C21—C15179.24 (16)
C4—C5—C6—C70.9 (4)Co1—O1—C21—O20.51 (17)
C5—C6—C7—C112.4 (3)Co1—O1—C21—C15179.23 (15)
C5—C6—C7—C8178.8 (2)C20—C15—C21—O221.5 (3)
C11—C7—C8—C90.9 (3)C16—C15—C21—O2158.19 (18)
C6—C7—C8—C9178.0 (2)C20—C15—C21—O1158.77 (18)
C7—C8—C9—C100.6 (3)C16—C15—C21—O121.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H8W···O60.832.262.960 (3)142
O9—H5W···O60.832.092.904 (3)169
O9—H6W···O7i0.832.092.888 (3)161
O10—H7W···O8ii0.832.012.829 (3)169
O5—H4W···O100.811.932.720 (2)167
O4—H2W···O2iii0.832.012.846 (2)180
O5—H3W···O1iv0.822.052.826 (2)157
O4—H1W···O9v0.821.962.758 (2)164
O3—H3···O8vi0.822.573.133 (3)127
O3—H3···O7vi0.822.072.861 (3)164
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x+1, y+1, z+2; (iv) x, y+1, z+2; (v) x, y, z+1; (vi) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C7H5O3)(C14H12N2)(H2O)2]NO3·2H2O
Mr538.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)9.8001 (8), 22.2638 (19), 10.8676 (9)
β (°) 94.602 (1)
V3)2363.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.35 × 0.25 × 0.14
Data collection
DiffractometerBuker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.771, 0.899
No. of measured, independent and
observed [I > 2σ(I)] reflections
17391, 4385, 3689
Rint0.024
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.081, 1.01
No. of reflections4385
No. of parameters319
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.24

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2008).

Selected bond lengths (Å) top
Co1—O52.0685 (14)Co1—N22.1357 (15)
Co1—O42.1187 (14)Co1—O12.1425 (13)
Co1—N12.1213 (15)Co1—O22.2311 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H8W···O60.832.262.960 (3)142
O9—H5W···O60.832.092.904 (3)169
O9—H6W···O7i0.832.092.888 (3)161
O10—H7W···O8ii0.832.012.829 (3)169
O5—H4W···O100.811.932.720 (2)167
O4—H2W···O2iii0.832.012.846 (2)180
O5—H3W···O1iv0.822.052.826 (2)157
O4—H1W···O9v0.821.962.758 (2)164
O3—H3···O8vi0.822.573.133 (3)127
O3—H3···O7vi0.822.072.861 (3)164
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x+1, y+1, z+2; (iv) x, y+1, z+2; (v) x, y, z+1; (vi) x, y+1/2, z+1/2.
 

Acknowledgements

Financial support from the Science Fund of Henan Province for Distinguished Young Scholars (grant No. 07410051005) is gratefully acknowledged.

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar
First citationXuan, X. & Zhao, P. (2007a). Acta Cryst. E63, m2856.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXuan, X. & Zhao, P. (2007b). Acta Cryst. E63, m3009.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXuan, X.-P., Zhao, P.-Z. & Tang, Q.-H. (2007). Acta Cryst. E63, m2405.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1591-m1592
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds