organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages o2301-o2302

4-[(4-Chloro­phen­yl)(5-hydr­­oxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)meth­yl]-5-methyl-2-phenyl-1H-pyrazol-3(2H)-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574199, India
*Correspondence e-mail: hkfun@usm.my

(Received 31 October 2008; accepted 4 November 2008; online 8 November 2008)

In the the title compound, C27H23ClN4O2, the chloro­phenyl ring forms dihedral angles of 77.70 (9) and 86.65 (9)°, respectively, with the pyrazol-3-one and pyrazole rings. The phenyl rings attached to the pyrazole rings are twisted away from them [dihedral angles 33.80 (9) and 40.34 (10)°]. An intramolecular O—H⋯O hydrogen bond generates an S(8) ring motif. The mol­ecules are linked into chains running along the c axis by N—H⋯N hydrogen bonds, and the chains are cross-linked via C—H⋯O hydrogen bonds and C—H⋯π inter­actions involving the chloro­phenyl ring.

Related literature

For the biological activities of pyrazoles, see: Burger & Iorio (1979[Burger, J. C. & Iorio, L. C. (1979). Annu. Rep. Med. Chem. 14, 27-35.]); Holla et al. (1994[Holla, B. S., Kalluraya, B., Sridhar, K., Erick Parke, T. L. & Bhandary, K. K. (1994). Eur. J. Med. Chem. 29, 301-308.]); Kalluraya & Chimbalkar (2001[Kalluraya, B. & Chimbalkar, R. M. (2001). Indian J. Heterocycl. Chem. 11, 171-174.]); Windholz (1976[Windholz, M. (1976). The Merck Index, 9th ed. Boca Raton: Merck & Co. Inc.]); Wolff (1980[Wolff, M. E. (1980). Burgers Medicinal Chemistry, 4th ed. New York: Wiley.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C27H23ClN4O2

  • Mr = 470.94

  • Monoclinic, P 21 /c

  • a = 10.8809 (2) Å

  • b = 11.2046 (2) Å

  • c = 18.9376 (3) Å

  • β = 97.994 (1)°

  • V = 2286.36 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 100.0 (1) K

  • 0.41 × 0.13 × 0.07 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.923, Tmax = 0.987

  • 26858 measured reflections

  • 6751 independent reflections

  • 4614 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.121

  • S = 1.02

  • 6751 reflections

  • 317 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯O1 0.83 (1) 1.67 (1) 2.5025 (17) 176 (3)
N2—H1N2⋯N3i 0.86 (1) 1.90 (1) 2.7544 (19) 174 (2)
C13—H13A⋯O2ii 0.95 2.58 3.375 (2) 142
C4—H4ACg1iii 0.95 2.67 3.5088 (18) 147
C24—H24ACg1iv 0.95 2.86 3.745 (2) 155
Symmetry codes: (i) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y, -z; (iv) -x+1, -y, -z+1. Cg1 is the centroid of the C11–C16 ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Pyrazole derivatives have been reported to posses various biological activities such as anti-inflammatory (Windholz, 1976), analgesic, hypoglycemic (Wolff, 1980), sedative and hypnotics (Burger & Iorio, 1979), antifungal and antibacterial (Kalluraya & Chimbalkar, 2001) activities. Propenones are also found to show good antibacterial activity (Holla et al., 1994). Prompted by the pharmacological applications of propenones and pyrazole derivatives, we synthesized the title compound containing the propenone-pyrazole moiety and report here its crystal structure.

Bond lengths in the title molecule (Fig.1) have normal values (Allen et al., 1987). The chlorophenyl ring (C11—C16) forms dihedral angles of 77.70 (9)° and 86.65 (9)°, respectively, with the N1/N2/C7—C9 and N3/N4/C17—C19 pyrazole rings. The phenyl rings attached to the pyrazole rings are twisted; the dihedral angle between the C1—C6 and N1/N2/C7—C9 rings is 33.80 (9)° and that between C20—C25 and N3/N4/C17—C19 rings is 40.34 (10)°. An intramolecular O—H···O hydrogen bond generates an S(8) ring motif (Bernstein et al., 1995).

The crystal packing shows that the molecules are linked into chains running along the c axis (Fig.2) by N—H···N hydrogen bonds (Table 1). The chains are cross-linked via C—H···O hydrogen bonds and C—H···π interactions (Table 1) involving the C11—C16 benzene ring (centroid Cg1).

Related literature top

For the biological activities of pyrazoles, see: Burger & Iorio (1979); Holla et al. (1994); Kalluraya & Chimbalkar (2001); Windholz (1976); Wolff (1980). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was prepared by the direct fusion of 1-phenyl-3-methyl 5-pyrazolone (0.1 mole) with p-chlorobenzaldehyde (0.1 mole) at 413 K for 3 h. The reaction mixture was cooled to room temperature and stirred with methanol using a glass rod. The mixture was then filtered to obtain a solid product. Single crystals suitable for X-ray analysis were obtained by recrystallization from ethanol under slow evaporation (m.p. 351–353 K).

Refinement top

N– and O-bound H atoms were located in a difference map and were refined, with N—H and O—H distances restrained to 0.85 (1) Å and 0.82 (1) Å, respectively. C-bound H atoms were placed in calculated positions (C—H = 0.95–0.98 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(methyl C). A rotating group model was used for the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. Dashed lines indicate hydrogen bonding.
4-[(4-Chlorophenyl)(5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)methyl]- 5-methyl-2-phenyl-1H-pyrazol-3(2H)-one top
Crystal data top
C27H23ClN4O2F(000) = 984
Mr = 470.94Dx = 1.368 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3311 reflections
a = 10.8809 (2) Åθ = 2.6–26.3°
b = 11.2046 (2) ŵ = 0.20 mm1
c = 18.9376 (3) ÅT = 100 K
β = 97.994 (1)°Plate, colourless
V = 2286.36 (7) Å30.41 × 0.13 × 0.07 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6751 independent reflections
Radiation source: fine-focus sealed tube4614 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ϕ and ω scansθmax = 30.2°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1513
Tmin = 0.923, Tmax = 0.987k = 1515
26858 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0491P)2 + 0.4127P]
where P = (Fo2 + 2Fc2)/3
6751 reflections(Δ/σ)max = 0.001
317 parametersΔρmax = 0.46 e Å3
2 restraintsΔρmin = 0.36 e Å3
Crystal data top
C27H23ClN4O2V = 2286.36 (7) Å3
Mr = 470.94Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.8809 (2) ŵ = 0.20 mm1
b = 11.2046 (2) ÅT = 100 K
c = 18.9376 (3) Å0.41 × 0.13 × 0.07 mm
β = 97.994 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6751 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4614 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 0.987Rint = 0.072
26858 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0542 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.46 e Å3
6751 reflectionsΔρmin = 0.36 e Å3
317 parameters
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.01004 (4)0.17798 (4)0.21608 (3)0.02610 (12)
O10.64039 (12)0.00053 (10)0.20712 (6)0.0164 (3)
O20.73070 (12)0.10345 (11)0.31975 (6)0.0177 (3)
N10.60775 (13)0.11487 (12)0.10350 (7)0.0145 (3)
N20.53262 (14)0.20840 (13)0.07833 (7)0.0156 (3)
N30.54617 (13)0.18017 (13)0.44999 (7)0.0156 (3)
N40.65437 (14)0.14862 (13)0.42469 (7)0.0153 (3)
C10.79797 (17)0.01062 (16)0.08926 (9)0.0185 (4)
H1A0.82410.01790.13910.022*
C20.87259 (17)0.04719 (17)0.04601 (10)0.0215 (4)
H2A0.94930.08130.06650.026*
C30.83517 (18)0.05518 (16)0.02710 (10)0.0217 (4)
H3A0.88630.09450.05660.026*
C40.72305 (18)0.00560 (16)0.05690 (9)0.0191 (4)
H4A0.69860.00940.10700.023*
C50.64626 (17)0.04955 (15)0.01398 (9)0.0169 (4)
H5A0.56830.08140.03420.020*
C60.68519 (16)0.05749 (15)0.05896 (9)0.0144 (3)
C70.58670 (16)0.08704 (15)0.17178 (8)0.0138 (3)
C80.49935 (15)0.17256 (14)0.18995 (8)0.0125 (3)
C90.46835 (16)0.24398 (15)0.13014 (8)0.0139 (3)
C100.43446 (15)0.17598 (15)0.25589 (8)0.0129 (3)
H10A0.39410.25620.25530.015*
C110.32806 (16)0.08614 (15)0.24690 (8)0.0138 (3)
C120.34955 (17)0.03621 (15)0.25601 (9)0.0165 (3)
H12A0.43190.06400.26960.020*
C130.25287 (17)0.11770 (16)0.24563 (9)0.0181 (4)
H13A0.26860.20070.25160.022*
C140.13238 (17)0.07611 (16)0.22627 (9)0.0176 (4)
C150.10766 (17)0.04447 (17)0.21678 (9)0.0194 (4)
H15A0.02500.07190.20360.023*
C160.20633 (16)0.12484 (16)0.22686 (9)0.0166 (4)
H16A0.19040.20770.21990.020*
C170.51224 (16)0.16574 (14)0.32860 (8)0.0131 (3)
C180.46196 (16)0.19106 (15)0.39214 (9)0.0149 (3)
C190.63540 (16)0.13831 (15)0.35195 (9)0.0142 (3)
C200.76611 (17)0.13465 (16)0.47292 (9)0.0166 (4)
C210.87757 (18)0.17791 (17)0.45591 (10)0.0220 (4)
H21A0.88090.21580.41130.026*
C220.98413 (19)0.16538 (18)0.50458 (11)0.0272 (4)
H22A1.06090.19460.49310.033*
C230.9802 (2)0.11074 (19)0.56995 (11)0.0304 (5)
H23A1.05380.10250.60300.037*
C240.8685 (2)0.06834 (19)0.58662 (10)0.0282 (5)
H24A0.86540.03140.63150.034*
C250.76066 (18)0.07926 (17)0.53833 (9)0.0217 (4)
H25A0.68410.04940.54970.026*
C260.37668 (17)0.34251 (16)0.11547 (9)0.0195 (4)
H26A0.40830.40190.08450.029*
H26B0.29790.31030.09170.029*
H26C0.36350.38030.16050.029*
C270.33330 (17)0.23080 (17)0.39909 (9)0.0198 (4)
H27A0.32990.25730.44810.030*
H27B0.30990.29700.36610.030*
H27C0.27560.16420.38760.030*
H1N20.541 (2)0.2396 (19)0.0380 (7)0.037 (7)*
H1O20.702 (2)0.066 (2)0.2832 (9)0.057 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0214 (2)0.0300 (3)0.0268 (2)0.0090 (2)0.00288 (18)0.0010 (2)
O10.0231 (7)0.0152 (6)0.0111 (6)0.0047 (5)0.0031 (5)0.0009 (5)
O20.0190 (7)0.0226 (7)0.0120 (6)0.0015 (5)0.0034 (5)0.0031 (5)
N10.0187 (8)0.0152 (7)0.0100 (7)0.0037 (6)0.0032 (6)0.0012 (5)
N20.0206 (8)0.0166 (7)0.0102 (7)0.0027 (6)0.0042 (6)0.0034 (5)
N30.0179 (7)0.0178 (7)0.0119 (7)0.0001 (6)0.0049 (5)0.0015 (6)
N40.0181 (8)0.0180 (7)0.0099 (7)0.0006 (6)0.0019 (6)0.0016 (5)
C10.0184 (9)0.0245 (9)0.0127 (8)0.0018 (7)0.0027 (7)0.0006 (7)
C20.0183 (9)0.0264 (10)0.0208 (9)0.0015 (8)0.0062 (7)0.0010 (8)
C30.0250 (10)0.0218 (9)0.0210 (9)0.0004 (8)0.0124 (8)0.0024 (7)
C40.0253 (10)0.0216 (9)0.0114 (8)0.0039 (8)0.0062 (7)0.0028 (7)
C50.0178 (9)0.0191 (9)0.0136 (8)0.0014 (7)0.0021 (7)0.0002 (7)
C60.0166 (9)0.0163 (8)0.0114 (8)0.0015 (7)0.0057 (6)0.0015 (6)
C70.0176 (9)0.0149 (8)0.0093 (7)0.0035 (7)0.0026 (6)0.0011 (6)
C80.0149 (8)0.0135 (7)0.0091 (7)0.0009 (7)0.0020 (6)0.0006 (6)
C90.0162 (8)0.0148 (8)0.0109 (7)0.0020 (7)0.0027 (6)0.0017 (6)
C100.0159 (8)0.0126 (8)0.0106 (7)0.0022 (7)0.0033 (6)0.0007 (6)
C110.0172 (9)0.0178 (8)0.0070 (7)0.0003 (7)0.0039 (6)0.0009 (6)
C120.0165 (9)0.0179 (8)0.0150 (8)0.0022 (7)0.0018 (7)0.0000 (7)
C130.0210 (9)0.0168 (8)0.0172 (8)0.0003 (7)0.0046 (7)0.0003 (7)
C140.0175 (9)0.0224 (9)0.0132 (8)0.0051 (7)0.0033 (7)0.0010 (7)
C150.0143 (9)0.0251 (9)0.0189 (9)0.0019 (7)0.0026 (7)0.0000 (7)
C160.0195 (9)0.0174 (8)0.0133 (8)0.0026 (7)0.0037 (7)0.0001 (6)
C170.0173 (8)0.0133 (8)0.0092 (7)0.0008 (7)0.0035 (6)0.0007 (6)
C180.0190 (9)0.0142 (8)0.0116 (7)0.0005 (7)0.0030 (6)0.0000 (6)
C190.0199 (9)0.0129 (8)0.0106 (7)0.0012 (7)0.0043 (6)0.0003 (6)
C200.0201 (9)0.0174 (8)0.0114 (8)0.0011 (7)0.0008 (7)0.0025 (6)
C210.0244 (10)0.0213 (9)0.0197 (9)0.0043 (8)0.0013 (7)0.0014 (7)
C220.0247 (10)0.0277 (10)0.0280 (10)0.0033 (9)0.0003 (8)0.0049 (8)
C230.0280 (11)0.0364 (12)0.0237 (10)0.0040 (9)0.0078 (8)0.0058 (9)
C240.0329 (12)0.0381 (12)0.0125 (9)0.0084 (10)0.0008 (8)0.0003 (8)
C250.0244 (10)0.0256 (10)0.0154 (9)0.0008 (8)0.0043 (7)0.0005 (7)
C260.0232 (10)0.0211 (9)0.0140 (8)0.0055 (8)0.0021 (7)0.0014 (7)
C270.0220 (10)0.0260 (9)0.0120 (8)0.0021 (8)0.0046 (7)0.0036 (7)
Geometric parameters (Å, º) top
Cl1—C141.7437 (18)C11—C161.395 (2)
O1—C71.273 (2)C11—C121.397 (2)
O2—C191.333 (2)C12—C131.386 (2)
O2—H1O20.832 (10)C12—H12A0.95
N1—N21.3732 (19)C13—C141.392 (2)
N1—C71.380 (2)C13—H13A0.95
N1—C61.426 (2)C14—C151.384 (3)
N2—C91.342 (2)C15—C161.394 (2)
N2—H1N20.856 (9)C15—H15A0.95
N3—C181.333 (2)C16—H16A0.95
N3—N41.3775 (19)C17—C191.386 (2)
N4—C191.369 (2)C17—C181.418 (2)
N4—C201.424 (2)C18—C271.492 (2)
C1—C61.384 (2)C20—C211.385 (3)
C1—C21.391 (2)C20—C251.394 (2)
C1—H1A0.95C21—C221.384 (3)
C2—C31.391 (3)C21—H21A0.95
C2—H2A0.95C22—C231.387 (3)
C3—C41.387 (3)C22—H22A0.95
C3—H3A0.95C23—C241.382 (3)
C4—C51.389 (2)C23—H23A0.95
C4—H4A0.95C24—C251.389 (3)
C5—C61.390 (2)C24—H24A0.95
C5—H5A0.95C25—H25A0.95
C7—C81.425 (2)C26—H26A0.98
C8—C91.389 (2)C26—H26B0.98
C8—C101.518 (2)C26—H26C0.98
C9—C261.488 (2)C27—H27A0.98
C10—C171.517 (2)C27—H27B0.98
C10—C111.526 (2)C27—H27C0.98
C10—H10A1.00
C19—O2—H1O2107.5 (19)C12—C13—H13A120.5
N2—N1—C7109.22 (13)C14—C13—H13A120.5
N2—N1—C6120.74 (13)C15—C14—C13121.32 (16)
C7—N1—C6129.89 (14)C15—C14—Cl1119.53 (14)
C9—N2—N1108.57 (13)C13—C14—Cl1119.13 (14)
C9—N2—H1N2131.3 (15)C14—C15—C16118.73 (17)
N1—N2—H1N2119.4 (15)C14—C15—H15A120.6
C18—N3—N4105.11 (13)C16—C15—H15A120.6
C19—N4—N3110.79 (14)C15—C16—C11121.36 (16)
C19—N4—C20129.18 (15)C15—C16—H16A119.3
N3—N4—C20120.00 (13)C11—C16—H16A119.3
C6—C1—C2119.28 (16)C19—C17—C18104.10 (14)
C6—C1—H1A120.4C19—C17—C10134.34 (15)
C2—C1—H1A120.4C18—C17—C10121.51 (15)
C3—C2—C1120.14 (17)N3—C18—C17112.15 (15)
C3—C2—H2A119.9N3—C18—C27120.06 (15)
C1—C2—H2A119.9C17—C18—C27127.74 (15)
C4—C3—C2119.90 (16)O2—C19—N4117.85 (15)
C4—C3—H3A120.1O2—C19—C17134.30 (15)
C2—C3—H3A120.1N4—C19—C17107.82 (14)
C3—C4—C5120.44 (16)C21—C20—C25120.61 (17)
C3—C4—H4A119.8C21—C20—N4120.64 (16)
C5—C4—H4A119.8C25—C20—N4118.73 (16)
C4—C5—C6119.01 (17)C22—C21—C20119.29 (18)
C4—C5—H5A120.5C22—C21—H21A120.4
C6—C5—H5A120.5C20—C21—H21A120.4
C1—C6—C5121.18 (16)C21—C22—C23120.80 (19)
C1—C6—N1119.26 (15)C21—C22—H22A119.6
C5—C6—N1119.56 (15)C23—C22—H22A119.6
O1—C7—N1122.74 (15)C24—C23—C22119.54 (19)
O1—C7—C8131.14 (15)C24—C23—H23A120.2
N1—C7—C8106.11 (14)C22—C23—H23A120.2
C9—C8—C7106.55 (14)C23—C24—C25120.58 (19)
C9—C8—C10124.61 (15)C23—C24—H24A119.7
C7—C8—C10128.14 (14)C25—C24—H24A119.7
N2—C9—C8109.43 (15)C24—C25—C20119.19 (18)
N2—C9—C26119.19 (15)C24—C25—H25A120.4
C8—C9—C26131.30 (15)C20—C25—H25A120.4
C17—C10—C8118.70 (14)C9—C26—H26A109.5
C17—C10—C11111.73 (13)C9—C26—H26B109.5
C8—C10—C11108.91 (13)H26A—C26—H26B109.5
C17—C10—H10A105.5C9—C26—H26C109.5
C8—C10—H10A105.5H26A—C26—H26C109.5
C11—C10—H10A105.5H26B—C26—H26C109.5
C16—C11—C12118.34 (16)C18—C27—H27A109.5
C16—C11—C10120.15 (15)C18—C27—H27B109.5
C12—C11—C10121.48 (15)H27A—C27—H27B109.5
C13—C12—C11121.21 (17)C18—C27—H27C109.5
C13—C12—H12A119.4H27A—C27—H27C109.5
C11—C12—H12A119.4H27B—C27—H27C109.5
C12—C13—C14119.04 (16)
C7—N1—N2—C92.66 (18)C10—C11—C12—C13178.00 (15)
C6—N1—N2—C9178.76 (15)C11—C12—C13—C140.5 (3)
C18—N3—N4—C191.09 (18)C12—C13—C14—C150.5 (3)
C18—N3—N4—C20177.23 (15)C12—C13—C14—Cl1177.88 (13)
C6—C1—C2—C31.5 (3)C13—C14—C15—C160.1 (3)
C1—C2—C3—C40.1 (3)Cl1—C14—C15—C16178.44 (13)
C2—C3—C4—C51.6 (3)C14—C15—C16—C110.7 (3)
C3—C4—C5—C61.9 (3)C12—C11—C16—C150.7 (2)
C2—C1—C6—C51.1 (3)C10—C11—C16—C15178.61 (15)
C2—C1—C6—N1178.90 (16)C8—C10—C17—C199.7 (3)
C4—C5—C6—C10.6 (3)C11—C10—C17—C19118.3 (2)
C4—C5—C6—N1179.41 (15)C8—C10—C17—C18167.66 (15)
N2—N1—C6—C1147.80 (16)C11—C10—C17—C1864.3 (2)
C7—N1—C6—C137.0 (3)N4—N3—C18—C170.72 (19)
N2—N1—C6—C532.2 (2)N4—N3—C18—C27176.97 (15)
C7—N1—C6—C5142.99 (18)C19—C17—C18—N30.11 (19)
N2—N1—C7—O1177.20 (15)C10—C17—C18—N3178.15 (15)
C6—N1—C7—O11.6 (3)C19—C17—C18—C27177.37 (17)
N2—N1—C7—C83.27 (18)C10—C17—C18—C270.7 (3)
C6—N1—C7—C8178.90 (16)N3—N4—C19—O2177.35 (14)
O1—C7—C8—C9177.87 (17)C20—N4—C19—O24.5 (3)
N1—C7—C8—C92.66 (18)N3—N4—C19—C171.05 (19)
O1—C7—C8—C107.1 (3)C20—N4—C19—C17177.07 (16)
N1—C7—C8—C10173.38 (15)C18—C17—C19—O2177.46 (18)
N1—N2—C9—C80.91 (19)C10—C17—C19—O24.9 (3)
N1—N2—C9—C26178.13 (15)C18—C17—C19—N40.56 (18)
C7—C8—C9—N21.11 (19)C10—C17—C19—N4177.10 (17)
C10—C8—C9—N2172.25 (15)C19—N4—C20—C2139.9 (3)
C7—C8—C9—C26175.66 (17)N3—N4—C20—C21138.11 (17)
C10—C8—C9—C264.5 (3)C19—N4—C20—C25141.73 (18)
C9—C8—C10—C17139.90 (16)N3—N4—C20—C2540.3 (2)
C7—C8—C10—C1750.9 (2)C25—C20—C21—C220.2 (3)
C9—C8—C10—C1190.77 (19)N4—C20—C21—C22178.54 (17)
C7—C8—C10—C1178.4 (2)C20—C21—C22—C230.3 (3)
C17—C10—C11—C16126.08 (16)C21—C22—C23—C240.0 (3)
C8—C10—C11—C16100.84 (17)C22—C23—C24—C250.5 (3)
C17—C10—C11—C1256.1 (2)C23—C24—C25—C200.6 (3)
C8—C10—C11—C1277.01 (19)C21—C20—C25—C240.3 (3)
C16—C11—C12—C130.1 (2)N4—C20—C25—C24178.12 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O10.83 (1)1.67 (1)2.5025 (17)176 (3)
N2—H1N2···N3i0.86 (1)1.90 (1)2.7544 (19)174 (2)
C13—H13A···O2ii0.952.583.375 (2)142
C4—H4A···Cg1iii0.952.673.5088 (18)147
C24—H24A···Cg1iv0.952.863.745 (2)155
Symmetry codes: (i) x, y1/2, z1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC27H23ClN4O2
Mr470.94
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.8809 (2), 11.2046 (2), 18.9376 (3)
β (°) 97.994 (1)
V3)2286.36 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.41 × 0.13 × 0.07
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.923, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
26858, 6751, 4614
Rint0.072
(sin θ/λ)max1)0.707
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.121, 1.02
No. of reflections6751
No. of parameters317
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.36

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O10.83 (1)1.67 (1)2.5025 (17)176 (3)
N2—H1N2···N3i0.86 (1)1.90 (1)2.7544 (19)174 (2)
C13—H13A···O2ii0.952.583.375 (2)142
C4—H4A···Cg1iii0.952.673.5088 (18)147
C24—H24A···Cg1iv0.952.863.745 (2)155
Symmetry codes: (i) x, y1/2, z1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x+1, y, z+1.
 

Footnotes

Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641114, India.

Acknowledgements

H-KF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks the Universiti Sains Malaysia for a post–doctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurger, J. C. & Iorio, L. C. (1979). Annu. Rep. Med. Chem. 14, 27–35.  Google Scholar
First citationHolla, B. S., Kalluraya, B., Sridhar, K., Erick Parke, T. L. & Bhandary, K. K. (1994). Eur. J. Med. Chem. 29, 301–308.  CrossRef CAS Web of Science Google Scholar
First citationKalluraya, B. & Chimbalkar, R. M. (2001). Indian J. Heterocycl. Chem. 11, 171–174.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWindholz, M. (1976). The Merck Index, 9th ed. Boca Raton: Merck & Co. Inc.  Google Scholar
First citationWolff, M. E. (1980). Burgers Medicinal Chemistry, 4th ed. New York: Wiley.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages o2301-o2302
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds