organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­ethyl­ammonium L-tartarate dihydrate

aDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 3 November 2008; accepted 10 November 2008; online 13 November 2008)

In the crystal structure of the title compound, C8H20N+·C4H5O6·2H2O, the ions and water mol­ecules are linked via O—H⋯O and C—H⋯O hydrogen bonds, forming a two-dimensional network parallel to (001).

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Allen et al. (2006[Allen, C. R., Richard, P. L., van de Ward, A. J., Water, L. G. A., Masters, A. F. & Maschmeyer, T. (2006). Tetrahedron Lett. 47, 7367-7370.]); Jiang et al. (2008[Jiang, Y.-Y., Wang, G.-N., Zhou, Z., Wu, Y.-T., Geng, J. & Zhang, Z.-B. (2008). Chem. Commun. 8, 505-507.]); Mei et al. (2002[Mei, S., Jin-Nan, Z. & Qi, L. (2002). Acta Chim. Sinica, 60, 1017-1024.]).

[Scheme 1]

Experimental

Crystal data
  • C8H20N+·C4H5O6·2H2O

  • Mr = 315.36

  • Monoclinic, P 21

  • a = 7.4074 (1) Å

  • b = 13.8989 (2) Å

  • c = 8.0546 (1) Å

  • β = 106.553 (1)°

  • V = 794.89 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100.0 (1) K

  • 0.47 × 0.45 × 0.17 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.861, Tmax = 0.981

  • 10518 measured reflections

  • 3579 independent reflections

  • 3240 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.092

  • S = 1.05

  • 3579 reflections

  • 218 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯O5i 1.00 (2) 1.52 (2) 2.5108 (13) 173 (2)
O3—H1O3⋯O1Wii 0.91 (2) 1.85 (2) 2.7191 (14) 162 (2)
O4—H1O4⋯O2Wiii 0.84 (2) 2.18 (2) 2.9780 (16) 160 (2)
O1W—H1W1⋯O2iv 0.82 (2) 2.56 (2) 3.0668 (14) 122 (2)
O1W—H1W1⋯O2Wv 0.82 (2) 2.57 (2) 3.2155 (16) 137 (2)
O1W—H2W1⋯O6iii 0.88 (3) 2.00 (3) 2.8672 (15) 171 (2)
O2W—H2W2⋯O1vi 0.84 (2) 2.40 (2) 3.0082 (14) 129 (2)
C5—H5A⋯O3vii 0.97 2.56 3.4344 (15) 151
C8—H8B⋯O4 0.96 2.38 3.3447 (16) 178
C10—H10B⋯O3vii 0.96 2.47 3.4195 (16) 168
C11—H11A⋯O4 0.97 2.50 3.2693 (15) 136
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z]; (ii) x, y, z-1; (iii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iv) x-1, y, z+1; (v) [-x+1, y-{\script{1\over 2}}, -z+2]; (vi) x, y+1, z+1; (vii) [-x+1, y-{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The crystal structures of chiral complexes of the plant acid (L-tartaric acid) with tetraethylammonium have been investigated in our laboratory in order to understand the nature of intramolecular and intermolecular interactions. The title compound was obtained by neutralization method at room temperature. Some other related compounds containing the same cation have been previously reported (Jiang et al., 2008; Allen et al., 2006). The crystal structure of bis(tetraethylammonium) tartrate bis(thiourea) dihydrate has also been reported (Mei et al., 2002).

The asymmetric unit of the title compound (Fig. 1) contains a tartarate anion, a tetraethylammonium cation and two water molecules of crystallization. Two intermolecular C—H···O hydrogen bonds involving O4 as a bifurcated acceptor link anion and cation in the asymmetric unit to form a seven-membered ring, with R12(7) ring motif (Bernstein et al., 1995). In the crystal structure, the ionic units and water molecules are linked via O—H···O and C—H···O hydrogen bonds (Table 1) forming a two-dimensional network parallel to the (001) [Fig. 2].

Related literature top

For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Allen et al. (2006); Jiang et al. (2008); Mei et al. (2002).

Experimental top

L-Tartaric acid (7.504 g, 0.05 mol) was first dissolved in 20 ml of distilled water in a 50 ml beaker. An aqueous solution (20% in water) of tetraethylammonium hydroxide (36.59 ml, 0.05 mol) was added slowly into an aqueous solution of L-tartaric acid and the mixture was stirred with a magnetic stirrer for 2 h at room temperature. A white solid product was obtained after being dried at 343 K under vacuum for 2 d. The product was dissolved in methanol and then covered by aluminium foil to allow slow evaporation at room temperature. Clear crystalline solid was obtained after 3 d. Decomposition temperature range (471.35–472.6 K). Analysis calculated (%): C 51.60, H 9.02, N 5.01%; found: C 50.53, H 9.09, N 3.28%.

Refinement top

O-bound H atoms were located in a difference Fourier map and refined freely [O—H = 0.83 (3)–1.01 (3) Å]. C-bound H atoms were positioned geometrically [C—H = 0.93–0.98 Å] and refined as a riding model, with Uiso(H) = 1.2–1.5Ueq(C). A rotating group model was used for the methyl groups. In the absence of significant anomalous dispersion effects, Friedel pairs were merged before the final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewd down the c axis. Hydrogen bonds are shown as dashed lines.
Tetraethylammonium L-tartarate dihydrate top
Crystal data top
C8H20N+·C4H5O6·2H2OF(000) = 344
Mr = 315.36Dx = 1.318 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4555 reflections
a = 7.4074 (1) Åθ = 2.6–33.5°
b = 13.8989 (2) ŵ = 0.11 mm1
c = 8.0546 (1) ÅT = 100 K
β = 106.553 (1)°Block, colourless
V = 794.89 (2) Å30.47 × 0.45 × 0.17 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3579 independent reflections
Radiation source: fine-focus sealed tube3240 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 35.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 911
Tmin = 0.861, Tmax = 0.981k = 2217
10518 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.0426P]
where P = (Fo2 + 2Fc2)/3
3579 reflections(Δ/σ)max = 0.001
218 parametersΔρmax = 0.29 e Å3
1 restraintΔρmin = 0.23 e Å3
Crystal data top
C8H20N+·C4H5O6·2H2OV = 794.89 (2) Å3
Mr = 315.36Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.4074 (1) ŵ = 0.11 mm1
b = 13.8989 (2) ÅT = 100 K
c = 8.0546 (1) Å0.47 × 0.45 × 0.17 mm
β = 106.553 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3579 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3240 reflections with I > 2σ(I)
Tmin = 0.861, Tmax = 0.981Rint = 0.031
10518 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.29 e Å3
3579 reflectionsΔρmin = 0.23 e Å3
218 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.71436 (14)0.19227 (7)0.03566 (13)0.01818 (18)
O21.02013 (14)0.23261 (7)0.04449 (14)0.0201 (2)
O30.61932 (14)0.36818 (7)0.18764 (12)0.01677 (18)
O40.68458 (16)0.39108 (7)0.17930 (13)0.0190 (2)
C10.83853 (18)0.25107 (9)0.01824 (15)0.0138 (2)
C20.79871 (18)0.35668 (9)0.06869 (15)0.0134 (2)
H2A0.89290.37850.12460.016*
C30.81928 (18)0.41837 (9)0.09447 (16)0.0144 (2)
H3A0.94460.40640.17390.017*
C40.80699 (19)0.52553 (9)0.04614 (16)0.0156 (2)
N10.61784 (16)0.13577 (8)0.44527 (13)0.01415 (19)
C50.68066 (19)0.05680 (10)0.34333 (17)0.0169 (2)
H5A0.56980.02320.27450.020*
H5B0.74060.08660.26380.020*
C60.8153 (2)0.01643 (11)0.4516 (2)0.0249 (3)
H6A0.84740.06320.37690.037*
H6B0.75630.04810.52850.037*
H6C0.92750.01560.51810.037*
C70.78506 (19)0.18803 (10)0.56438 (16)0.0174 (2)
H7A0.73810.23820.62490.021*
H7B0.85500.14280.65070.021*
C80.9195 (2)0.23319 (12)0.47596 (19)0.0227 (3)
H8A1.02030.26440.56090.034*
H8B0.85320.27970.39260.034*
H8C0.97030.18410.41830.034*
C90.50734 (19)0.09482 (11)0.56176 (16)0.0186 (2)
H9A0.58800.05050.64280.022*
H9B0.47630.14710.62860.022*
C100.3270 (2)0.04279 (11)0.46895 (19)0.0218 (3)
H10A0.26740.01940.55230.033*
H10B0.35580.01040.40470.033*
H10C0.24370.08640.39100.033*
C110.49727 (18)0.20335 (10)0.31067 (15)0.0157 (2)
H11A0.57370.22880.24110.019*
H11B0.39590.16650.23440.019*
C120.4121 (2)0.28706 (11)0.38285 (18)0.0205 (3)
H12A0.33890.32590.28910.031*
H12B0.51100.32530.45620.031*
H12C0.33250.26300.44890.031*
O1W0.30848 (16)0.27561 (10)0.84652 (15)0.0243 (2)
O2W0.69834 (18)0.97603 (9)0.95574 (16)0.0252 (2)
O50.93673 (14)0.55475 (7)0.01728 (15)0.0218 (2)
O60.67739 (15)0.57466 (8)0.07043 (14)0.0226 (2)
H1O21.043 (4)0.161 (2)0.045 (3)0.045 (7)*
H1O30.534 (3)0.3304 (19)0.159 (3)0.036 (6)*
H1O40.590 (3)0.422 (2)0.122 (3)0.033 (6)*
H1W10.260 (4)0.306 (2)0.911 (4)0.055 (8)*
H2W10.316 (4)0.216 (2)0.884 (3)0.043 (7)*
H1W20.818 (4)0.9985 (19)0.980 (3)0.037 (6)*
H2W20.630 (4)1.025 (2)0.962 (3)0.039 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0174 (4)0.0115 (4)0.0261 (4)0.0015 (3)0.0070 (4)0.0010 (4)
O20.0150 (4)0.0121 (4)0.0307 (5)0.0009 (4)0.0027 (4)0.0024 (4)
O30.0174 (4)0.0135 (4)0.0167 (4)0.0013 (3)0.0006 (3)0.0020 (3)
O40.0242 (5)0.0155 (4)0.0191 (4)0.0013 (4)0.0091 (4)0.0022 (3)
C10.0164 (5)0.0107 (5)0.0146 (4)0.0011 (4)0.0050 (4)0.0005 (4)
C20.0151 (5)0.0095 (5)0.0156 (4)0.0007 (4)0.0040 (4)0.0005 (4)
C30.0161 (5)0.0096 (5)0.0162 (5)0.0001 (4)0.0024 (4)0.0005 (4)
C40.0164 (5)0.0104 (5)0.0180 (5)0.0001 (4)0.0013 (4)0.0010 (4)
N10.0153 (5)0.0138 (5)0.0131 (4)0.0007 (4)0.0037 (3)0.0003 (3)
C50.0185 (5)0.0134 (5)0.0191 (5)0.0001 (5)0.0057 (4)0.0026 (4)
C60.0232 (7)0.0160 (6)0.0349 (7)0.0027 (5)0.0071 (6)0.0032 (5)
C70.0168 (5)0.0175 (6)0.0156 (5)0.0016 (5)0.0007 (4)0.0013 (4)
C80.0191 (6)0.0217 (7)0.0256 (6)0.0052 (5)0.0036 (5)0.0012 (5)
C90.0200 (6)0.0209 (6)0.0162 (5)0.0018 (5)0.0073 (4)0.0025 (4)
C100.0196 (6)0.0221 (7)0.0254 (6)0.0029 (5)0.0089 (5)0.0024 (5)
C110.0171 (5)0.0147 (5)0.0140 (4)0.0012 (4)0.0024 (4)0.0012 (4)
C120.0213 (6)0.0161 (6)0.0235 (6)0.0025 (5)0.0055 (5)0.0020 (5)
O1W0.0200 (5)0.0272 (6)0.0262 (5)0.0003 (4)0.0076 (4)0.0019 (4)
O2W0.0250 (6)0.0191 (5)0.0321 (5)0.0048 (4)0.0094 (4)0.0044 (4)
O50.0187 (4)0.0118 (4)0.0361 (5)0.0022 (4)0.0096 (4)0.0006 (4)
O60.0245 (5)0.0164 (5)0.0286 (5)0.0071 (4)0.0102 (4)0.0021 (4)
Geometric parameters (Å, º) top
O1—C11.2084 (16)C6—H6C0.96
O2—C11.3203 (15)C7—C81.516 (2)
O2—H1O21.01 (3)C7—H7A0.97
O3—C21.4085 (16)C7—H7B0.97
O3—H1O30.90 (3)C8—H8A0.96
O4—C31.4124 (17)C8—H8B0.96
O4—H1O40.84 (3)C8—H8C0.96
C1—C21.5292 (17)C9—C101.516 (2)
C2—C31.5400 (17)C9—H9A0.97
C2—H2A0.98C9—H9B0.97
C3—C41.5356 (18)C10—H10A0.96
C3—H3A0.98C10—H10B0.96
C4—O61.2382 (17)C10—H10C0.96
C4—O51.2763 (17)C11—C121.516 (2)
N1—C111.5178 (16)C11—H11A0.97
N1—C71.5183 (17)C11—H11B0.97
N1—C91.5205 (16)C12—H12A0.96
N1—C51.5209 (17)C12—H12B0.96
C5—C61.515 (2)C12—H12C0.96
C5—H5A0.97O1W—H1W10.83 (3)
C5—H5B0.97O1W—H2W10.88 (3)
C6—H6A0.96O2W—H1W20.91 (3)
C6—H6B0.96O2W—H2W20.85 (3)
C1—O2—H1O2110.3 (15)C8—C7—N1115.36 (10)
C2—O3—H1O3110.7 (16)C8—C7—H7A108.4
C3—O4—H1O4101.3 (17)N1—C7—H7A108.4
O1—C1—O2124.88 (12)C8—C7—H7B108.4
O1—C1—C2122.38 (11)N1—C7—H7B108.4
O2—C1—C2112.74 (11)H7A—C7—H7B107.5
O3—C2—C1111.28 (10)C7—C8—H8A109.5
O3—C2—C3111.23 (10)C7—C8—H8B109.5
C1—C2—C3110.06 (10)H8A—C8—H8B109.5
O3—C2—H2A108.0C7—C8—H8C109.5
C1—C2—H2A108.0H8A—C8—H8C109.5
C3—C2—H2A108.0H8B—C8—H8C109.5
O4—C3—C4112.59 (11)C10—C9—N1115.34 (10)
O4—C3—C2110.58 (10)C10—C9—H9A108.4
C4—C3—C2109.84 (10)N1—C9—H9A108.4
O4—C3—H3A107.9C10—C9—H9B108.4
C4—C3—H3A107.9N1—C9—H9B108.4
C2—C3—H3A107.9H9A—C9—H9B107.5
O6—C4—O5126.43 (13)C9—C10—H10A109.5
O6—C4—C3119.17 (12)C9—C10—H10B109.5
O5—C4—C3114.40 (11)H10A—C10—H10B109.5
C11—N1—C7111.31 (10)C9—C10—H10C109.5
C11—N1—C9111.21 (10)H10A—C10—H10C109.5
C7—N1—C9105.96 (9)H10B—C10—H10C109.5
C11—N1—C5105.62 (9)C12—C11—N1115.18 (10)
C7—N1—C5111.49 (10)C12—C11—H11A108.5
C9—N1—C5111.36 (10)N1—C11—H11A108.5
C6—C5—N1115.24 (11)C12—C11—H11B108.5
C6—C5—H5A108.5N1—C11—H11B108.5
N1—C5—H5A108.5H11A—C11—H11B107.5
C6—C5—H5B108.5C11—C12—H12A109.5
N1—C5—H5B108.5C11—C12—H12B109.5
H5A—C5—H5B107.5H12A—C12—H12B109.5
C5—C6—H6A109.5C11—C12—H12C109.5
C5—C6—H6B109.5H12A—C12—H12C109.5
H6A—C6—H6B109.5H12B—C12—H12C109.5
C5—C6—H6C109.5H1W1—O1W—H2W1106 (3)
H6A—C6—H6C109.5H1W2—O2W—H2W2106 (2)
H6B—C6—H6C109.5
O1—C1—C2—O320.73 (16)C11—N1—C5—C6175.99 (11)
O2—C1—C2—O3159.12 (10)C7—N1—C5—C654.95 (15)
O1—C1—C2—C3103.04 (13)C9—N1—C5—C663.16 (15)
O2—C1—C2—C377.11 (13)C11—N1—C7—C860.40 (15)
O3—C2—C3—O460.68 (13)C9—N1—C7—C8178.57 (12)
C1—C2—C3—O463.12 (13)C5—N1—C7—C857.25 (15)
O3—C2—C3—C464.19 (13)C11—N1—C9—C1056.22 (15)
C1—C2—C3—C4172.01 (10)C7—N1—C9—C10177.31 (12)
O4—C3—C4—O65.84 (16)C5—N1—C9—C1061.29 (15)
C2—C3—C4—O6117.86 (13)C7—N1—C11—C1260.88 (14)
O4—C3—C4—O5174.27 (11)C9—N1—C11—C1257.02 (14)
C2—C3—C4—O562.03 (14)C5—N1—C11—C12177.97 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O5i1.00 (2)1.52 (2)2.5108 (13)173 (2)
O3—H1O3···O1Wii0.91 (2)1.85 (2)2.7191 (14)162 (2)
O4—H1O4···O2Wiii0.84 (2)2.18 (2)2.9780 (16)160 (2)
O1W—H1W1···O2iv0.82 (2)2.56 (2)3.0668 (14)122 (2)
O1W—H1W1···O2Wv0.82 (2)2.57 (2)3.2155 (16)137 (2)
O1W—H2W1···O6iii0.88 (3)2.00 (3)2.8672 (15)171 (2)
O2W—H2W2···O1vi0.84 (2)2.40 (2)3.0082 (14)129 (2)
C5—H5A···O3vii0.972.563.4344 (15)151
C8—H8B···O40.962.383.3447 (16)178
C10—H10B···O3vii0.962.473.4195 (16)168
C11—H11A···O40.972.503.2693 (15)136
Symmetry codes: (i) x+2, y1/2, z; (ii) x, y, z1; (iii) x+1, y1/2, z+1; (iv) x1, y, z+1; (v) x+1, y1/2, z+2; (vi) x, y+1, z+1; (vii) x+1, y1/2, z.

Experimental details

Crystal data
Chemical formulaC8H20N+·C4H5O6·2H2O
Mr315.36
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)7.4074 (1), 13.8989 (2), 8.0546 (1)
β (°) 106.553 (1)
V3)794.89 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.47 × 0.45 × 0.17
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.861, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
10518, 3579, 3240
Rint0.031
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.092, 1.05
No. of reflections3579
No. of parameters218
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.23

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O5i1.00 (2)1.52 (2)2.5108 (13)173 (2)
O3—H1O3···O1Wii0.91 (2)1.85 (2)2.7191 (14)162 (2)
O4—H1O4···O2Wiii0.84 (2)2.18 (2)2.9780 (16)160 (2)
O1W—H1W1···O2iv0.82 (2)2.56 (2)3.0668 (14)122 (2)
O1W—H1W1···O2Wv0.82 (2)2.57 (2)3.2155 (16)137 (2)
O1W—H2W1···O6iii0.88 (3)2.00 (3)2.8672 (15)171 (2)
O2W—H2W2···O1vi0.84 (2)2.40 (2)3.0082 (14)129 (2)
C5—H5A···O3vii0.972.563.4344 (15)151
C8—H8B···O40.962.383.3447 (16)178
C10—H10B···O3vii0.962.473.4195 (16)168
C11—H11A···O40.972.503.2693 (15)136
Symmetry codes: (i) x+2, y1/2, z; (ii) x, y, z1; (iii) x+1, y1/2, z+1; (iv) x1, y, z+1; (v) x+1, y1/2, z+2; (vi) x, y+1, z+1; (vii) x+1, y1/2, z.
 

Footnotes

Additional correspondance author: Laboratory of Industrial Biotechnology Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; e-mail: basya@science.upm.edu.my.

Acknowledgements

MBAR, KJ and KS thank the Ministry of Higher Education of Malaysia for the research grant 05-10-07-377FR (Fundamental Research Grant Scheme-FRGS). HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund (grant No. 305/PFIZIK/613312). RK thanks Universiti Sains Malaysia for the award of a post-doctoral research fellowship.

References

First citationAllen, C. R., Richard, P. L., van de Ward, A. J., Water, L. G. A., Masters, A. F. & Maschmeyer, T. (2006). Tetrahedron Lett. 47, 7367–7370.  Web of Science CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJiang, Y.-Y., Wang, G.-N., Zhou, Z., Wu, Y.-T., Geng, J. & Zhang, Z.-B. (2008). Chem. Commun. 8, 505–507.  Web of Science CrossRef Google Scholar
First citationMei, S., Jin-Nan, Z. & Qi, L. (2002). Acta Chim. Sinica, 60, 1017–1024.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds