organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[4-(2-Methyl­prop­yl)phen­yl]-N′-[(E)-1-phenyl­ethyl­­idene]propane­hydrazide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 3 November 2008; accepted 8 November 2008; online 20 November 2008)

In the title compound, C21H26N2O, the dihedral angle between the two aromatic rings is 85.90 (19)°. The propenone–hydrazide unit forms dihedral angles of 21.62 (8) and 72.83 (9)°, respectively, with the terminal and central aromatic rings. The 2-methyl­propyl group is disordered over two sites, with occupancies of 0.533 (13) and 0.467 (13). In crystal structure, mol­ecules are linked into centrosymmetric dimers by paired N—H⋯O and C—H⋯O hydrogen bonds. In addition, C—H⋯π inter­actions are observed.

Related literature

For the pharmaceutical applications of ibuprofen, see: Palaska et al. (2002[Palaska, E., Sahin, G., Kelicen, P., Durlu, N. T. & Altinok, G. (2002). Farmaco, 57, 101-107.]). For the synthesis of hydrazones, see: Rollas & Küçükgüzel (2007[Rollas, S. & Küçükgüzel, S. G. (2007). Molecules, 12, 1910-1939.]). For the pharmaceutical applications of hydrazones, see: Bedia et al. (2006[Bedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253-1261.]); Rollas et al. (2002[Rollas, S., Gülerman, N. & Erdeniz, H. (2002). Farmaco, 57, 171-174.]); Terzioglu & Gürsoy (2003[Terzioglu, N. & Gürsoy, A. (2003). Eur. J. Med. Chem. 38, 781-786.]). For a related structure, see: Fun et al. (2008[Fun, H.-K., Jebas, S. R., Sujith, K. V., Patil, P. S., Kalluraya, B. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1001-o1002.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C21H26N2O

  • Mr = 322.44

  • Triclinic, [P \overline 1]

  • a = 5.4355 (2) Å

  • b = 10.2850 (4) Å

  • c = 17.3095 (6) Å

  • α = 80.821 (4)°

  • β = 84.312 (3)°

  • γ = 74.719 (3)°

  • V = 919.85 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100.0 (1) K

  • 0.22 × 0.20 × 0.15 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.984, Tmax = 0.989

  • 12794 measured reflections

  • 4238 independent reflections

  • 2556 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.194

  • S = 1.07

  • 4238 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1i 0.86 (2) 2.08 (2) 2.928 (3) 173 (2)
C20—H20A⋯O1i 0.96 2.31 3.247 (3) 165
C20—H20BCg1ii 0.96 2.75 3.609 (3) 150
Symmetry codes: (i) -x, -y+2, -z; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Ibuprofen belongs to the class of Non-Steroidal anti-Inflammatory Drugs (NSAIDs) with antipyretic, anti-inflammatory and analgesic properties (Palaska et al., 2002). Hydrazones containing an azometine -NHNCH- moiety are synthesized by heating the appropriate substituted hydrazines/hydrazides with aldehydes and ketones in solvents like ethanol, methanol, tetrahydrofuran, butanol, glacial acetic acid, ethanol-glacial acetic acid. Another synthetic route for the synthesis of hydrazones is the coupling of aryldiazonium salts with active hydrogen compounds (Rollas & Kuckguzel, 2007). Hydrazide-hydrazones compounds are not only intermediates but they are also very effective organic compounds of their own. Hydrazones have been demonstrated to possess antimicrobial, anticonvulsant, analgesic, anti-inflammatory, antiplatelet, antitubercular, anticancer and antitumoral activities (Bedia et al., 2006; Rollas et al., 2002; Terzioglu & Gursoy, 2003). Prompted by these and in continuation of our work, (Fun et al., 2008) we are interested in the synthesis and crystal structure determination of ibuprofen derivatives. We report here the crystal structure of the title compound (I).

Bond lengths in the title molecule (Fig.1) have normal values (Allen et al., 1987). The two phenyl rings are essentially planar, with the maximum deviation from planarity being 0.003 (3)Å for atom C3 in the (C1-C6) ring and 0.012 (3)Å for atom C10 in the (C10-C15) ring. The two phenyl rings form a dihedral angle of 85.90 (11)°, indicating that they are almost orthogonal to each other. The propenone-hydrazide unit (O1/N1/N2/C8-C9) forms dihedral angles of 21.62 (8)° and 72.83 (9)° with (C1-C6) and (C10-C15) rings, respectively.

The crystal packing is consolidated by inter-molecular N—H···O and C—H···O hydrogen bonds together with C—H···π interactions (Table 1) involving the (C1-C6) ring (Centroid Cg1).

Related literature top

For the pharmaceutical applications of ibuprofen, see: Palaska et al. (2002). For the synthesis of hydrazones, see: Rollas & Küçükgüzel (2007). For the pharmaceutical applications of hydrazones, see: Bedia et al. (2006); Rollas et al. (2002); Terzioglu & Gürsoy (2003). For a related structure, see: Fun et al. (2008). For bond-length data, see: Allen et al. (1987). Cg1 is the centroid of the C1–C6 ring.

Experimental top

The title compound was obtained by refluxing 2-[4-(2-methylpropyl)phenyl]propanehydrazide (0.01 mol) and acetophenone (0.01 mol) in ethanol (30 ml) with 3 drops of concentrated sulfuric acid for 1 h. The excess ethanol was removed from the reaction mixture under reduced pressure. The solid product obtained was filtered, washed with ethanol and dried. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution (yield 87%; m.p.380–381 K).

Refinement top

The 2-methylpropyl group is disordered over two orientations with refined occupancies of 0.533 (13):0.467 (13). H atoms were positioned geometrically (N-H=0.86Å and C-H=0.93-0.98Å) and refined using a riding model with, Uiso(H)=1.2Uequ(C,N) and 1.5Uequ(Cmethyl). A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Both disorder components are shown.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the b axis. Only the major disorder component is shown.
2-[4-(2-Methylpropyl)phenyl]-N'-[(E)-1-phenylethylidene]propanehydrazide top
Crystal data top
C21H26N2OZ = 2
Mr = 322.44F(000) = 348
Triclinic, P1Dx = 1.164 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.4355 (2) ÅCell parameters from 2156 reflections
b = 10.2850 (4) Åθ = 2.6–26.3°
c = 17.3095 (6) ŵ = 0.07 mm1
α = 80.821 (4)°T = 100 K
β = 84.312 (3)°Block, colourless
γ = 74.719 (3)°0.22 × 0.20 × 0.15 mm
V = 919.85 (6) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4238 independent reflections
Radiation source: fine-focus sealed tube2556 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ϕ and ω scansθmax = 27.5°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 77
Tmin = 0.984, Tmax = 0.989k = 1313
12794 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.194H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0958P)2]
where P = (Fo2 + 2Fc2)/3
4238 reflections(Δ/σ)max < 0.001
255 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C21H26N2Oγ = 74.719 (3)°
Mr = 322.44V = 919.85 (6) Å3
Triclinic, P1Z = 2
a = 5.4355 (2) ÅMo Kα radiation
b = 10.2850 (4) ŵ = 0.07 mm1
c = 17.3095 (6) ÅT = 100 K
α = 80.821 (4)°0.22 × 0.20 × 0.15 mm
β = 84.312 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4238 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2556 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.989Rint = 0.063
12794 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.194H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.33 e Å3
4238 reflectionsΔρmin = 0.26 e Å3
255 parameters
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.0323 (4)1.15692 (18)0.02969 (11)0.0501 (6)
N10.4274 (4)0.90562 (19)0.13372 (11)0.0262 (5)
N20.2392 (4)0.9662 (2)0.08205 (12)0.0313 (5)
C10.8421 (4)0.8048 (2)0.22728 (13)0.0279 (5)
H1A0.79950.89770.20950.033*
C21.0316 (5)0.7513 (3)0.27947 (14)0.0310 (6)
H2A1.11460.80870.29670.037*
C31.0993 (5)0.6133 (3)0.30636 (14)0.0315 (6)
H3A1.22820.57780.34110.038*
C40.9730 (5)0.5284 (3)0.28104 (14)0.0313 (6)
H4A1.01650.43560.29900.038*
C50.7821 (4)0.5819 (2)0.22888 (14)0.0274 (5)
H5A0.69850.52410.21230.033*
C60.7130 (4)0.7198 (2)0.20080 (13)0.0244 (5)
C70.5099 (4)0.7754 (2)0.14382 (13)0.0250 (5)
C80.1345 (5)1.1015 (2)0.07640 (14)0.0342 (6)
C90.2172 (5)1.1812 (2)0.13175 (13)0.0285 (6)
H9A0.39661.13890.14240.034*
C100.0556 (4)1.1707 (2)0.20861 (13)0.0236 (5)
C110.2016 (4)1.2400 (2)0.21324 (14)0.0276 (6)
H11A0.27751.28980.16820.033*
C120.3465 (5)1.2360 (2)0.28371 (15)0.0314 (6)
H12A0.51681.28510.28540.038*
C130.2420 (5)1.1600 (2)0.35198 (14)0.0288 (6)
C140.0141 (5)1.0878 (2)0.34642 (14)0.0285 (5)
H14A0.08871.03490.39090.034*
C150.1596 (5)1.0932 (2)0.27617 (13)0.0261 (5)
H15A0.32981.04410.27430.031*
C160.3971 (5)1.1569 (3)0.42892 (15)0.0398 (7)
H16A0.38431.06340.45010.048*0.467 (13)
H16B0.57311.19860.41900.048*0.467 (13)
H16C0.31751.07690.46310.048*0.533 (13)
H16D0.56371.14920.41980.048*0.533 (13)
C17A0.3180 (19)1.2210 (10)0.4913 (4)0.0316 (18)0.467 (13)
H17A0.15111.16340.50680.038*0.467 (13)
C18A0.281 (2)1.3628 (10)0.4643 (5)0.053 (3)0.467 (13)
H18A0.15241.35950.42180.079*0.467 (13)
H18B0.22691.39580.50700.079*0.467 (13)
H18C0.43871.42280.44700.079*0.467 (13)
C19A0.4977 (19)1.2181 (10)0.5642 (6)0.037 (2)0.467 (13)
H19A0.42861.24660.60570.055*0.467 (13)
H19B0.51651.12720.58010.055*0.467 (13)
H19C0.66151.27860.55300.055*0.467 (13)
C17B0.4221 (17)1.2748 (9)0.4729 (4)0.0370 (17)0.533 (13)
H17B0.51341.35670.44010.044*0.533 (13)
C18B0.1698 (15)1.2984 (10)0.4884 (4)0.041 (2)0.533 (13)
H18D0.07171.31010.43970.061*0.533 (13)
H18E0.07711.22150.52210.061*0.533 (13)
H18F0.20021.37870.51330.061*0.533 (13)
C19B0.586 (2)1.2606 (11)0.5497 (6)0.053 (2)0.533 (13)
H19D0.61091.34080.57430.080*0.533 (13)
H19E0.49991.18250.58410.080*0.533 (13)
H19F0.74811.24960.53880.080*0.533 (13)
C200.4176 (5)0.6775 (2)0.10498 (14)0.0311 (6)
H20A0.33200.72510.05890.047*
H20B0.30100.63850.14070.047*
H20C0.56070.60650.09060.047*
C210.1932 (6)1.3288 (2)0.09447 (15)0.0388 (7)
H21A0.22501.38000.13250.058*
H21B0.02391.36770.07690.058*
H21C0.31551.33140.05060.058*
H1N20.185 (4)0.923 (2)0.0516 (14)0.026 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0774 (15)0.0287 (10)0.0408 (11)0.0079 (10)0.0309 (11)0.0144 (8)
N10.0268 (11)0.0257 (11)0.0250 (10)0.0033 (8)0.0014 (8)0.0063 (8)
N20.0422 (13)0.0252 (11)0.0264 (11)0.0018 (9)0.0092 (10)0.0103 (9)
C10.0273 (13)0.0247 (12)0.0312 (13)0.0046 (10)0.0033 (11)0.0089 (10)
C20.0264 (13)0.0376 (14)0.0324 (14)0.0090 (11)0.0025 (11)0.0160 (11)
C30.0247 (13)0.0370 (15)0.0321 (14)0.0027 (11)0.0013 (11)0.0114 (11)
C40.0317 (14)0.0266 (13)0.0330 (14)0.0015 (11)0.0030 (11)0.0051 (10)
C50.0282 (13)0.0236 (12)0.0320 (13)0.0059 (10)0.0017 (10)0.0094 (10)
C60.0226 (12)0.0265 (12)0.0239 (12)0.0046 (10)0.0058 (10)0.0098 (10)
C70.0257 (12)0.0260 (12)0.0231 (12)0.0047 (10)0.0036 (10)0.0089 (10)
C80.0502 (16)0.0248 (13)0.0259 (13)0.0028 (12)0.0074 (12)0.0061 (10)
C90.0358 (14)0.0227 (12)0.0272 (13)0.0048 (10)0.0030 (11)0.0073 (10)
C100.0286 (12)0.0191 (11)0.0266 (12)0.0077 (9)0.0053 (10)0.0089 (9)
C110.0311 (14)0.0214 (12)0.0320 (13)0.0055 (10)0.0123 (11)0.0041 (10)
C120.0222 (12)0.0308 (13)0.0430 (15)0.0050 (10)0.0033 (11)0.0125 (11)
C130.0282 (13)0.0291 (13)0.0327 (14)0.0108 (11)0.0017 (11)0.0109 (11)
C140.0326 (14)0.0255 (13)0.0263 (13)0.0049 (10)0.0059 (11)0.0019 (10)
C150.0272 (13)0.0222 (12)0.0291 (13)0.0042 (10)0.0043 (10)0.0064 (10)
C160.0325 (15)0.0487 (17)0.0395 (16)0.0112 (13)0.0053 (12)0.0128 (13)
C17A0.030 (4)0.034 (4)0.028 (3)0.004 (3)0.006 (3)0.000 (3)
C18A0.082 (7)0.036 (5)0.039 (4)0.009 (5)0.003 (4)0.012 (4)
C19A0.031 (5)0.041 (5)0.035 (4)0.001 (4)0.002 (4)0.013 (4)
C17B0.030 (4)0.041 (4)0.033 (3)0.001 (3)0.001 (3)0.002 (3)
C18B0.039 (4)0.047 (5)0.038 (4)0.008 (3)0.005 (3)0.016 (3)
C19B0.041 (5)0.062 (6)0.045 (5)0.006 (4)0.015 (4)0.015 (4)
C200.0349 (14)0.0268 (13)0.0306 (13)0.0009 (11)0.0032 (11)0.0119 (10)
C210.0544 (18)0.0287 (14)0.0329 (14)0.0108 (13)0.0035 (13)0.0061 (11)
Geometric parameters (Å, º) top
O1—C81.236 (3)C15—H15A0.9300
N1—C71.284 (3)C16—C17A1.502 (7)
N1—N21.379 (3)C16—C17B1.502 (7)
N2—C81.349 (3)C16—H16A0.9600
N2—H1N20.86 (2)C16—H16B0.9599
C1—C21.381 (3)C16—H16C0.9600
C1—C61.407 (3)C16—H16D0.9600
C1—H1A0.9300C17A—C19A1.519 (13)
C2—C31.384 (3)C17A—C18A1.519 (14)
C2—H2A0.9300C17A—H17A0.9800
C3—C41.387 (3)C18A—H18A0.9600
C3—H3A0.9300C18A—H18B0.9600
C4—C51.386 (3)C18A—H18C0.9600
C4—H4A0.9300C19A—H19A0.9600
C5—C61.387 (3)C19A—H19B0.9600
C5—H5A0.9300C19A—H19C0.9600
C6—C71.491 (3)C17B—C18B1.511 (12)
C7—C201.506 (3)C17B—C19B1.533 (12)
C8—C91.524 (3)C17B—H17B0.9800
C9—C101.525 (3)C18B—H18D0.9600
C9—C211.529 (3)C18B—H18E0.9600
C9—H9A0.9800C18B—H18F0.9600
C10—C151.385 (3)C19B—H19D0.9600
C10—C111.393 (3)C19B—H19E0.9600
C11—C121.386 (3)C19B—H19F0.9600
C11—H11A0.9300C20—H20A0.9600
C12—C131.391 (3)C20—H20B0.9600
C12—H12A0.9300C20—H20C0.9600
C13—C141.396 (3)C21—H21A0.9600
C13—C161.505 (3)C21—H21B0.9600
C14—C151.385 (3)C21—H21C0.9600
C14—H14A0.9300
C7—N1—N2119.18 (19)C17B—C16—C13116.1 (3)
C8—N2—N1119.6 (2)C17A—C16—H16A106.5
C8—N2—H1N2116.6 (16)C17B—C16—H16A127.9
N1—N2—H1N2123.7 (16)C13—C16—H16A108.0
C2—C1—C6120.5 (2)C17A—C16—H16B109.7
C2—C1—H1A119.7C17B—C16—H16B84.1
C6—C1—H1A119.7C13—C16—H16B108.4
C1—C2—C3120.7 (2)H16A—C16—H16B107.5
C1—C2—H2A119.6C17A—C16—H16C79.8
C3—C2—H2A119.6C17B—C16—H16C106.1
C2—C3—C4119.4 (2)C13—C16—H16C108.5
C2—C3—H3A120.3H16B—C16—H16C131.7
C4—C3—H3A120.3C17A—C16—H16D129.3
C5—C4—C3120.0 (2)C17B—C16—H16D109.7
C5—C4—H4A120.0C13—C16—H16D108.5
C3—C4—H4A120.0H16A—C16—H16D79.4
C4—C5—C6121.4 (2)H16C—C16—H16D107.7
C4—C5—H5A119.3C16—C17A—C19A111.3 (6)
C6—C5—H5A119.3C16—C17A—C18A114.6 (8)
C5—C6—C1117.9 (2)C19A—C17A—C18A111.4 (7)
C5—C6—C7120.8 (2)C16—C17A—H17A106.3
C1—C6—C7121.3 (2)C19A—C17A—H17A106.3
N1—C7—C6115.09 (19)C18A—C17A—H17A106.3
N1—C7—C20126.2 (2)C16—C17B—C18B114.0 (7)
C6—C7—C20118.7 (2)C16—C17B—C19B111.2 (6)
O1—C8—N2120.1 (2)C18B—C17B—C19B110.3 (7)
O1—C8—C9121.5 (2)C16—C17B—H17B107.0
N2—C8—C9118.3 (2)C18B—C17B—H17B107.0
C8—C9—C10108.12 (19)C19B—C17B—H17B107.0
C8—C9—C21110.8 (2)C17B—C18B—H18D109.5
C10—C9—C21112.25 (19)C17B—C18B—H18E109.5
C8—C9—H9A108.5H18D—C18B—H18E109.5
C10—C9—H9A108.5C17B—C18B—H18F109.5
C21—C9—H9A108.5H18D—C18B—H18F109.5
C15—C10—C11117.8 (2)H18E—C18B—H18F109.5
C15—C10—C9121.3 (2)C17B—C19B—H19D109.5
C11—C10—C9120.9 (2)C17B—C19B—H19E109.5
C12—C11—C10121.2 (2)H19D—C19B—H19E109.5
C12—C11—H11A119.4C17B—C19B—H19F109.5
C10—C11—H11A119.4H19D—C19B—H19F109.5
C11—C12—C13121.2 (2)H19E—C19B—H19F109.5
C11—C12—H12A119.4C7—C20—H20A109.5
C13—C12—H12A119.4C7—C20—H20B109.5
C12—C13—C14117.3 (2)H20A—C20—H20B109.5
C12—C13—C16121.5 (2)C7—C20—H20C109.5
C14—C13—C16121.3 (2)H20A—C20—H20C109.5
C15—C14—C13121.5 (2)H20B—C20—H20C109.5
C15—C14—H14A119.3C9—C21—H21A109.5
C13—C14—H14A119.3C9—C21—H21B109.5
C14—C15—C10121.0 (2)H21A—C21—H21B109.5
C14—C15—H15A119.5C9—C21—H21C109.5
C10—C15—H15A119.5H21A—C21—H21C109.5
C17A—C16—C13116.4 (3)H21B—C21—H21C109.5
C7—N1—N2—C8173.9 (2)C21—C9—C10—C1150.4 (3)
C6—C1—C2—C30.4 (3)C15—C10—C11—C122.5 (3)
C1—C2—C3—C40.6 (4)C9—C10—C11—C12176.96 (19)
C2—C3—C4—C50.4 (4)C10—C11—C12—C131.6 (3)
C3—C4—C5—C60.1 (4)C11—C12—C13—C140.2 (3)
C4—C5—C6—C10.4 (3)C11—C12—C13—C16179.1 (2)
C4—C5—C6—C7179.1 (2)C12—C13—C14—C151.0 (3)
C2—C1—C6—C50.1 (3)C16—C13—C14—C15178.3 (2)
C2—C1—C6—C7179.3 (2)C13—C14—C15—C100.1 (3)
N2—N1—C7—C6179.98 (19)C11—C10—C15—C141.7 (3)
N2—N1—C7—C201.1 (4)C9—C10—C15—C14177.78 (19)
C5—C6—C7—N1167.0 (2)C12—C13—C16—C17A113.3 (6)
C1—C6—C7—N113.6 (3)C14—C13—C16—C17A66.0 (6)
C5—C6—C7—C2012.0 (3)C12—C13—C16—C17B81.6 (6)
C1—C6—C7—C20167.4 (2)C14—C13—C16—C17B97.7 (5)
N1—N2—C8—O1179.2 (2)C17B—C16—C17A—C19A80.4 (10)
N1—N2—C8—C93.9 (4)C13—C16—C17A—C19A176.9 (5)
O1—C8—C9—C1092.1 (3)C17B—C16—C17A—C18A47.1 (11)
N2—C8—C9—C1084.7 (3)C13—C16—C17A—C18A49.4 (12)
O1—C8—C9—C2131.3 (4)C17A—C16—C17B—C18B42.9 (10)
N2—C8—C9—C21151.9 (2)C13—C16—C17B—C18B55.0 (10)
C8—C9—C10—C15108.5 (2)C17A—C16—C17B—C19B82.6 (10)
C21—C9—C10—C15129.0 (2)C13—C16—C17B—C19B179.6 (4)
C8—C9—C10—C1172.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.86 (2)2.08 (2)2.928 (3)173 (2)
C20—H20A···O1i0.962.313.247 (3)165
C20—H20B···Cg1ii0.962.753.609 (3)150
Symmetry codes: (i) x, y+2, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC21H26N2O
Mr322.44
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.4355 (2), 10.2850 (4), 17.3095 (6)
α, β, γ (°)80.821 (4), 84.312 (3), 74.719 (3)
V3)919.85 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.22 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.984, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
12794, 4238, 2556
Rint0.063
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.194, 1.07
No. of reflections4238
No. of parameters255
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.26

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.86 (2)2.08 (2)2.928 (3)173 (2)
C20—H20A···O1i0.962.313.247 (3)165
C20—H20B···Cg1ii0.962.753.609 (3)150
Symmetry codes: (i) x, y+2, z; (ii) x1, y, z.
 

Footnotes

Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

Acknowledgements

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post–doctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253–1261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Jebas, S. R., Sujith, K. V., Patil, P. S., Kalluraya, B. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1001–o1002.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPalaska, E., Sahin, G., Kelicen, P., Durlu, N. T. & Altinok, G. (2002). Farmaco, 57, 101–107.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRollas, S., Gülerman, N. & Erdeniz, H. (2002). Farmaco, 57, 171–174.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRollas, S. & Küçükgüzel, S. G. (2007). Molecules, 12, 1910–1939.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTerzioglu, N. & Gürsoy, A. (2003). Eur. J. Med. Chem. 38, 781–786.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds