metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[μ2-aqua-[μ2-1,1′-(butane-1,4-di­yl)di­imidazole]bis­­(μ4-naphthalene-1,4-di­carboxyl­ato)dimanganese(II)]

aCollege of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, Heilongjiang Province, People's Republic of China
*Correspondence e-mail: zhangwenzhi1968@yahoo.com.cn

(Received 4 November 2008; accepted 8 November 2008; online 13 November 2008)

In the title compound, [Mn2(C12H6O4)2(C10H14N4)(H2O)]n or [Mn2(1,4-ndc)2(L)(H2O)]n, where 1,4-ndc is naphthalene-1,4-dicarboxyl­ate and L is 1,1′-(butane-1,4-di­yl)diimidazole, the coordination polyhedron around each MnII atom is distorted octa­hedral. The water mol­ecule and the L ligand are situated across a twofold rotation axis. The MnII atoms are bridged by 1,4-ndc and L ligands, forming a three-dimensional network. O—H⋯O hydrogen bonds are observed within the network.

Related literature

For general background, see: Ma et al. (2003[Ma, J.-F., Yang, J., Zheng, G.-L., Li, L. & Liu, J.-F. (2003). Inorg. Chem. 42, 7531-7534.]); Yang et al. (2008[Yang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233-2235.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn2(C12H6O4)2(C10H14N4)(H2O)]

  • Mr = 746.48

  • Monoclinic, C 2/c

  • a = 18.386 (2) Å

  • b = 14.8887 (18) Å

  • c = 13.9121 (17) Å

  • β = 126.319 (1)°

  • V = 3068.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.89 mm−1

  • T = 293 (2) K

  • 0.31 × 0.29 × 0.23 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.754, Tmax = 0.814

  • 8475 measured reflections

  • 3032 independent reflections

  • 2643 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.081

  • S = 1.06

  • 3032 reflections

  • 226 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—N1 2.2157 (17)
Mn1—O1 2.1343 (15)
Mn1—O1W 2.2085 (11)
Mn1—O2i 2.1535 (14)
Mn1—O4ii 2.2115 (14)
Mn1—O4iii 2.4148 (13)
Symmetry codes: (i) [-x+1, y, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O3iii 0.83 (3) 1.72 (3) 2.5361 (19) 166 (3)
Symmetry code: (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Some interesting interpenetrated or entangled metal-organic networks with bis(imidazole)-containing ligands have been documented (Yang et al., 2008). But, flexible ligands such as 1,1'-(1,4-butanediyl)bis(imidazole) (L) have not been well explored (Ma et al., 2003). In this work, we used 1,4-naphthalenedicarboxylic acid (1,4-H2ndc) and L as linkers to obtain a new coordination polymer, [Mn2(1,4-ndc)2(L)(H2O)]. We report here its crystal structure.

In the title compound, each MnII atom displays a distorted octahedral coordination sphere, completed by one N atom from one L ligand, four carboxylate O atoms from 1,4-ndc ligand and the O atom of the water molecule (Fig. 1). Both the water molecule and L ligand are situated across a twofold rotation axis. Two adjacent MnII atoms are bridged by carboxylate groups of 1,4-ndc ligands and water molecules forming a three- dimensional network containing [Mn2(1,4-ndc)2(H2O)] units. The network is further strengthened by the coordination of L ligands (Fig. 2).

Related literature top

For general background, see: Ma et al. (2003); Yang et al. (2008).

Experimental top

A mixture of 1,4-H2ndc (0.5 mmol), L (0.5 mmol), NaOH (1 mmol) and MnCl2.2H2O (0.5 mmol) was suspended in 14 ml of deionized water and sealed in a 20-ml Teflon-lined autoclave. Upon heating at 413 K for 3 d, the autoclave was slowly cooled to room temperature. The crystals formed were collected, washed with deionized water and dried.

Refinement top

C–bound H atoms were positioned geometrically (C-H = 0.93–0.97 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C). The water H atom was located in a difference Fourier map and refined freely.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Part of the polymeric structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry codes: (i) 1-x, y, 3/2-z; (ii) 3/2-x, 1/2+y, 3/1-z; (iii) x-1/2, 1/2-y, z-1/2; (iv) -x, y, 1/2-z.
[Figure 2] Fig. 2. View of the three-dimensional framework of the title compound.
Poly[µ2-aqua-[µ2-1,1'-(butane-1,4-diyl)diimidazole]bis(µ4-naphthalene-1,4-dicarboxylato)dimanganese(II)] top
Crystal data top
[Mn2(C12H6O4)2(C10H14N4)(H2O)]F(000) = 1528
Mr = 746.48Dx = 1.616 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3032 reflections
a = 18.386 (2) Åθ = 1.1–26.1°
b = 14.8887 (18) ŵ = 0.89 mm1
c = 13.9121 (17) ÅT = 293 K
β = 126.319 (1)°Block, colourless
V = 3068.5 (6) Å30.31 × 0.29 × 0.23 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
3032 independent reflections
Radiation source: fine-focus sealed tube2643 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 26.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 2122
Tmin = 0.754, Tmax = 0.814k = 1718
8475 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.039P)2 + 3.0197P]
where P = (Fo2 + 2Fc2)/3
3032 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
[Mn2(C12H6O4)2(C10H14N4)(H2O)]V = 3068.5 (6) Å3
Mr = 746.48Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.386 (2) ŵ = 0.89 mm1
b = 14.8887 (18) ÅT = 293 K
c = 13.9121 (17) Å0.31 × 0.29 × 0.23 mm
β = 126.319 (1)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
3032 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2643 reflections with I > 2σ(I)
Tmin = 0.754, Tmax = 0.814Rint = 0.020
8475 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.36 e Å3
3032 reflectionsΔρmin = 0.24 e Å3
226 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.62201 (13)0.35715 (13)0.80331 (19)0.0292 (4)
C20.69094 (14)0.28719 (14)0.82714 (18)0.0284 (4)
C30.78080 (14)0.30737 (15)0.90435 (19)0.0365 (5)
H30.79850.35930.95020.044*
C40.84703 (15)0.25114 (16)0.9159 (2)0.0380 (5)
H40.90760.26710.96710.046*
C50.82279 (14)0.17325 (14)0.85222 (18)0.0312 (5)
C60.89049 (15)0.12254 (14)0.84487 (19)0.0340 (5)
C70.73108 (15)0.14565 (14)0.77897 (19)0.0311 (5)
C80.66391 (14)0.20353 (14)0.76583 (18)0.0287 (4)
C90.57318 (16)0.17399 (16)0.6942 (2)0.0412 (5)
H90.52840.21080.68440.049*
C100.70427 (18)0.06162 (16)0.7191 (2)0.0433 (6)
H100.74750.02380.72620.052*
C110.6163 (2)0.03575 (17)0.6515 (3)0.0547 (7)
H110.59980.01960.61320.066*
C120.55052 (19)0.09235 (19)0.6395 (3)0.0562 (7)
H120.49050.07390.59340.067*
C130.26433 (15)0.55518 (18)0.4740 (2)0.0458 (6)
H130.25020.50580.50110.055*
C140.12054 (17)0.6389 (3)0.3926 (3)0.0710 (10)
H14A0.12020.69510.42770.085*
H14B0.10970.59090.42980.085*
C150.04623 (15)0.6403 (2)0.2644 (2)0.0521 (7)
H15A0.05180.58830.22730.062*
H15B0.05250.69340.22950.062*
C160.25299 (18)0.68327 (19)0.3927 (2)0.0509 (7)
H160.23180.73830.35410.061*
C170.33284 (16)0.64368 (16)0.4330 (2)0.0420 (6)
H170.37630.66820.42650.050*
N10.34027 (11)0.56325 (13)0.48419 (16)0.0334 (4)
N20.21024 (13)0.62621 (16)0.42028 (18)0.0474 (5)
O10.56289 (11)0.37653 (11)0.69574 (14)0.0431 (4)
O20.63083 (10)0.39108 (10)0.89143 (13)0.0384 (4)
O1W0.50000.54659 (13)0.75000.0258 (4)
O30.88390 (16)0.13596 (16)0.75292 (18)0.0801 (8)
O40.94753 (9)0.07087 (9)0.92823 (12)0.0271 (3)
Mn10.456815 (18)0.470697 (19)0.58778 (3)0.02220 (10)
H1W10.542 (2)0.578 (2)0.760 (3)0.080 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0272 (11)0.0277 (10)0.0356 (12)0.0069 (8)0.0203 (10)0.0041 (9)
C20.0293 (11)0.0307 (10)0.0280 (11)0.0099 (8)0.0186 (9)0.0049 (8)
C30.0322 (12)0.0365 (12)0.0344 (12)0.0065 (9)0.0163 (10)0.0075 (9)
C40.0250 (11)0.0478 (13)0.0333 (12)0.0089 (10)0.0129 (10)0.0012 (10)
C50.0329 (11)0.0359 (11)0.0272 (10)0.0153 (9)0.0192 (10)0.0098 (9)
C60.0373 (12)0.0355 (11)0.0365 (12)0.0165 (9)0.0259 (11)0.0104 (10)
C70.0389 (12)0.0284 (10)0.0319 (11)0.0095 (9)0.0243 (10)0.0061 (9)
C80.0303 (11)0.0304 (10)0.0269 (10)0.0062 (8)0.0177 (9)0.0048 (8)
C90.0331 (12)0.0437 (13)0.0441 (13)0.0018 (10)0.0214 (11)0.0002 (11)
C100.0604 (17)0.0318 (12)0.0464 (14)0.0081 (11)0.0363 (14)0.0011 (10)
C110.0689 (19)0.0365 (13)0.0581 (17)0.0120 (13)0.0373 (16)0.0132 (12)
C120.0455 (15)0.0541 (16)0.0578 (17)0.0147 (13)0.0245 (14)0.0098 (14)
C130.0282 (12)0.0585 (15)0.0465 (14)0.0064 (11)0.0197 (11)0.0183 (12)
C140.0301 (14)0.129 (3)0.0529 (17)0.0267 (16)0.0241 (13)0.0157 (18)
C150.0276 (13)0.0674 (18)0.0541 (16)0.0057 (12)0.0204 (12)0.0056 (14)
C160.0488 (15)0.0516 (15)0.0530 (15)0.0214 (12)0.0306 (13)0.0239 (13)
C170.0376 (13)0.0472 (14)0.0455 (14)0.0088 (11)0.0270 (12)0.0150 (11)
N10.0242 (9)0.0398 (10)0.0318 (10)0.0062 (8)0.0141 (8)0.0070 (8)
N20.0266 (10)0.0719 (15)0.0412 (11)0.0179 (10)0.0188 (9)0.0174 (11)
O10.0433 (9)0.0510 (10)0.0346 (9)0.0273 (8)0.0228 (8)0.0121 (7)
O20.0373 (9)0.0419 (9)0.0358 (8)0.0138 (7)0.0216 (8)0.0021 (7)
O1W0.0245 (11)0.0252 (10)0.0319 (11)0.0000.0190 (10)0.000
O30.1034 (17)0.1078 (18)0.0677 (13)0.0817 (15)0.0718 (14)0.0575 (13)
O40.0232 (7)0.0305 (7)0.0271 (7)0.0091 (6)0.0146 (6)0.0064 (6)
Mn10.01989 (17)0.02365 (16)0.02283 (17)0.00100 (11)0.01253 (13)0.00210 (11)
Geometric parameters (Å, º) top
C1—O21.245 (2)C13—H130.93
C1—O11.256 (2)C14—N21.467 (3)
C1—C21.518 (3)C14—C151.470 (4)
C2—C31.368 (3)C14—H14A0.97
C2—C81.423 (3)C14—H14B0.97
C3—C41.406 (3)C15—C15i1.497 (4)
C3—H30.93C15—H15A0.97
C4—C51.364 (3)C15—H15B0.97
C4—H40.93C16—C171.357 (3)
C5—C71.420 (3)C16—N21.358 (3)
C5—C61.510 (3)C16—H160.93
C6—O31.228 (3)C17—N11.358 (3)
C6—O41.263 (2)C17—H170.93
C7—C101.420 (3)Mn1—N12.2157 (17)
C7—C81.426 (3)Mn1—O12.1343 (15)
C8—C91.414 (3)Mn1—O2ii2.1535 (14)
C9—C121.362 (4)Mn1—O1W2.2085 (11)
C9—H90.93O1W—Mn1ii2.2085 (11)
C10—C111.359 (4)O1W—H1W10.83 (3)
C10—H100.93O4—Mn1iii2.2115 (14)
C11—C121.401 (4)O4—Mn1iv2.4148 (13)
C11—H110.93Mn1—O2ii2.1535 (14)
C12—H120.93Mn1—O4v2.2115 (14)
C13—N11.323 (3)Mn1—O4vi2.4148 (13)
C13—N21.336 (3)
O2—C1—O1126.60 (18)C15—C14—H14B108.7
O2—C1—C2117.30 (18)H14A—C14—H14B107.6
O1—C1—C2116.07 (18)C14—C15—C15i114.7 (3)
C3—C2—C8119.57 (18)C14—C15—H15A108.6
C3—C2—C1119.00 (19)C15i—C15—H15A108.6
C8—C2—C1121.33 (18)C14—C15—H15B108.6
C2—C3—C4121.3 (2)C15i—C15—H15B108.6
C2—C3—H3119.3H15A—C15—H15B107.6
C4—C3—H3119.3C17—C16—N2106.1 (2)
C5—C4—C3120.3 (2)C17—C16—H16127.0
C5—C4—H4119.9N2—C16—H16127.0
C3—C4—H4119.9C16—C17—N1110.4 (2)
C4—C5—C7120.31 (18)C16—C17—H17124.8
C4—C5—C6120.2 (2)N1—C17—H17124.8
C7—C5—C6118.88 (19)C13—N1—C17104.58 (19)
O3—C6—O4124.86 (19)C13—N1—Mn1124.47 (16)
O3—C6—C5114.36 (18)C17—N1—Mn1130.37 (15)
O4—C6—C5120.78 (18)C13—N2—C16106.84 (19)
C5—C7—C10121.9 (2)C13—N2—C14126.7 (2)
C5—C7—C8119.17 (19)C16—N2—C14126.5 (2)
C10—C7—C8119.0 (2)C1—O1—Mn1140.78 (13)
C9—C8—C2122.82 (19)C1—O2—Mn1ii133.19 (13)
C9—C8—C7118.2 (2)Mn1—O1W—Mn1ii118.46 (9)
C2—C8—C7118.94 (19)Mn1—O1W—H1W1101 (2)
C12—C9—C8120.9 (2)Mn1ii—O1W—H1W1112 (2)
C12—C9—H9119.5C6—O4—Mn1iii128.35 (12)
C8—C9—H9119.5C6—O4—Mn1iv123.05 (12)
C11—C10—C7120.9 (2)Mn1iii—O4—Mn1iv106.99 (5)
C11—C10—H10119.6O1—Mn1—O2ii89.34 (6)
C7—C10—H10119.6O1—Mn1—O1W89.50 (6)
C10—C11—C12120.1 (2)O2ii—Mn1—O1W89.38 (5)
C10—C11—H11119.9O1—Mn1—O4v91.01 (6)
C12—C11—H11119.9O2ii—Mn1—O4v111.20 (5)
C9—C12—C11120.9 (2)O1W—Mn1—O4v159.42 (5)
C9—C12—H12119.5O1—Mn1—N1174.19 (6)
C11—C12—H12119.5O2ii—Mn1—N185.26 (6)
N1—C13—N2112.1 (2)O1W—Mn1—N188.30 (6)
N1—C13—H13123.9O4v—Mn1—N192.93 (6)
N2—C13—H13123.9O1—Mn1—O4vi93.37 (6)
N2—C14—C15114.4 (2)O2ii—Mn1—O4vi174.98 (6)
N2—C14—H14A108.7O1W—Mn1—O4vi86.42 (4)
C15—C14—H14A108.7O4v—Mn1—O4vi73.01 (5)
N2—C14—H14B108.7N1—Mn1—O4vi91.86 (6)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1, y, z+3/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+3/2, y1/2, z+3/2; (v) x1/2, y+1/2, z1/2; (vi) x+3/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O3vi0.83 (3)1.72 (3)2.5361 (19)166 (3)
Symmetry code: (vi) x+3/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Mn2(C12H6O4)2(C10H14N4)(H2O)]
Mr746.48
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)18.386 (2), 14.8887 (18), 13.9121 (17)
β (°) 126.319 (1)
V3)3068.5 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.89
Crystal size (mm)0.31 × 0.29 × 0.23
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.754, 0.814
No. of measured, independent and
observed [I > 2σ(I)] reflections
8475, 3032, 2643
Rint0.020
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.081, 1.06
No. of reflections3032
No. of parameters226
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.24

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Mn1—N12.2157 (17)Mn1—O2i2.1535 (14)
Mn1—O12.1343 (15)Mn1—O4ii2.2115 (14)
Mn1—O1W2.2085 (11)Mn1—O4iii2.4148 (13)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x1/2, y+1/2, z1/2; (iii) x+3/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O3iii0.83 (3)1.72 (3)2.5361 (19)166 (3)
Symmetry code: (iii) x+3/2, y+1/2, z+3/2.
 

Acknowledgements

The work was supported by the Program for Young Academic Backbone in Heilongjiang Provincial University (grant No. 1152 G053)

References

First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMa, J.-F., Yang, J., Zheng, G.-L., Li, L. & Liu, J.-F. (2003). Inorg. Chem. 42, 7531–7534.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233–2235.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds