organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Nitro-N-(8-quinolyl)benzamide

aSchool of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
*Correspondence e-mail: leigang307@yahoo.com.cn

(Received 13 November 2008; accepted 14 November 2008; online 20 November 2008)

In the title compound, C16H11N3O3, the amide group is twisted away from the quinoline ring system and nitro­benzene ring by 8.02 (1)° and 54.92 (1)°, respectively. The crystal packing is stabilized by inter­molecular C—H⋯O hydrogen bonds, and ππ inter­actions between the quinoline ring systems of inversion-related mol­ecules, with a centroid–centroid distance of 3.4802 (13) Å.

Related literature

For the biological activities of quinoline derivatives, see: Oku et al. (1998[Oku, T., Sato, S., Inoue, T., Urano, Y., Yoshimitsu, T. & Yoshida, N. (1998). Jpn Patent 10 291 988.], 1999[Oku, T., Kawai, Y., Satoh, S., Yamazaki, H., Kayakiri, N., Urano, Y., Yoshihara, K. & Yoshida, N. (1999). US Patent 6008230.]).

[Scheme 1]

Experimental

Crystal data
  • C16H11N3O3

  • Mr = 293.28

  • Monoclinic, P 21 /c

  • a = 12.430 (3) Å

  • b = 10.144 (3) Å

  • c = 11.528 (3) Å

  • β = 116.449 (3)°

  • V = 1301.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 93 (2) K

  • 0.50 × 0.40 × 0.15 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: none

  • 10410 measured reflections

  • 2949 independent reflections

  • 2679 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.145

  • S = 1.00

  • 2949 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3i 0.95 2.55 3.209 (2) 127
C4—H4⋯O2ii 0.95 2.48 3.319 (2) 147
C17—H17⋯O1iii 0.95 2.42 3.160 (2) 135
Symmetry codes: (i) x-1, y, z-1; (ii) -x, -y+1, -z+1; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 2004[Rigaku (2004). RAPID-AUTO. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Quinoline derivatives are a class of important compound for the treatment of bone metabolic disorders (Oku et al., 1998) and as H+-ATPases inhibitors (Oku et al., 1999). We report here the crystal structure of the title compound.

Bond lengths and angles in title molecule (Fig.1) are normal. The quinoline ring system is planar, with a maximum deviation of 0.033 (2) Å for atom C3. As a result of steric effects, the amide group is twisted away from the planes of the quinoline ring system and the nitrobenzene ring. The C5-C10 and C12-C17 planes form dihedral angles of 8.02 (1) and 54.92 (1)°, respectively, with the O1/N2/C8/C11 plane. The dihedral angle between the C12-C17 and O2/O3/N3/C13 planes is 36.83 (1)°.

The crystal packing is stabilized by C—H···O hydrogen bonds (Table 1), and π-π interactions between the benzene rings of the inversion-related molecules at (x, y, z) and (-x, 1 - y, 1 - z), with a centroid-centroid distance of 3.4802 (13) Å.

Related literature top

For the biological activities of quinoline derivatives, see: Oku et al. (1998, 1999).

Experimental top

O-Nitrobenzoic acid (2 mmol) and an excess of thionyl chloride (3 mmol) in dioxane (20 ml) were boiled under reflux for 6 h. The solution was distilled under reduced pressure and a yellow solid was obtained. 8-Aminoquinoline (2 mmol) in tetrahydrofuran (20 ml) was added to the yellow solid and boiled under reflux for 6 h. The solution was then cooled to ambient temperature and filtered to remove the tetrahydrofuran. The precipitate was dissolved in the dimethyl sulfoxide and allowed to stand for one month at ambient temperature, after which time white single crystals of the title compound suitable for X-ray diffraction were obtained.

Refinement top

All H atoms were placed in calculated positions, with C-H = 0.95 Å and N-H = 0.88 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering.
2-Nitro-N-(8-quinolyl)benzamide top
Crystal data top
C16H11N3O3F(000) = 608
Mr = 293.28Dx = 1.497 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3984 reflections
a = 12.430 (3) Åθ = 3.2–27.5°
b = 10.144 (3) ŵ = 0.11 mm1
c = 11.528 (3) ÅT = 93 K
β = 116.449 (3)°Block, white
V = 1301.4 (6) Å30.50 × 0.40 × 0.15 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2679 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 27.5°, θmin = 3.5°
ω scansh = 1616
10410 measured reflectionsk = 1213
2949 independent reflectionsl = 1411
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.089P)2 + 0.36P]
where P = (Fo2 + 2Fc2)/3
2949 reflections(Δ/σ)max = 0.005
199 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C16H11N3O3V = 1301.4 (6) Å3
Mr = 293.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.430 (3) ŵ = 0.11 mm1
b = 10.144 (3) ÅT = 93 K
c = 11.528 (3) Å0.50 × 0.40 × 0.15 mm
β = 116.449 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2679 reflections with I > 2σ(I)
10410 measured reflectionsRint = 0.029
2949 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.00Δρmax = 0.22 e Å3
2949 reflectionsΔρmin = 0.28 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.33297 (10)0.27884 (13)0.71053 (11)0.0283 (3)
O20.42529 (10)0.55360 (12)0.75700 (12)0.0290 (3)
O30.60516 (11)0.50766 (12)0.90418 (11)0.0291 (3)
N10.07416 (11)0.46239 (13)0.28513 (13)0.0202 (3)
N20.23340 (11)0.35402 (13)0.50283 (13)0.0201 (3)
H2N0.24600.38350.43810.024*
N30.52329 (11)0.49852 (13)0.79419 (13)0.0213 (3)
C20.00265 (14)0.52243 (15)0.17885 (15)0.0212 (3)
H20.02840.56710.12780.025*
C30.12782 (14)0.52428 (15)0.13644 (16)0.0223 (4)
H30.17910.56910.05900.027*
C40.17449 (14)0.46062 (15)0.20824 (16)0.0221 (4)
H40.25880.45910.18030.027*
C50.13518 (14)0.33419 (15)0.40878 (16)0.0210 (3)
H50.21840.32980.38650.025*
C60.05278 (14)0.27986 (15)0.52209 (16)0.0215 (3)
H60.08000.23880.57830.026*
C70.07210 (14)0.28306 (15)0.55819 (16)0.0205 (3)
H70.12750.24410.63730.025*
C80.11263 (13)0.34276 (14)0.47822 (15)0.0187 (3)
C90.02839 (13)0.40129 (14)0.35897 (15)0.0181 (3)
C100.09602 (13)0.39701 (15)0.32465 (15)0.0194 (3)
C110.33334 (13)0.32539 (15)0.61325 (15)0.0197 (3)
C120.44935 (13)0.34895 (15)0.60488 (14)0.0184 (3)
C130.54399 (13)0.41992 (15)0.69958 (15)0.0189 (3)
C140.65666 (14)0.42618 (15)0.70338 (16)0.0220 (3)
H140.71980.47410.76980.026*
C150.67563 (14)0.36117 (15)0.60838 (17)0.0243 (4)
H150.75270.36290.61000.029*
C160.58228 (15)0.29374 (16)0.51112 (16)0.0239 (4)
H160.59510.25180.44470.029*
C170.47000 (14)0.28663 (15)0.50942 (15)0.0216 (3)
H170.40700.23890.44260.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0213 (6)0.0419 (7)0.0199 (6)0.0011 (5)0.0074 (5)0.0064 (5)
O20.0197 (6)0.0347 (7)0.0308 (7)0.0053 (5)0.0098 (5)0.0042 (5)
O30.0255 (6)0.0327 (7)0.0207 (6)0.0014 (5)0.0026 (5)0.0051 (5)
N10.0183 (6)0.0203 (6)0.0204 (7)0.0013 (5)0.0073 (5)0.0005 (5)
N20.0168 (6)0.0242 (7)0.0187 (7)0.0022 (5)0.0074 (5)0.0018 (5)
N30.0191 (6)0.0210 (7)0.0213 (7)0.0014 (5)0.0067 (6)0.0016 (5)
C20.0218 (8)0.0205 (7)0.0200 (8)0.0014 (6)0.0081 (6)0.0023 (6)
C30.0201 (7)0.0195 (7)0.0229 (8)0.0002 (6)0.0056 (6)0.0004 (6)
C40.0174 (7)0.0197 (7)0.0267 (9)0.0012 (6)0.0076 (6)0.0010 (6)
C50.0181 (7)0.0197 (7)0.0271 (8)0.0013 (6)0.0118 (6)0.0031 (6)
C60.0244 (8)0.0186 (7)0.0259 (9)0.0027 (6)0.0151 (7)0.0014 (6)
C70.0213 (8)0.0188 (7)0.0211 (8)0.0005 (6)0.0092 (6)0.0016 (6)
C80.0169 (7)0.0167 (7)0.0216 (8)0.0023 (5)0.0079 (6)0.0034 (6)
C90.0184 (7)0.0156 (7)0.0196 (8)0.0014 (5)0.0078 (6)0.0024 (6)
C100.0184 (7)0.0165 (7)0.0219 (8)0.0010 (5)0.0077 (6)0.0039 (6)
C110.0193 (7)0.0199 (7)0.0188 (8)0.0008 (6)0.0076 (6)0.0015 (6)
C120.0171 (7)0.0189 (7)0.0165 (7)0.0014 (5)0.0050 (6)0.0040 (5)
C130.0188 (7)0.0181 (7)0.0180 (8)0.0014 (5)0.0066 (6)0.0013 (6)
C140.0165 (7)0.0205 (7)0.0259 (8)0.0006 (6)0.0065 (6)0.0007 (6)
C150.0216 (8)0.0207 (7)0.0328 (9)0.0030 (6)0.0140 (7)0.0049 (7)
C160.0281 (8)0.0219 (8)0.0249 (9)0.0015 (6)0.0148 (7)0.0021 (6)
C170.0225 (8)0.0223 (8)0.0189 (8)0.0012 (6)0.0081 (6)0.0009 (6)
Geometric parameters (Å, º) top
O1—C111.219 (2)C6—C71.417 (2)
O2—N31.2307 (17)C6—H60.95
O3—N31.2257 (17)C7—C81.373 (2)
N1—C21.320 (2)C7—H70.95
N1—C91.365 (2)C8—C91.434 (2)
N2—C111.3562 (19)C9—C101.416 (2)
N2—C81.4028 (19)C11—C121.507 (2)
N2—H2N0.88C12—C171.389 (2)
N3—C131.463 (2)C12—C131.396 (2)
C2—C31.408 (2)C13—C141.383 (2)
C2—H20.95C14—C151.386 (2)
C3—C41.366 (2)C14—H140.95
C3—H30.95C15—C161.383 (2)
C4—C101.415 (2)C15—H150.95
C4—H40.95C16—C171.389 (2)
C5—C61.366 (2)C16—H160.95
C5—C101.416 (2)C17—H170.95
C5—H50.95
C2—N1—C9117.28 (13)N1—C9—C10123.11 (14)
C11—N2—C8128.52 (13)N1—C9—C8117.16 (13)
C11—N2—H2N115.7C10—C9—C8119.70 (14)
C8—N2—H2N115.7C4—C10—C5123.56 (14)
O3—N3—O2124.26 (14)C4—C10—C9117.17 (14)
O3—N3—C13118.14 (13)C5—C10—C9119.23 (14)
O2—N3—C13117.59 (13)O1—C11—N2124.71 (14)
N1—C2—C3123.99 (15)O1—C11—C12121.09 (14)
N1—C2—H2118.0N2—C11—C12114.12 (13)
C3—C2—H2118.0C17—C12—C13117.75 (14)
C4—C3—C2119.02 (15)C17—C12—C11119.90 (13)
C4—C3—H3120.5C13—C12—C11121.93 (14)
C2—C3—H3120.5C14—C13—C12122.48 (15)
C3—C4—C10119.39 (14)C14—C13—N3117.59 (13)
C3—C4—H4120.3C12—C13—N3119.80 (13)
C10—C4—H4120.3C13—C14—C15118.66 (14)
C6—C5—C10119.76 (14)C13—C14—H14120.7
C6—C5—H5120.1C15—C14—H14120.7
C10—C5—H5120.1C16—C15—C14119.96 (15)
C5—C6—C7121.88 (15)C16—C15—H15120.0
C5—C6—H6119.1C14—C15—H15120.0
C7—C6—H6119.1C15—C16—C17120.81 (15)
C8—C7—C6119.64 (15)C15—C16—H16119.6
C8—C7—H7120.2C17—C16—H16119.6
C6—C7—H7120.2C12—C17—C16120.29 (15)
C7—C8—N2125.45 (14)C12—C17—H17119.9
C7—C8—C9119.78 (14)C16—C17—H17119.9
N2—C8—C9114.76 (13)
C9—N1—C2—C31.5 (2)C8—C9—C10—C50.3 (2)
N1—C2—C3—C40.0 (2)C8—N2—C11—O13.0 (3)
C2—C3—C4—C101.4 (2)C8—N2—C11—C12179.71 (14)
C10—C5—C6—C70.7 (2)O1—C11—C12—C17120.18 (17)
C5—C6—C7—C80.4 (2)N2—C11—C12—C1756.67 (19)
C6—C7—C8—N2179.31 (14)O1—C11—C12—C1352.2 (2)
C6—C7—C8—C90.0 (2)N2—C11—C12—C13130.96 (15)
C11—N2—C8—C79.2 (3)C17—C12—C13—C142.1 (2)
C11—N2—C8—C9170.17 (14)C11—C12—C13—C14170.39 (14)
C2—N1—C9—C101.7 (2)C17—C12—C13—N3173.65 (13)
C2—N1—C9—C8176.46 (14)C11—C12—C13—N313.8 (2)
C7—C8—C9—N1178.25 (13)O3—N3—C13—C1437.9 (2)
N2—C8—C9—N11.14 (19)O2—N3—C13—C14140.59 (15)
C7—C8—C9—C100.0 (2)O3—N3—C13—C12146.16 (15)
N2—C8—C9—C10179.40 (13)O2—N3—C13—C1235.4 (2)
C3—C4—C10—C5176.77 (14)C12—C13—C14—C151.0 (2)
C3—C4—C10—C91.2 (2)N3—C13—C14—C15174.87 (13)
C6—C5—C10—C4177.25 (15)C13—C14—C15—C161.1 (2)
C6—C5—C10—C90.6 (2)C14—C15—C16—C172.0 (2)
N1—C9—C10—C40.4 (2)C13—C12—C17—C161.2 (2)
C8—C9—C10—C4177.72 (13)C11—C12—C17—C16171.51 (14)
N1—C9—C10—C5178.44 (13)C15—C16—C17—C120.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.952.553.209 (2)127
C4—H4···O2ii0.952.483.319 (2)147
C17—H17···O1iii0.952.423.160 (2)135
Symmetry codes: (i) x1, y, z1; (ii) x, y+1, z+1; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H11N3O3
Mr293.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)93
a, b, c (Å)12.430 (3), 10.144 (3), 11.528 (3)
β (°) 116.449 (3)
V3)1301.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.50 × 0.40 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10410, 2949, 2679
Rint0.029
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.145, 1.00
No. of reflections2949
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.28

Computer programs: RAPID-AUTO (Rigaku, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.952.553.209 (2)127
C4—H4···O2ii0.952.483.319 (2)147
C17—H17···O1iii0.952.423.160 (2)135
Symmetry codes: (i) x1, y, z1; (ii) x, y+1, z+1; (iii) x, y+1/2, z1/2.
 

Acknowledgements

The authors thank the Centre for Testing and Analysis, Cheng Du Branch, Chinese Academy of Sciences, for analytical support.

References

First citationOku, T., Kawai, Y., Satoh, S., Yamazaki, H., Kayakiri, N., Urano, Y., Yoshihara, K. & Yoshida, N. (1999). US Patent 6008230.  Google Scholar
First citationOku, T., Sato, S., Inoue, T., Urano, Y., Yoshimitsu, T. & Yoshida, N. (1998). Jpn Patent 10 291 988.  Google Scholar
First citationRigaku (2004). RAPID-AUTO. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds