organic compounds
4-{2-[3-(2-Ammonioacetamido)propanamido]ethyl}-1H-imidazol-3-ium dichloride
aGroupe Complexation et Cinétique en Milieu Microhétérogène, Laboratoire SRSMC (UMR 7565 CNRS - Université Henri Poincaré Nancy 1), Nancy Université, BP 70239, F-54506 Vandoeuvre-lès-Nancy Cedex, France, and bLaboratoire de Cristallographie et de Modélisation des Matériaux, Minéraux et Biologiques LCM3B (UMR 7036 CNRS - Université Henri Poincaré, Nancy 1), Nancy Université, BP 70239, F-54506 Vandoeuvre-lès-Nancy Cedex, France
*Correspondence e-mail: Katalin.Selmeczi@lesoc.uhp-nancy.fr
Molecules of the title compound, Gly-β-Ala-Histamine dihydrochloride, C10H19N5O22+·2Cl−, are linked by N—H⋯O and N—H⋯Cl hydrogen bonds into two-dimensional polymeric sheets parallel to the (011) plane, forming a stacked structure along the a axis. The parallel layers are also interlinked alternately by different N—H⋯Cl hydrogen bonds, forming a three-dimensional framework.
Related literature
For the complexation abilities of et al. (1999); Gajda et al. (1996). For bond lengths and angles in other see: Itoh et al. (1977). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related literature, see: Henry et al. (1993).
towards different metals, see: KozlowskiExperimental
Crystal data
|
Refinement
|
Data collection: CryslisCCD (Oxford Diffraction, 2003); cell CrysAlis RED (Oxford Diffraction, 2003); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: enCIFer (Allen et al., 2004).
Supporting information
10.1107/S1600536808035952/cs2096sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808035952/cs2096Isup2.hkl
The title compound was synthesized in two steps. First, β-Ala-histamine was prepared from N-(tert-butoxycarbonyl)-β-alanine and histamine dihydrochloride according to the procedure described earlier (Henry et al., 1993). Using the same method in the second step, the title compound was obtained from the reaction of N-(tert-butoxycarbonyl)-glycine on β-Ala-histamine. Suitable crystals were obtained by slow diffusion of ethyl acetate into the methanolic solution of the title compound.
All H atoms bonded to C and N atoms were initially located from difference Fourier maps. Nevertheless, all the H atoms were constrained in a riding motion approximation with fixed bond lengths and Uiso parameters: Caryl–H = 0.95 Å, with Uiso(H) = 1.2Ueq(C); Cmethylene–H = 0.99 Å, with Uiso(H) = 1.2Ueq(C); N–H = 0.88 Å, with Uiso(H) = 1.2Ueq(N); Namine–H = 0.91 Å, with Uiso(H) = 1.5Ueq(N).
Data collection: CryslisCCD (Oxford Diffraction, 2003); cell
CrysAlis RED (Oxford Diffraction, 2003); data reduction: CrysAlis RED (Oxford Diffraction, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: enCIFer (Allen et al., 2004).Fig. 1. The molecular structure of the title salt with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. A partial packing diagram of (I), viewed along the a axis, showing the N—H···O and N—H···Cl1 hydrogen bonds. H atoms have been omitted for clarity. | |
Fig. 3. A view of the crystal packing of (I), showing the alternation of N5—H···Cl1 and N5—H···Cl2 hydrogen bonds (dashed lines) between two layers along the a axis. H atoms have been omitted for clarity. |
C10H19N5O22+·2Cl− | Z = 2 |
Mr = 312.20 | F(000) = 328 |
Triclinic, P1 | Dx = 1.448 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.2923 (10) Å | Cell parameters from 12727 reflections |
b = 8.2215 (11) Å | θ = 2.7–29.2° |
c = 13.0767 (15) Å | µ = 0.46 mm−1 |
α = 81.702 (11)° | T = 110 K |
β = 77.863 (11)° | Prism, colourless |
γ = 69.543 (12)° | 0.30 × 0.20 × 0.12 mm |
V = 715.98 (16) Å3 |
Oxford Diffraction Xcalibur-Saphire2 CCD diffractometer | 3307 independent reflections |
Radiation source: fine-focus sealed tube | 1798 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.061 |
ω scan | θmax = 29.2°, θmin = 2.7° |
Absorption correction: numerical (ABSORB; DeTitta, 1985) | h = −9→9 |
Tmin = 0.874, Tmax = 0.952 | k = −11→11 |
12727 measured reflections | l = −17→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.111 | H-atom parameters constrained |
S = 0.97 | w = 1/[σ2(Fo2) + (0.0489P)2] where P = (Fo2 + 2Fc2)/3 |
3307 reflections | (Δ/σ)max < 0.001 |
172 parameters | Δρmax = 0.51 e Å−3 |
0 restraints | Δρmin = −0.36 e Å−3 |
C10H19N5O22+·2Cl− | γ = 69.543 (12)° |
Mr = 312.20 | V = 715.98 (16) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.2923 (10) Å | Mo Kα radiation |
b = 8.2215 (11) Å | µ = 0.46 mm−1 |
c = 13.0767 (15) Å | T = 110 K |
α = 81.702 (11)° | 0.30 × 0.20 × 0.12 mm |
β = 77.863 (11)° |
Oxford Diffraction Xcalibur-Saphire2 CCD diffractometer | 3307 independent reflections |
Absorption correction: numerical (ABSORB; DeTitta, 1985) | 1798 reflections with I > 2σ(I) |
Tmin = 0.874, Tmax = 0.952 | Rint = 0.061 |
12727 measured reflections |
R[F2 > 2σ(F2)] = 0.046 | 0 restraints |
wR(F2) = 0.111 | H-atom parameters constrained |
S = 0.97 | Δρmax = 0.51 e Å−3 |
3307 reflections | Δρmin = −0.36 e Å−3 |
172 parameters |
x | y | z | Uiso*/Ueq | ||
O1 | 0.7290 (4) | 0.3622 (3) | 0.54649 (15) | 0.0302 (6) | |
O2 | 0.7180 (3) | −0.1826 (2) | 0.77310 (14) | 0.0255 (5) | |
N1 | 0.7705 (4) | 1.0791 (3) | 0.25403 (18) | 0.0255 (6) | |
H1' | 0.7720 | 1.0903 | 0.1859 | 0.031* | |
N2 | 0.7640 (4) | 1.1387 (3) | 0.40854 (18) | 0.0230 (6) | |
H2' | 0.7614 | 1.1961 | 0.4609 | 0.028* | |
N3 | 0.7314 (4) | 0.5944 (3) | 0.61436 (17) | 0.0217 (6) | |
H3' | 0.7289 | 0.6443 | 0.6701 | 0.026* | |
N4 | 0.7164 (4) | 0.0643 (3) | 0.83121 (17) | 0.0205 (6) | |
H4' | 0.7173 | 0.1161 | 0.8854 | 0.025* | |
N5 | 0.7507 (4) | −0.3688 (3) | 0.95958 (18) | 0.0223 (6) | |
H5C' | 0.7717 | −0.4211 | 1.0243 | 0.033* | |
H5B' | 0.8438 | −0.4329 | 0.9097 | 0.033* | |
H5A' | 0.6275 | −0.3610 | 0.9505 | 0.033* | |
C1 | 0.7671 (5) | 1.2013 (4) | 0.3094 (2) | 0.0271 (7) | |
H1 | 0.7668 | 1.3152 | 0.2829 | 0.033* | |
C2 | 0.7655 (4) | 0.9685 (3) | 0.4167 (2) | 0.0189 (7) | |
C3 | 0.7717 (5) | 0.9304 (4) | 0.3183 (2) | 0.0222 (7) | |
H3 | 0.7759 | 0.8228 | 0.2977 | 0.027* | |
C4 | 0.7614 (5) | 0.8637 (4) | 0.5201 (2) | 0.0217 (7) | |
H4B | 0.6470 | 0.9288 | 0.5709 | 0.026* | |
H4A | 0.8842 | 0.8465 | 0.5473 | 0.026* | |
C5 | 0.7448 (5) | 0.6879 (3) | 0.5113 (2) | 0.0201 (7) | |
H5B | 0.6251 | 0.7041 | 0.4814 | 0.024* | |
H5A | 0.8626 | 0.6195 | 0.4638 | 0.024* | |
C6 | 0.7229 (4) | 0.4335 (4) | 0.6247 (2) | 0.0217 (7) | |
C7 | 0.7099 (5) | 0.3428 (3) | 0.7336 (2) | 0.0195 (7) | |
H7B | 0.5899 | 0.4119 | 0.7796 | 0.023* | |
H7A | 0.8276 | 0.3333 | 0.7634 | 0.023* | |
C8 | 0.7003 (5) | 0.1626 (3) | 0.7299 (2) | 0.0203 (7) | |
H8B | 0.5730 | 0.1730 | 0.7097 | 0.024* | |
H8A | 0.8098 | 0.0998 | 0.6761 | 0.024* | |
C9 | 0.7297 (4) | −0.1029 (4) | 0.8434 (2) | 0.0190 (7) | |
C10 | 0.7655 (5) | −0.1917 (3) | 0.9503 (2) | 0.0202 (7) | |
H10B | 0.8992 | −0.1998 | 0.9607 | 0.024* | |
H10A | 0.6660 | −0.1223 | 1.0054 | 0.024* | |
Cl2 | 1.15091 (12) | −0.57052 (9) | 0.81161 (5) | 0.0251 (2) | |
Cl1 | 0.71393 (12) | 1.24682 (9) | 0.03128 (5) | 0.0240 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0512 (17) | 0.0260 (12) | 0.0199 (11) | −0.0198 (12) | −0.0059 (10) | −0.0041 (9) |
O2 | 0.0408 (15) | 0.0195 (11) | 0.0184 (11) | −0.0124 (11) | −0.0042 (10) | −0.0036 (9) |
N1 | 0.0291 (17) | 0.0326 (15) | 0.0148 (13) | −0.0124 (13) | −0.0004 (11) | −0.0010 (11) |
N2 | 0.0277 (16) | 0.0206 (14) | 0.0224 (14) | −0.0095 (13) | −0.0025 (12) | −0.0060 (11) |
N3 | 0.0330 (17) | 0.0177 (13) | 0.0162 (12) | −0.0125 (12) | 0.0004 (11) | −0.0027 (10) |
N4 | 0.0304 (16) | 0.0170 (13) | 0.0163 (12) | −0.0106 (12) | −0.0030 (11) | −0.0030 (10) |
N5 | 0.0267 (16) | 0.0202 (13) | 0.0191 (13) | −0.0084 (12) | −0.0010 (11) | −0.0010 (10) |
C1 | 0.0218 (19) | 0.0225 (17) | 0.0353 (19) | −0.0076 (15) | −0.0070 (15) | 0.0070 (15) |
C2 | 0.0193 (18) | 0.0114 (15) | 0.0254 (16) | −0.0051 (13) | −0.0008 (13) | −0.0032 (12) |
C3 | 0.0227 (19) | 0.0222 (17) | 0.0223 (16) | −0.0085 (15) | −0.0035 (14) | −0.0018 (13) |
C4 | 0.0229 (19) | 0.0242 (16) | 0.0186 (15) | −0.0093 (15) | −0.0029 (13) | −0.0009 (13) |
C5 | 0.0232 (18) | 0.0178 (15) | 0.0180 (15) | −0.0053 (14) | −0.0033 (13) | −0.0019 (12) |
C6 | 0.0210 (19) | 0.0240 (17) | 0.0202 (16) | −0.0080 (15) | −0.0023 (13) | −0.0023 (13) |
C7 | 0.0255 (19) | 0.0165 (15) | 0.0151 (15) | −0.0070 (14) | −0.0011 (13) | −0.0008 (12) |
C8 | 0.0228 (19) | 0.0217 (16) | 0.0186 (15) | −0.0100 (14) | −0.0031 (13) | −0.0026 (12) |
C9 | 0.0128 (17) | 0.0208 (16) | 0.0230 (16) | −0.0062 (14) | 0.0002 (13) | −0.0035 (13) |
C10 | 0.0221 (18) | 0.0154 (15) | 0.0234 (16) | −0.0055 (14) | −0.0045 (14) | −0.0033 (12) |
Cl2 | 0.0295 (5) | 0.0243 (4) | 0.0217 (4) | −0.0097 (4) | −0.0006 (3) | −0.0055 (3) |
Cl1 | 0.0291 (5) | 0.0241 (4) | 0.0215 (4) | −0.0114 (4) | −0.0050 (3) | −0.0022 (3) |
O1—C6 | 1.235 (3) | C1—H1 | 0.9500 |
O2—C9 | 1.237 (3) | C2—C3 | 1.356 (4) |
N1—C1 | 1.311 (4) | C2—C4 | 1.495 (4) |
N1—C3 | 1.378 (3) | C3—H3 | 0.9500 |
N1—H1' | 0.8800 | C4—C5 | 1.514 (4) |
N2—C1 | 1.322 (4) | C4—H4B | 0.9900 |
N2—C2 | 1.384 (3) | C4—H4A | 0.9900 |
N2—H2' | 0.8800 | C5—H5B | 0.9900 |
N3—C6 | 1.333 (3) | C5—H5A | 0.9900 |
N3—C5 | 1.454 (3) | C6—C7 | 1.510 (4) |
N3—H3' | 0.8800 | C7—C8 | 1.515 (3) |
N4—C9 | 1.332 (3) | C7—H7B | 0.9900 |
N4—C8 | 1.453 (3) | C7—H7A | 0.9900 |
N4—H4' | 0.8800 | C8—H8B | 0.9900 |
N5—C10 | 1.483 (3) | C8—H8A | 0.9900 |
N5—H5C' | 0.9100 | C9—C10 | 1.510 (4) |
N5—H5B' | 0.9100 | C10—H10B | 0.9900 |
N5—H5A' | 0.9100 | C10—H10A | 0.9900 |
C1—N1—C3 | 109.9 (2) | H4B—C4—H4A | 107.9 |
C1—N1—H1' | 125.0 | N3—C5—C4 | 109.9 (2) |
C3—N1—H1' | 125.0 | N3—C5—H5B | 109.7 |
C1—N2—C2 | 109.1 (2) | C4—C5—H5B | 109.7 |
C1—N2—H2' | 125.4 | N3—C5—H5A | 109.7 |
C2—N2—H2' | 125.4 | C4—C5—H5A | 109.7 |
C6—N3—C5 | 120.2 (2) | H5B—C5—H5A | 108.2 |
C6—N3—H3' | 119.9 | O1—C6—N3 | 120.1 (3) |
C5—N3—H3' | 119.9 | O1—C6—C7 | 122.2 (2) |
C9—N4—C8 | 121.1 (2) | N3—C6—C7 | 117.8 (2) |
C9—N4—H4' | 119.4 | C6—C7—C8 | 110.2 (2) |
C8—N4—H4' | 119.4 | C6—C7—H7B | 109.6 |
C10—N5—H5C' | 109.5 | C8—C7—H7B | 109.6 |
C10—N5—H5B' | 109.5 | C6—C7—H7A | 109.6 |
H5C'—N5—H5B' | 109.5 | C8—C7—H7A | 109.6 |
C10—N5—H5A' | 109.5 | H7B—C7—H7A | 108.1 |
H5C'—N5—H5A' | 109.5 | N4—C8—C7 | 110.9 (2) |
H5B'—N5—H5A' | 109.5 | N4—C8—H8B | 109.5 |
N1—C1—N2 | 108.3 (2) | C7—C8—H8B | 109.5 |
N1—C1—H1 | 125.9 | N4—C8—H8A | 109.5 |
N2—C1—H1 | 125.9 | C7—C8—H8A | 109.5 |
C3—C2—N2 | 106.4 (2) | H8B—C8—H8A | 108.0 |
C3—C2—C4 | 132.2 (2) | O2—C9—N4 | 123.5 (2) |
N2—C2—C4 | 121.4 (2) | O2—C9—C10 | 121.6 (2) |
C2—C3—N1 | 106.3 (2) | N4—C9—C10 | 114.9 (2) |
C2—C3—H3 | 126.9 | N5—C10—C9 | 110.0 (2) |
N1—C3—H3 | 126.9 | N5—C10—H10B | 109.7 |
C2—C4—C5 | 111.9 (2) | C9—C10—H10B | 109.7 |
C2—C4—H4B | 109.2 | N5—C10—H10A | 109.7 |
C5—C4—H4B | 109.2 | C9—C10—H10A | 109.7 |
C2—C4—H4A | 109.2 | H10B—C10—H10A | 108.2 |
C5—C4—H4A | 109.2 |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1′···Cl1 | 0.88 | 2.27 | 3.083 (4) | 153 |
N2—H2′···O1i | 0.88 | 1.81 | 2.670 (4) | 165 |
N3—H3′···O2i | 0.88 | 2.07 | 2.927 (4) | 165 |
N4—H4′···Cl1ii | 0.88 | 2.31 | 3.192 (4) | 178 |
N5—H5C′···Cl2iii | 0.91 | 2.32 | 3.152 (4) | 152 |
N5—H5B′···Cl2 | 0.91 | 2.32 | 3.191 (4) | 160 |
N5—H5A′···Cl1iv | 0.91 | 2.31 | 3.161 (4) | 156 |
Symmetry codes: (i) x, y+1, z; (ii) x, y−1, z+1; (iii) −x+2, −y−1, −z+2; (iv) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C10H19N5O22+·2Cl− |
Mr | 312.20 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 110 |
a, b, c (Å) | 7.2923 (10), 8.2215 (11), 13.0767 (15) |
α, β, γ (°) | 81.702 (11), 77.863 (11), 69.543 (12) |
V (Å3) | 715.98 (16) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.46 |
Crystal size (mm) | 0.30 × 0.20 × 0.12 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur-Saphire2 CCD diffractometer |
Absorption correction | Numerical (ABSORB; DeTitta, 1985) |
Tmin, Tmax | 0.874, 0.952 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12727, 3307, 1798 |
Rint | 0.061 |
(sin θ/λ)max (Å−1) | 0.686 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.046, 0.111, 0.97 |
No. of reflections | 3307 |
No. of parameters | 172 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.51, −0.36 |
Computer programs: CryslisCCD (Oxford Diffraction, 2003), CrysAlis RED (Oxford Diffraction, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), enCIFer (Allen et al., 2004).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1'···Cl1 | 0.88 | 2.270 | 3.083 (4) | 153 |
N2—H2'···O1i | 0.88 | 1.810 | 2.670 (4) | 165 |
N3—H3'···O2i | 0.88 | 2.068 | 2.927 (4) | 165 |
N4—H4'···Cl1ii | 0.88 | 2.313 | 3.192 (4) | 178 |
N5—H5C'···Cl2iii | 0.91 | 2.317 | 3.152 (4) | 152 |
N5—H5B'···Cl2 | 0.91 | 2.319 | 3.191 (4) | 160 |
N5—H5A'···Cl1iv | 0.91 | 2.306 | 3.161 (4) | 156 |
Symmetry codes: (i) x, y+1, z; (ii) x, y−1, z+1; (iii) −x+2, −y−1, −z+2; (iv) −x+1, −y+1, −z+1. |
Acknowledgements
Technical support (NMR, ESI-MS and X-ray measurements) from Université Henry Poincaré, Nancy 1, is gratefully acknowledged.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
DeTitta, G. T. (1985). J. Appl. Cryst. 18, 75–79. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gajda, T., Henry, B., Aubry, A. & Delpuech, J.-J. (1996). Inorg. Chem. 35, 586–593. CSD CrossRef CAS Web of Science Google Scholar
Henry, B., Gajda, T., Selve, C. & Delpuech, J.-J. (1993). Amino Acids 5, 113–114. Google Scholar
Itoh, H., Yamane, T., Ashida, T. & Kakudo, M. (1977). Acta Cryst. B33, 2959–2961. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Kozlowski, H., Bal, W., Dyba, M. & Kowalik-Jankowska, T. (1999). Coord. Chem. Rev. 184, 319–346. Web of Science CrossRef CAS Google Scholar
Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Wroclaw, Poland. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Serum albumin (SA) is the most abundant protein in human, and considered as the trace metal carrier between tissues and blood. To mimicking the coordination site in SA many oligopeptides have been synthesized and their complexation abilities towards different metals (Cu, Ni, Co, Mn, etc.) have been studied (Kozlowski et al., 1999, Gajda et al., 1996). We report here the molecular structure of the pseudo-tripeptide Glycyl-β-Alanyl-Histamine dihydrochloride (I) as a potential model compound which was synthesized in two steps from histamine hydrochloride, BOC-β-Alanine (BOC: N-(tert-butoxycarbonyl)) and BOC-Glycine. The asymmetric unit consists of the bicationic form of the pseudo-tripeptide and two chloride anions (Fig.1). The organic cation is essentially planar (maximum deviation from the mean plane is 0.102 (4) Å). The bond distances and angles of the peptide bonds and the protonated imidazolium rings are close to the values measured for other oligopeptides (Itoh et al., 1977). Ions in the title salt are interlinked by two types of hydrogen bridges in the crystal. The N2 and N3 nitrogen atoms form strong N—H···O hydrogen bonds with O1i and O2i carbonyl oxygen atoms of neighbouring pseudo-tripeptide molecules, respectively [symmetry codes: (i) x, y + 1, z], giving an R22(14) hydrogen-bonded ring motif (Bernstein et al., 1995). The N1, N4 and N5 nitrogen atoms form N—H···Cl1 hydrogen bonds with Cl1, Cl1ii and Cl1iv, respectively [symmetry codes: (ii) x, y - 1, z + 1 and (iv) -x + 1, -y + 1, -z + 1], and are engaged in two other cyclic patterns (R23(13) and R35(22)). This complex hydrogen bond framework gives a two-dimensional polymer parallel to the (011) plane (Fig.2). Layers are linked along the a axis and Cl1 and Cl2 atoms are alternatively involved. The distances between the two layers are 2.914 (4) Å and 3.747 (4) Å (N5···Cl1···N5 and N5···Cl2···N5, respectively) (Fig. 3).