organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-{2-[3-(2-Ammonioacetamido)propanamido]ethyl}-1H-imidazol-3-ium dichloride

aGroupe Complexation et Cinétique en Milieu Microhétérogène, Laboratoire SRSMC (UMR 7565 CNRS - Université Henri Poincaré Nancy 1), Nancy Université, BP 70239, F-54506 Vandoeuvre-lès-Nancy Cedex, France, and bLaboratoire de Cristallographie et de Modélisation des Matériaux, Minéraux et Biologiques LCM3B (UMR 7036 CNRS - Université Henri Poincaré, Nancy 1), Nancy Université, BP 70239, F-54506 Vandoeuvre-lès-Nancy Cedex, France
*Correspondence e-mail: Katalin.Selmeczi@lesoc.uhp-nancy.fr

(Received 18 September 2008; accepted 3 November 2008; online 29 November 2008)

Mol­ecules of the title compound, Gly-β-Ala-Histamine dihydro­chloride, C10H19N5O22+·2Cl, are linked by N—H⋯O and N—H⋯Cl hydrogen bonds into two-dimensional polymeric sheets parallel to the (011) plane, forming a stacked structure along the a axis. The parallel layers are also inter­linked alternately by different N—H⋯Cl hydrogen bonds, forming a three-dimensional framework.

Related literature

For the complexation abilities of oligopeptides towards different metals, see: Kozlowski et al. (1999[Kozlowski, H., Bal, W., Dyba, M. & Kowalik-Jankowska, T. (1999). Coord. Chem. Rev. 184, 319-346.]); Gajda et al. (1996[Gajda, T., Henry, B., Aubry, A. & Delpuech, J.-J. (1996). Inorg. Chem. 35, 586-593.]). For bond lengths and angles in other oligopeptides, see: Itoh et al. (1977[Itoh, H., Yamane, T., Ashida, T. & Kakudo, M. (1977). Acta Cryst. B33, 2959-2961.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related literature, see: Henry et al. (1993[Henry, B., Gajda, T., Selve, C. & Delpuech, J.-J. (1993). Amino Acids 5, 113-114.]).

[Scheme 1]

Experimental

Crystal data
  • C10H19N5O22+·2Cl

  • Mr = 312.20

  • Triclinic, [P \overline 1]

  • a = 7.2923 (10) Å

  • b = 8.2215 (11) Å

  • c = 13.0767 (15) Å

  • α = 81.702 (11)°

  • β = 77.863 (11)°

  • γ = 69.543 (12)°

  • V = 715.98 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 110 (2) K

  • 0.30 × 0.20 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur-Saphire2 CCD diffractometer

  • Absorption correction: numerical (ABSORB; DeTitta, 1985[DeTitta, G. T. (1985). J. Appl. Cryst. 18, 75-79.]) Tmin = 0.874, Tmax = 0.952

  • 12727 measured reflections

  • 3307 independent reflections

  • 1798 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.111

  • S = 0.97

  • 3307 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1′⋯Cl1 0.88 2.27 3.083 (4) 153
N2—H2′⋯O1i 0.88 1.81 2.670 (4) 165
N3—H3′⋯O2i 0.88 2.07 2.927 (4) 165
N4—H4′⋯Cl1ii 0.88 2.31 3.192 (4) 178
N5—H5C'⋯Cl2iii 0.91 2.32 3.152 (4) 152
N5—H5B′⋯Cl2 0.91 2.32 3.191 (4) 160
N5—H5A′⋯Cl1iv 0.91 2.31 3.161 (4) 156
Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z+1; (iii) -x+2, -y-1, -z+2; (iv) -x+1, -y+1, -z+1.

Data collection: CryslisCCD (Oxford Diffraction, 2003[Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Wroclaw, Poland.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2003[Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Wroclaw, Poland.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

Serum albumin (SA) is the most abundant protein in human, and considered as the trace metal carrier between tissues and blood. To mimicking the coordination site in SA many oligopeptides have been synthesized and their complexation abilities towards different metals (Cu, Ni, Co, Mn, etc.) have been studied (Kozlowski et al., 1999, Gajda et al., 1996). We report here the molecular structure of the pseudo-tripeptide Glycyl-β-Alanyl-Histamine dihydrochloride (I) as a potential model compound which was synthesized in two steps from histamine hydrochloride, BOC-β-Alanine (BOC: N-(tert-butoxycarbonyl)) and BOC-Glycine. The asymmetric unit consists of the bicationic form of the pseudo-tripeptide and two chloride anions (Fig.1). The organic cation is essentially planar (maximum deviation from the mean plane is 0.102 (4) Å). The bond distances and angles of the peptide bonds and the protonated imidazolium rings are close to the values measured for other oligopeptides (Itoh et al., 1977). Ions in the title salt are interlinked by two types of hydrogen bridges in the crystal. The N2 and N3 nitrogen atoms form strong N—H···O hydrogen bonds with O1i and O2i carbonyl oxygen atoms of neighbouring pseudo-tripeptide molecules, respectively [symmetry codes: (i) x, y + 1, z], giving an R22(14) hydrogen-bonded ring motif (Bernstein et al., 1995). The N1, N4 and N5 nitrogen atoms form N—H···Cl1 hydrogen bonds with Cl1, Cl1ii and Cl1iv, respectively [symmetry codes: (ii) x, y - 1, z + 1 and (iv) -x + 1, -y + 1, -z + 1], and are engaged in two other cyclic patterns (R23(13) and R35(22)). This complex hydrogen bond framework gives a two-dimensional polymer parallel to the (011) plane (Fig.2). Layers are linked along the a axis and Cl1 and Cl2 atoms are alternatively involved. The distances between the two layers are 2.914 (4) Å and 3.747 (4) Å (N5···Cl1···N5 and N5···Cl2···N5, respectively) (Fig. 3).

Related literature top

For the complexation abilities of oligopeptides towards different metals, see: Kozlowski et al. (1999); Gajda et al. (1996). For bond lengths and angles in other oligopeptides, see: Itoh et al. (1977). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related literature, see: Henry et al. (1993).

Experimental top

The title compound was synthesized in two steps. First, β-Ala-histamine was prepared from N-(tert-butoxycarbonyl)-β-alanine and histamine dihydrochloride according to the procedure described earlier (Henry et al., 1993). Using the same method in the second step, the title compound was obtained from the reaction of N-(tert-butoxycarbonyl)-glycine on β-Ala-histamine. Suitable crystals were obtained by slow diffusion of ethyl acetate into the methanolic solution of the title compound.

Refinement top

All H atoms bonded to C and N atoms were initially located from difference Fourier maps. Nevertheless, all the H atoms were constrained in a riding motion approximation with fixed bond lengths and Uiso parameters: Caryl–H = 0.95 Å, with Uiso(H) = 1.2Ueq(C); Cmethylene–H = 0.99 Å, with Uiso(H) = 1.2Ueq(C); N–H = 0.88 Å, with Uiso(H) = 1.2Ueq(N); Namine–H = 0.91 Å, with Uiso(H) = 1.5Ueq(N).

Computing details top

Data collection: CryslisCCD (Oxford Diffraction, 2003); cell refinement: CrysAlis RED (Oxford Diffraction, 2003); data reduction: CrysAlis RED (Oxford Diffraction, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title salt with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram of (I), viewed along the a axis, showing the N—H···O and N—H···Cl1 hydrogen bonds. H atoms have been omitted for clarity.
[Figure 3] Fig. 3. A view of the crystal packing of (I), showing the alternation of N5—H···Cl1 and N5—H···Cl2 hydrogen bonds (dashed lines) between two layers along the a axis. H atoms have been omitted for clarity.
4-{2-[3-(2-Ammonioacetamido)propanamido]ethyl}-1H-imidazol-3-ium dichloride top
Crystal data top
C10H19N5O22+·2ClZ = 2
Mr = 312.20F(000) = 328
Triclinic, P1Dx = 1.448 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2923 (10) ÅCell parameters from 12727 reflections
b = 8.2215 (11) Åθ = 2.7–29.2°
c = 13.0767 (15) ŵ = 0.46 mm1
α = 81.702 (11)°T = 110 K
β = 77.863 (11)°Prism, colourless
γ = 69.543 (12)°0.30 × 0.20 × 0.12 mm
V = 715.98 (16) Å3
Data collection top
Oxford Diffraction Xcalibur-Saphire2 CCD
diffractometer
3307 independent reflections
Radiation source: fine-focus sealed tube1798 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ω scanθmax = 29.2°, θmin = 2.7°
Absorption correction: numerical
(ABSORB; DeTitta, 1985)
h = 99
Tmin = 0.874, Tmax = 0.952k = 1111
12727 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0489P)2]
where P = (Fo2 + 2Fc2)/3
3307 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C10H19N5O22+·2Clγ = 69.543 (12)°
Mr = 312.20V = 715.98 (16) Å3
Triclinic, P1Z = 2
a = 7.2923 (10) ÅMo Kα radiation
b = 8.2215 (11) ŵ = 0.46 mm1
c = 13.0767 (15) ÅT = 110 K
α = 81.702 (11)°0.30 × 0.20 × 0.12 mm
β = 77.863 (11)°
Data collection top
Oxford Diffraction Xcalibur-Saphire2 CCD
diffractometer
3307 independent reflections
Absorption correction: numerical
(ABSORB; DeTitta, 1985)
1798 reflections with I > 2σ(I)
Tmin = 0.874, Tmax = 0.952Rint = 0.061
12727 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 0.97Δρmax = 0.51 e Å3
3307 reflectionsΔρmin = 0.36 e Å3
172 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7290 (4)0.3622 (3)0.54649 (15)0.0302 (6)
O20.7180 (3)0.1826 (2)0.77310 (14)0.0255 (5)
N10.7705 (4)1.0791 (3)0.25403 (18)0.0255 (6)
H1'0.77201.09030.18590.031*
N20.7640 (4)1.1387 (3)0.40854 (18)0.0230 (6)
H2'0.76141.19610.46090.028*
N30.7314 (4)0.5944 (3)0.61436 (17)0.0217 (6)
H3'0.72890.64430.67010.026*
N40.7164 (4)0.0643 (3)0.83121 (17)0.0205 (6)
H4'0.71730.11610.88540.025*
N50.7507 (4)0.3688 (3)0.95958 (18)0.0223 (6)
H5C'0.77170.42111.02430.033*
H5B'0.84380.43290.90970.033*
H5A'0.62750.36100.95050.033*
C10.7671 (5)1.2013 (4)0.3094 (2)0.0271 (7)
H10.76681.31520.28290.033*
C20.7655 (4)0.9685 (3)0.4167 (2)0.0189 (7)
C30.7717 (5)0.9304 (4)0.3183 (2)0.0222 (7)
H30.77590.82280.29770.027*
C40.7614 (5)0.8637 (4)0.5201 (2)0.0217 (7)
H4B0.64700.92880.57090.026*
H4A0.88420.84650.54730.026*
C50.7448 (5)0.6879 (3)0.5113 (2)0.0201 (7)
H5B0.62510.70410.48140.024*
H5A0.86260.61950.46380.024*
C60.7229 (4)0.4335 (4)0.6247 (2)0.0217 (7)
C70.7099 (5)0.3428 (3)0.7336 (2)0.0195 (7)
H7B0.58990.41190.77960.023*
H7A0.82760.33330.76340.023*
C80.7003 (5)0.1626 (3)0.7299 (2)0.0203 (7)
H8B0.57300.17300.70970.024*
H8A0.80980.09980.67610.024*
C90.7297 (4)0.1029 (4)0.8434 (2)0.0190 (7)
C100.7655 (5)0.1917 (3)0.9503 (2)0.0202 (7)
H10B0.89920.19980.96070.024*
H10A0.66600.12231.00540.024*
Cl21.15091 (12)0.57052 (9)0.81161 (5)0.0251 (2)
Cl10.71393 (12)1.24682 (9)0.03128 (5)0.0240 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0512 (17)0.0260 (12)0.0199 (11)0.0198 (12)0.0059 (10)0.0041 (9)
O20.0408 (15)0.0195 (11)0.0184 (11)0.0124 (11)0.0042 (10)0.0036 (9)
N10.0291 (17)0.0326 (15)0.0148 (13)0.0124 (13)0.0004 (11)0.0010 (11)
N20.0277 (16)0.0206 (14)0.0224 (14)0.0095 (13)0.0025 (12)0.0060 (11)
N30.0330 (17)0.0177 (13)0.0162 (12)0.0125 (12)0.0004 (11)0.0027 (10)
N40.0304 (16)0.0170 (13)0.0163 (12)0.0106 (12)0.0030 (11)0.0030 (10)
N50.0267 (16)0.0202 (13)0.0191 (13)0.0084 (12)0.0010 (11)0.0010 (10)
C10.0218 (19)0.0225 (17)0.0353 (19)0.0076 (15)0.0070 (15)0.0070 (15)
C20.0193 (18)0.0114 (15)0.0254 (16)0.0051 (13)0.0008 (13)0.0032 (12)
C30.0227 (19)0.0222 (17)0.0223 (16)0.0085 (15)0.0035 (14)0.0018 (13)
C40.0229 (19)0.0242 (16)0.0186 (15)0.0093 (15)0.0029 (13)0.0009 (13)
C50.0232 (18)0.0178 (15)0.0180 (15)0.0053 (14)0.0033 (13)0.0019 (12)
C60.0210 (19)0.0240 (17)0.0202 (16)0.0080 (15)0.0023 (13)0.0023 (13)
C70.0255 (19)0.0165 (15)0.0151 (15)0.0070 (14)0.0011 (13)0.0008 (12)
C80.0228 (19)0.0217 (16)0.0186 (15)0.0100 (14)0.0031 (13)0.0026 (12)
C90.0128 (17)0.0208 (16)0.0230 (16)0.0062 (14)0.0002 (13)0.0035 (13)
C100.0221 (18)0.0154 (15)0.0234 (16)0.0055 (14)0.0045 (14)0.0033 (12)
Cl20.0295 (5)0.0243 (4)0.0217 (4)0.0097 (4)0.0006 (3)0.0055 (3)
Cl10.0291 (5)0.0241 (4)0.0215 (4)0.0114 (4)0.0050 (3)0.0022 (3)
Geometric parameters (Å, º) top
O1—C61.235 (3)C1—H10.9500
O2—C91.237 (3)C2—C31.356 (4)
N1—C11.311 (4)C2—C41.495 (4)
N1—C31.378 (3)C3—H30.9500
N1—H1'0.8800C4—C51.514 (4)
N2—C11.322 (4)C4—H4B0.9900
N2—C21.384 (3)C4—H4A0.9900
N2—H2'0.8800C5—H5B0.9900
N3—C61.333 (3)C5—H5A0.9900
N3—C51.454 (3)C6—C71.510 (4)
N3—H3'0.8800C7—C81.515 (3)
N4—C91.332 (3)C7—H7B0.9900
N4—C81.453 (3)C7—H7A0.9900
N4—H4'0.8800C8—H8B0.9900
N5—C101.483 (3)C8—H8A0.9900
N5—H5C'0.9100C9—C101.510 (4)
N5—H5B'0.9100C10—H10B0.9900
N5—H5A'0.9100C10—H10A0.9900
C1—N1—C3109.9 (2)H4B—C4—H4A107.9
C1—N1—H1'125.0N3—C5—C4109.9 (2)
C3—N1—H1'125.0N3—C5—H5B109.7
C1—N2—C2109.1 (2)C4—C5—H5B109.7
C1—N2—H2'125.4N3—C5—H5A109.7
C2—N2—H2'125.4C4—C5—H5A109.7
C6—N3—C5120.2 (2)H5B—C5—H5A108.2
C6—N3—H3'119.9O1—C6—N3120.1 (3)
C5—N3—H3'119.9O1—C6—C7122.2 (2)
C9—N4—C8121.1 (2)N3—C6—C7117.8 (2)
C9—N4—H4'119.4C6—C7—C8110.2 (2)
C8—N4—H4'119.4C6—C7—H7B109.6
C10—N5—H5C'109.5C8—C7—H7B109.6
C10—N5—H5B'109.5C6—C7—H7A109.6
H5C'—N5—H5B'109.5C8—C7—H7A109.6
C10—N5—H5A'109.5H7B—C7—H7A108.1
H5C'—N5—H5A'109.5N4—C8—C7110.9 (2)
H5B'—N5—H5A'109.5N4—C8—H8B109.5
N1—C1—N2108.3 (2)C7—C8—H8B109.5
N1—C1—H1125.9N4—C8—H8A109.5
N2—C1—H1125.9C7—C8—H8A109.5
C3—C2—N2106.4 (2)H8B—C8—H8A108.0
C3—C2—C4132.2 (2)O2—C9—N4123.5 (2)
N2—C2—C4121.4 (2)O2—C9—C10121.6 (2)
C2—C3—N1106.3 (2)N4—C9—C10114.9 (2)
C2—C3—H3126.9N5—C10—C9110.0 (2)
N1—C3—H3126.9N5—C10—H10B109.7
C2—C4—C5111.9 (2)C9—C10—H10B109.7
C2—C4—H4B109.2N5—C10—H10A109.7
C5—C4—H4B109.2C9—C10—H10A109.7
C2—C4—H4A109.2H10B—C10—H10A108.2
C5—C4—H4A109.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.882.273.083 (4)153
N2—H2···O1i0.881.812.670 (4)165
N3—H3···O2i0.882.072.927 (4)165
N4—H4···Cl1ii0.882.313.192 (4)178
N5—H5C···Cl2iii0.912.323.152 (4)152
N5—H5B···Cl20.912.323.191 (4)160
N5—H5A···Cl1iv0.912.313.161 (4)156
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z+1; (iii) x+2, y1, z+2; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC10H19N5O22+·2Cl
Mr312.20
Crystal system, space groupTriclinic, P1
Temperature (K)110
a, b, c (Å)7.2923 (10), 8.2215 (11), 13.0767 (15)
α, β, γ (°)81.702 (11), 77.863 (11), 69.543 (12)
V3)715.98 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.30 × 0.20 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur-Saphire2 CCD
diffractometer
Absorption correctionNumerical
(ABSORB; DeTitta, 1985)
Tmin, Tmax0.874, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
12727, 3307, 1798
Rint0.061
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.111, 0.97
No. of reflections3307
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.36

Computer programs: CryslisCCD (Oxford Diffraction, 2003), CrysAlis RED (Oxford Diffraction, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1'···Cl10.882.2703.083 (4)153
N2—H2'···O1i0.881.8102.670 (4)165
N3—H3'···O2i0.882.0682.927 (4)165
N4—H4'···Cl1ii0.882.3133.192 (4)178
N5—H5C'···Cl2iii0.912.3173.152 (4)152
N5—H5B'···Cl20.912.3193.191 (4)160
N5—H5A'···Cl1iv0.912.3063.161 (4)156
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z+1; (iii) x+2, y1, z+2; (iv) x+1, y+1, z+1.
 

Acknowledgements

Technical support (NMR, ESI-MS and X-ray measurements) from Université Henry Poincaré, Nancy 1, is gratefully acknowledged.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationDeTitta, G. T. (1985). J. Appl. Cryst. 18, 75–79.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGajda, T., Henry, B., Aubry, A. & Delpuech, J.-J. (1996). Inorg. Chem. 35, 586–593.  CSD CrossRef CAS Web of Science Google Scholar
First citationHenry, B., Gajda, T., Selve, C. & Delpuech, J.-J. (1993). Amino Acids 5, 113–114.  Google Scholar
First citationItoh, H., Yamane, T., Ashida, T. & Kakudo, M. (1977). Acta Cryst. B33, 2959–2961.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKozlowski, H., Bal, W., Dyba, M. & Kowalik-Jankowska, T. (1999). Coord. Chem. Rev. 184, 319–346.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Wroclaw, Poland.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds