organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,5-Bis(4-chloro­phen­yl)-3-(2-thien­yl)pentane-1,5-dione

aDepartment of Chemistry, Liaocheng University, Liaocheng 252059, People's Republic of China, bNo.4 Middle School of Liaocheng, Liaocheng 252059, People's Republic of China, and cShandong Donge Experimental High School, Donge, Shandong Province,252200, People's Republic of China
*Correspondence e-mail: hxqiang2005@yahoo.com.cn

(Received 19 October 2008; accepted 20 November 2008; online 26 November 2008)

In the title mol­ecule, C21H16Cl2O2S, the five-membered ring is rotationally disordered between two orientations in a 1:1 ratio. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds link mol­ecules related by translation along the a axis into chains, which are further combined into layers parallel to the bc plane via C—H⋯π inter­actions. The crystal studied was a racemic twin with a 0.37 (19):0.63 (19) domain ratio.

Related literature

For the crystal structures of isomers of the title compound, see: Das et al. (1994[Das, G. C., Hursthouse, M. B., Malik, K. M. A., Rahman, M. M., Rahman, M. T. & Olsson, T. (1994). J. Chem. Crystallogr. 24, 511-515.]); Huang et al. (2006[Huang, X.-Q., Wang, D.-Q., Dou, J.-M. & Wang, J.-X. (2006). Acta Cryst. E62, o60-o61.]). For details of the synthesis, see Bose et al. (2004[Bose, A. K., Pednekar, S., Ganguly, S. N., Chakraborty, G. & Manhas, M. S. (2004). Tetrahedron Lett. 45, 8351-8353.]).

[Scheme 1]

Experimental

Crystal data
  • C21H16Cl2O2S

  • Mr = 403.30

  • Orthorhombic, P n a 21

  • a = 7.148 (3) Å

  • b = 14.128 (6) Å

  • c = 19.371 (8) Å

  • V = 1956.3 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 298 (2) K

  • 0.50 × 0.18 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.806, Tmax = 0.935

  • 9549 measured reflections

  • 3430 independent reflections

  • 1466 reflections with I > 2σ(I)

  • Rint = 0.097

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.248

  • S = 1.01

  • 3430 reflections

  • 274 parameters

  • 93 restraints

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]); 1650 Friedel pairs

  • Flack parameter: 0.37 (19)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O2i 0.93 2.33 3.175 (12) 150
C10—H10⋯Cgii 0.93 2.57 3.489 (10) 171
Symmetry codes: (i) x-1, y, z; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}]. Cg is the centroid of the C16–C21 ring.

Data collection: SMART (Siemens, 1996[Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In an earlier publication, the "Grindstone Chemistry" method for conducting exothermic reactions in the solvent-free mode has been described (Bose et al., 2004). We tested energy-saving procedures developed in our laboratory for the preparation of 1,5-diketones starting from the fragrant aldehydes and fragrant ketones in the presence of NaOH under solvent-free conditions. Using this method we obtained the title compound, (I).

In (I) (Fig. 1), the bond lengths and angles are normal and correspond to those observed in 1,3,5-triphenyl-pentane-1,5-diketone (Das et al., 1994) and 1,5-diphenyl-3-(2-pyridyl)pentane-1,5-dione (Huang et al., 2006). However, the five-membered ring in (I) is rotationally disordered.

In the crystal, the weak intermolecular C—H···O hydrogen bonds (Table 1) link the molecules related by translations along a axis into one-dimensional linear chains, which are further combined into layers parallel to a(b-c) plane via C—H···π interactions (Table 1).

Related literature top

For the crystal structures of isomers of the title compound, see: Das et al. (1994); Huang et al. (2006). For details of the synthesis, see Bose et al. (2004). Cg is the centroid of the C16–C21 ring.

Experimental top

4-Chloroacetophenone (6.25 mmol) and thiophene-2-carbaldehyde (3.125 mmol), NaOH (6.25 mmol) were aggregated with glass paddle in an open flask. The resulting mixture was washed with water for several times for removing NaOH, and recrystalized from ethanol, and afforded the title compound as a crystalline solid. Elemental analysis: calculated for C21 H16 Cl2O2 S: C 62.54, H 4.00%; Found: C 62.58, H 4.03%.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.98 Å and Uiso(H) = Ueq(C). The five-membered ring was treated as disordered between two orientations with nearly equal occupancies refined to 0.501 (11) and 0.499 (11), respectively. The geometries and anisotropic displacement parameters of disordered atoms were refined with soft restraints using the SHELXL commands DFIX, FLAT and SIMU.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I) showing the atomic labelling and displacement ellipsoids at the 30% level. Only one component of the disordered ring (S1,C1-C4) is shown. Hydrogen atoms are omitted for clarity.
1,5-Bis(4-chlorophenyl)-3-(2-thienyl)pentane-1,5-dione top
Crystal data top
C21H16Cl2O2SDx = 1.369 Mg m3
Mr = 403.30Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 1035 reflections
a = 7.148 (3) Åθ = 2.9–18.1°
b = 14.128 (6) ŵ = 0.45 mm1
c = 19.371 (8) ÅT = 298 K
V = 1956.3 (14) Å3Block, colourless
Z = 40.50 × 0.18 × 0.15 mm
F(000) = 832
Data collection top
Bruker SMART CCD area-detector
diffractometer
3430 independent reflections
Radiation source: fine-focus sealed tube1466 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.097
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.806, Tmax = 0.936k = 1613
9549 measured reflectionsl = 2223
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.060 w = 1/[σ2(Fo2)]
wR(F2) = 0.248(Δ/σ)max = 0.049
S = 1.01Δρmax = 0.22 e Å3
3430 reflectionsΔρmin = 0.24 e Å3
274 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
93 restraintsExtinction coefficient: 0.007 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983); 1650 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.37 (19)
Crystal data top
C21H16Cl2O2SV = 1956.3 (14) Å3
Mr = 403.30Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 7.148 (3) ŵ = 0.45 mm1
b = 14.128 (6) ÅT = 298 K
c = 19.371 (8) Å0.50 × 0.18 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3430 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1466 reflections with I > 2σ(I)
Tmin = 0.806, Tmax = 0.936Rint = 0.097
9549 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.248Δρmax = 0.22 e Å3
S = 1.01Δρmin = 0.24 e Å3
3430 reflectionsAbsolute structure: Flack (1983); 1650 Friedel pairs
274 parametersAbsolute structure parameter: 0.37 (19)
93 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.2204 (5)0.35740 (19)0.37574 (14)0.0939 (10)
Cl20.1208 (5)0.1215 (2)1.10502 (16)0.1172 (13)
O10.4870 (9)0.2902 (4)0.7007 (3)0.077 (2)
O20.5943 (10)0.1389 (5)0.8854 (4)0.092 (2)
S1'0.4882 (12)0.0928 (5)0.7244 (4)0.081 (3)0.501 (11)
C1'0.670 (3)0.1622 (13)0.7454 (11)0.072 (6)0.501 (11)
H1'0.66980.22770.74030.086*0.501 (11)
C2'0.818 (3)0.1125 (15)0.7705 (12)0.089 (6)0.501 (11)
H2'0.92780.13960.78690.106*0.501 (11)
C3'0.782 (3)0.0134 (17)0.7684 (14)0.088 (7)0.501 (11)
H3'0.87280.03240.77700.106*0.501 (11)
S10.7978 (12)0.0198 (6)0.7932 (5)0.107 (3)0.499 (11)
C10.772 (3)0.1384 (11)0.7777 (13)0.085 (6)0.499 (11)
H10.85530.18480.79200.102*0.499 (11)
C20.609 (4)0.1556 (14)0.7408 (15)0.096 (7)0.499 (11)
H20.57050.21570.72730.116*0.499 (11)
C30.510 (4)0.0733 (15)0.7263 (16)0.097 (7)0.499 (11)
H30.39840.07240.70180.116*0.499 (11)
C40.5961 (12)0.0071 (5)0.7518 (4)0.059 (2)
C50.5207 (13)0.1047 (6)0.7477 (4)0.058 (2)
H50.62280.14860.75850.070*
C60.4526 (13)0.1269 (6)0.6752 (4)0.060 (2)
H6A0.53380.09540.64240.072*
H6B0.32790.10090.66960.072*
C70.4467 (13)0.2307 (6)0.6581 (5)0.058 (2)
C80.3898 (11)0.2589 (6)0.5866 (4)0.053 (2)
C90.3827 (13)0.3539 (6)0.5708 (4)0.062 (2)
H90.41420.39830.60430.074*
C100.3292 (14)0.3844 (7)0.5056 (5)0.073 (3)
H100.32160.44860.49570.088*
C110.2880 (14)0.3186 (7)0.4564 (4)0.067 (2)
C120.2986 (13)0.2235 (6)0.4700 (5)0.063 (2)
H120.27350.17960.43540.076*
C130.3468 (12)0.1938 (6)0.5352 (5)0.062 (2)
H130.35060.12940.54510.074*
C140.3630 (13)0.1219 (6)0.7999 (4)0.060 (2)
H14A0.29710.17930.78720.072*
H14B0.27480.06990.79720.072*
C150.4286 (14)0.1311 (6)0.8727 (5)0.064 (2)
C160.2903 (16)0.1309 (5)0.9295 (4)0.057 (2)
C170.1016 (14)0.1270 (6)0.9166 (5)0.061 (2)
H170.05910.12520.87130.073*
C180.0272 (14)0.1257 (7)0.9706 (5)0.077 (3)
H180.15500.12330.96160.092*
C190.0376 (16)0.1278 (6)1.0372 (5)0.071 (3)
C200.2218 (17)0.1315 (7)1.0516 (5)0.080 (3)
H200.26330.13241.09710.096*
C210.3488 (14)0.1341 (7)0.9974 (4)0.071 (3)
H210.47600.13791.00700.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.119 (2)0.0946 (19)0.0679 (17)0.0109 (16)0.0102 (16)0.0201 (14)
Cl20.114 (3)0.163 (3)0.075 (2)0.021 (2)0.0267 (17)0.0001 (17)
O10.106 (6)0.060 (4)0.063 (4)0.004 (4)0.015 (4)0.002 (3)
O20.063 (5)0.147 (6)0.067 (5)0.005 (4)0.010 (4)0.016 (4)
S1'0.099 (6)0.075 (5)0.070 (4)0.012 (4)0.003 (4)0.007 (3)
C1'0.091 (12)0.063 (10)0.062 (10)0.013 (9)0.010 (10)0.018 (8)
C2'0.106 (13)0.077 (11)0.083 (11)0.001 (10)0.002 (10)0.011 (10)
C3'0.101 (13)0.081 (12)0.083 (11)0.012 (11)0.013 (11)0.009 (10)
S10.092 (5)0.084 (5)0.146 (8)0.026 (3)0.034 (5)0.004 (4)
C10.086 (12)0.048 (10)0.122 (13)0.014 (10)0.005 (11)0.013 (9)
C20.099 (12)0.072 (11)0.118 (13)0.019 (11)0.001 (11)0.016 (10)
C30.093 (13)0.063 (12)0.135 (14)0.018 (11)0.003 (12)0.013 (11)
C40.056 (6)0.067 (6)0.054 (5)0.000 (5)0.006 (4)0.010 (4)
C50.051 (6)0.061 (5)0.063 (6)0.000 (4)0.004 (4)0.003 (4)
C60.057 (6)0.064 (6)0.058 (6)0.002 (4)0.005 (4)0.011 (4)
C70.054 (6)0.067 (6)0.055 (5)0.009 (5)0.003 (4)0.016 (5)
C80.044 (5)0.060 (6)0.056 (5)0.006 (4)0.000 (4)0.010 (5)
C90.065 (6)0.059 (6)0.062 (6)0.000 (5)0.016 (5)0.001 (4)
C100.081 (8)0.069 (6)0.070 (7)0.004 (5)0.009 (6)0.016 (5)
C110.076 (7)0.069 (6)0.057 (6)0.002 (5)0.001 (5)0.015 (5)
C120.057 (6)0.071 (6)0.062 (6)0.001 (5)0.004 (4)0.005 (5)
C130.061 (7)0.061 (6)0.064 (6)0.010 (4)0.004 (4)0.006 (5)
C140.060 (6)0.070 (6)0.051 (5)0.001 (4)0.008 (4)0.004 (4)
C150.059 (6)0.082 (6)0.050 (5)0.003 (5)0.009 (5)0.005 (4)
C160.074 (7)0.049 (5)0.047 (5)0.002 (5)0.007 (5)0.007 (4)
C170.068 (7)0.067 (6)0.048 (5)0.013 (5)0.003 (5)0.002 (4)
C180.056 (7)0.106 (8)0.068 (7)0.009 (5)0.004 (6)0.002 (5)
C190.092 (9)0.064 (6)0.058 (6)0.001 (5)0.005 (6)0.015 (4)
C200.090 (9)0.106 (8)0.044 (5)0.015 (6)0.009 (6)0.003 (5)
C210.070 (7)0.090 (7)0.053 (6)0.007 (5)0.013 (5)0.009 (4)
Geometric parameters (Å, º) top
Cl1—C111.724 (9)C6—H6B0.9700
Cl2—C191.736 (11)C7—C81.498 (11)
O1—C71.213 (10)C8—C91.377 (10)
O2—C151.215 (10)C8—C131.389 (11)
S1'—C1'1.678 (16)C9—C101.387 (12)
S1'—C41.694 (10)C9—H90.9300
C1'—C2'1.359 (17)C10—C111.364 (13)
C1'—H1'0.9300C10—H100.9300
C2'—C3'1.423 (18)C11—C121.371 (12)
C2'—H2'0.9300C12—C131.376 (12)
C3'—C41.401 (18)C12—H120.9300
C3'—H3'0.9300C13—H130.9300
S1—C41.693 (10)C14—C151.490 (12)
S1—C11.713 (16)C14—H14A0.9700
C1—C21.385 (18)C14—H14B0.9700
C1—H10.9300C15—C161.479 (13)
C2—C31.390 (18)C16—C171.373 (12)
C2—H20.9300C16—C211.381 (12)
C3—C41.383 (19)C17—C181.393 (13)
C3—H30.9300C17—H170.9300
C4—C51.482 (10)C18—C191.372 (14)
C5—C61.518 (11)C18—H180.9300
C5—C141.535 (13)C19—C201.347 (14)
C5—H50.9800C20—C211.389 (14)
C6—C71.504 (10)C20—H200.9300
C6—H6A0.9700C21—H210.9300
C1'—S1'—C493.3 (9)C9—C8—C13118.6 (7)
C2'—C1'—S1'112.8 (13)C9—C8—C7118.3 (7)
C2'—C1'—H1'123.6C13—C8—C7123.1 (7)
S1'—C1'—H1'123.6C8—C9—C10120.9 (8)
C1'—C2'—C3'111.1 (17)C8—C9—H9119.5
C1'—C2'—H2'124.5C10—C9—H9119.5
C3'—C2'—H2'124.4C11—C10—C9119.0 (9)
C4—C3'—C2'112.3 (17)C11—C10—H10120.5
C4—C3'—H3'123.8C9—C10—H10120.5
C2'—C3'—H3'123.8C10—C11—C12121.4 (8)
C4—S1—C192.5 (9)C10—C11—Cl1118.6 (7)
C2—C1—S1110.7 (13)C12—C11—Cl1120.1 (7)
C2—C1—H1124.6C11—C12—C13119.3 (9)
S1—C1—H1124.6C11—C12—H12120.4
C1—C2—C3112.6 (17)C13—C12—H12120.4
C1—C2—H2123.7C12—C13—C8120.7 (8)
C3—C2—H2123.7C12—C13—H13119.6
C4—C3—C2112.9 (18)C8—C13—H13119.6
C4—C3—H3123.5C15—C14—C5114.0 (8)
C2—C3—H3123.5C15—C14—H14A108.8
C3—C4—C3'109.4 (15)C5—C14—H14A108.8
C3—C4—C5125.7 (13)C15—C14—H14B108.8
C3'—C4—C5123.5 (12)C5—C14—H14B108.8
C3—C4—S1111.3 (12)H14A—C14—H14B107.7
C3'—C4—S115.2 (13)O2—C15—C16120.0 (9)
C5—C4—S1123.0 (7)O2—C15—C14120.4 (9)
C3—C4—S1'2.8 (15)C16—C15—C14119.6 (9)
C3'—C4—S1'109.4 (11)C17—C16—C21118.1 (9)
C5—C4—S1'126.3 (7)C17—C16—C15121.4 (8)
S1—C4—S1'110.4 (6)C21—C16—C15120.4 (9)
C4—C5—C6111.1 (7)C16—C17—C18120.9 (8)
C4—C5—C14112.3 (7)C16—C17—H17119.5
C6—C5—C14109.9 (7)C18—C17—H17119.5
C4—C5—H5107.8C19—C18—C17118.9 (9)
C6—C5—H5107.8C19—C18—H18120.6
C14—C5—H5107.8C17—C18—H18120.6
C7—C6—C5114.5 (7)C20—C19—C18121.7 (10)
C7—C6—H6A108.6C20—C19—Cl2118.9 (8)
C5—C6—H6A108.6C18—C19—Cl2119.4 (9)
C7—C6—H6B108.6C19—C20—C21118.9 (9)
C5—C6—H6B108.6C19—C20—H20120.6
H6A—C6—H6B107.6C21—C20—H20120.6
O1—C7—C8120.7 (8)C16—C21—C20121.5 (10)
O1—C7—C6121.2 (8)C16—C21—H21119.3
C8—C7—C6118.1 (8)C20—C21—H21119.3
C4—S1'—C1'—C2'2.6 (7)C5—C6—C7—C8177.1 (8)
S1'—C1'—C2'—C3'3.5 (9)O1—C7—C8—C90.6 (13)
C1'—C2'—C3'—C49.7 (17)C6—C7—C8—C9179.5 (8)
C4—S1—C1—C20.2 (7)O1—C7—C8—C13178.3 (9)
S1—C1—C2—C30.1 (10)C6—C7—C8—C131.5 (12)
C1—C2—C3—C40.1 (19)C13—C8—C9—C101.6 (14)
C2—C3—C4—C3'16 (3)C7—C8—C9—C10179.4 (9)
C2—C3—C4—C5176.9 (13)C8—C9—C10—C111.7 (16)
C2—C3—C4—S10 (2)C9—C10—C11—C120.0 (16)
C2—C3—C4—S1'73 (26)C9—C10—C11—Cl1179.6 (8)
C2'—C3'—C4—C314 (2)C10—C11—C12—C131.8 (14)
C2'—C3'—C4—C5178.6 (12)Cl1—C11—C12—C13177.8 (8)
C2'—C3'—C4—S185 (5)C11—C12—C13—C81.9 (14)
C2'—C3'—C4—S1'11.3 (19)C9—C8—C13—C120.2 (13)
C1—S1—C4—C30.3 (15)C7—C8—C13—C12178.8 (9)
C1—S1—C4—C3'86 (4)C4—C5—C14—C1573.6 (9)
C1—S1—C4—C5176.9 (11)C6—C5—C14—C15162.3 (7)
C1—S1—C4—S1'2.5 (10)C5—C14—C15—O211.0 (12)
C1'—S1'—C4—C3100 (27)C5—C14—C15—C16169.3 (7)
C1'—S1'—C4—C3'7.9 (13)O2—C15—C16—C17176.7 (8)
C1'—S1'—C4—C5177.6 (10)C14—C15—C16—C173.1 (12)
C1'—S1'—C4—S18.2 (9)O2—C15—C16—C213.8 (13)
C3—C4—C5—C647.4 (19)C14—C15—C16—C21176.4 (8)
C3'—C4—C5—C6117.6 (16)C21—C16—C17—C180.4 (12)
S1—C4—C5—C6135.8 (8)C15—C16—C17—C18179.1 (8)
S1'—C4—C5—C650.7 (11)C16—C17—C18—C190.3 (13)
C3—C4—C5—C1476.2 (18)C17—C18—C19—C200.2 (14)
C3'—C4—C5—C14118.8 (15)C17—C18—C19—Cl2177.5 (7)
S1—C4—C5—C14100.6 (9)C18—C19—C20—C210.6 (14)
S1'—C4—C5—C1472.9 (10)Cl2—C19—C20—C21178.3 (7)
C4—C5—C6—C7156.7 (8)C17—C16—C21—C201.2 (13)
C14—C5—C6—C778.5 (10)C15—C16—C21—C20178.3 (8)
C5—C6—C7—O12.7 (13)C19—C20—C21—C161.3 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O2i0.932.333.175 (12)150
C10—H10···Cgii0.932.573.489 (10)171
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC21H16Cl2O2S
Mr403.30
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)298
a, b, c (Å)7.148 (3), 14.128 (6), 19.371 (8)
V3)1956.3 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.50 × 0.18 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.806, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
9549, 3430, 1466
Rint0.097
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.248, 1.01
No. of reflections3430
No. of parameters274
No. of restraints93
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.24
Absolute structureFlack (1983); 1650 Friedel pairs
Absolute structure parameter0.37 (19)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O2i0.932.333.175 (12)150.4
C10—H10···Cgii0.932.573.489 (10)171.0
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+1/2, z1/2.
 

Acknowledgements

The authors acknowledge the financial support of the University Student Science and Technology Culture Foundation of Liaocheng University (grant No. SRT07013HX2).

References

First citationBose, A. K., Pednekar, S., Ganguly, S. N., Chakraborty, G. & Manhas, M. S. (2004). Tetrahedron Lett. 45, 8351–8353.  Web of Science CrossRef CAS Google Scholar
First citationDas, G. C., Hursthouse, M. B., Malik, K. M. A., Rahman, M. M., Rahman, M. T. & Olsson, T. (1994). J. Chem. Crystallogr. 24, 511–515.  CSD CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHuang, X.-Q., Wang, D.-Q., Dou, J.-M. & Wang, J.-X. (2006). Acta Cryst. E62, o60–o61.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds