organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 3-(2,4-di­fluoro­phen­­oxy)-2-(4-meth­oxy­phen­yl)acrylate

aEngineering Research Center for Clean Production of Textile Printing, Ministry of Education, Wuhan University of Science & Engineering, Wuhan 430073, People's Republic of China
*Correspondence e-mail: qingfu_zeng@163.com

(Received 20 October 2008; accepted 10 November 2008; online 20 November 2008)

In the title mol­ecule, C18H16F2O4, the two benzene rings form a dihedral angle of 55.2 (2)°. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into chains propagating along the c axis.

Related literature

For a related crystal structure, see Fang et al. (2007[Fang, R.-Q., Li, H.-Q., Shi, L., Xiao, Z.-P. & Zhu, H.-L. (2007). Acta Cryst. E63, o3975.]). For the properties of phenyl­acetate and styrene derivatives, see: Huang et al. (2007[Huang, X.-F., Ruan, B.-F., Wang, X.-T., Xu, C., Ge, H.-M. & Zhu, H.-L. (2007). Eur. J. Med. Chem. 42, 263-267.]); Li et al. (2007[Li, H.-Q., Xu, C., Li, H.-S., Xiao, Z.-P., Shi, L. & Zhu, H.-L. (2007). ChemMedChem, 2, 1361-1369.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16F2O4

  • Mr = 334.31

  • Monoclinic, P 21 /c

  • a = 17.295 (3) Å

  • b = 7.294 (2) Å

  • c = 14.233 (2) Å

  • β = 113.73 (3)°

  • V = 1643.7 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 (2) K

  • 0.31 × 0.30 × 0.28 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.967, Tmax = 0.970

  • 3340 measured reflections

  • 3198 independent reflections

  • 1959 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.173

  • S = 1.03

  • 3198 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.93 2.52 3.280 (2) 140
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Phenylacetate and styrene derivatives are important in view of their extensive biological activities. Recently, many of such compounds with good activities were synthesized (Huang et al., 2007; Li et al., 2007). We report in this paper the title new compound, (I).

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in the related compound (Fang et al., 2007). The dihedral angles between C1—C6 and C7—C12 benzene rings is 55.2 (2)°. The O4/C13—C15/O1/O2 plane forms dihedral angles of 5.9 (2)° and 50.2 (2)°, respectively, with C1—C6 and C7—C12 benzene rings. In the crystal, weak intermolecular C—H···O hydrogen bonds (Table 1) link the molecules into chains propagated along c axis.

Related literature top

For a related crystal structure, see Fang et al. (2007). For the properties of phenylacetate and styrene derivatives, see: Huang et al. (2007); Li et al. (2007).

Experimental top

Ethyl 3-bromo-2-(2,4-difluorophenyl)acrylate (0.1 mmol) and 4-methoxyphenol (0.1 mmol) were reacted in chloroform (20 ml) for 12 h, giving a clear colorless solution. Crytals of the compound were formed by gradual evaporation of the solution.

Refinement top

All H atoms were placed in calculated positions with C–H = 0.93–0.97 Å, and refined as riding, with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
Ethyl 3-(2,4-difluorophenoxy)-2-(4-methoxyphenyl)acrylate top
Crystal data top
C18H16F2O4F(000) = 696
Mr = 334.31Dx = 1.351 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1232 reflections
a = 17.295 (3) Åθ = 2.3–24.5°
b = 7.294 (2) ŵ = 0.11 mm1
c = 14.233 (2) ÅT = 298 K
β = 113.73 (3)°Block, colorless
V = 1643.7 (7) Å30.31 × 0.30 × 0.28 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3198 independent reflections
Radiation source: fine-focus sealed tube1959 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 26.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2119
Tmin = 0.967, Tmax = 0.970k = 80
3340 measured reflectionsl = 017
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.173 w = 1/[σ2(Fo2) + (0.0671P)2 + 1.0598P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3198 reflectionsΔρmax = 0.43 e Å3
220 parametersΔρmin = 0.31 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.021 (2)
Crystal data top
C18H16F2O4V = 1643.7 (7) Å3
Mr = 334.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.295 (3) ŵ = 0.11 mm1
b = 7.294 (2) ÅT = 298 K
c = 14.233 (2) Å0.31 × 0.30 × 0.28 mm
β = 113.73 (3)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3198 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1959 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.970Rint = 0.017
3340 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.173H-atom parameters constrained
S = 1.03Δρmax = 0.43 e Å3
3198 reflectionsΔρmin = 0.31 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.10160 (10)0.2759 (3)0.53359 (13)0.0659 (6)
F20.21582 (12)0.0299 (3)0.20055 (15)0.0819 (7)
O10.11843 (13)0.3874 (4)0.73642 (16)0.0643 (7)
O20.25578 (13)0.4637 (3)0.80903 (15)0.0544 (6)
O30.52673 (12)0.3660 (3)0.63131 (16)0.0587 (6)
O40.05420 (13)0.2906 (4)0.53932 (19)0.0709 (7)
C10.01146 (16)0.2255 (4)0.4503 (2)0.0429 (7)
C20.09183 (17)0.2176 (4)0.4484 (2)0.0469 (7)
C30.16113 (18)0.1544 (5)0.3667 (2)0.0565 (9)
H30.21440.15200.36820.068*
C40.14818 (19)0.0949 (5)0.2827 (2)0.0562 (8)
C50.0706 (2)0.0975 (5)0.2794 (2)0.0585 (9)
H50.06370.05580.22150.070*
C60.00211 (18)0.1628 (5)0.3632 (2)0.0524 (8)
H60.05100.16490.36120.063*
C70.28913 (16)0.3613 (4)0.6413 (2)0.0411 (7)
C80.35658 (17)0.2736 (4)0.7170 (2)0.0457 (7)
H80.34790.21470.76990.055*
C90.43628 (17)0.2708 (4)0.7167 (2)0.0485 (8)
H90.48030.21080.76860.058*
C100.45029 (17)0.3582 (4)0.6383 (2)0.0440 (7)
C110.38402 (17)0.4463 (4)0.5619 (2)0.0490 (8)
H110.39280.50410.50870.059*
C120.30513 (17)0.4491 (4)0.5639 (2)0.0460 (7)
H120.26150.51090.51240.055*
C130.13631 (16)0.3039 (4)0.5529 (2)0.0450 (7)
H130.14850.27470.49670.054*
C140.20244 (17)0.3551 (4)0.6398 (2)0.0427 (7)
C150.18686 (18)0.4008 (4)0.7308 (2)0.0476 (7)
C160.2474 (2)0.5001 (6)0.9039 (2)0.0755 (11)
H16A0.22540.39270.92510.091*
H16B0.20850.60090.89500.091*
C170.3315 (3)0.5472 (6)0.9827 (3)0.0840 (12)
H17A0.37000.44820.98960.126*
H17B0.32730.56751.04720.126*
H17C0.35170.65650.96260.126*
C180.59573 (18)0.2753 (5)0.7078 (3)0.0696 (10)
H18A0.60350.32150.77410.104*
H18B0.64600.29670.69620.104*
H18C0.58460.14600.70490.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0494 (10)0.1005 (16)0.0561 (11)0.0024 (10)0.0299 (9)0.0084 (11)
F20.0591 (12)0.1104 (18)0.0587 (12)0.0114 (12)0.0053 (10)0.0136 (12)
O10.0527 (13)0.0918 (19)0.0608 (14)0.0086 (12)0.0358 (11)0.0089 (13)
O20.0562 (13)0.0704 (16)0.0429 (11)0.0079 (11)0.0267 (10)0.0086 (11)
O30.0403 (11)0.0748 (16)0.0661 (14)0.0039 (11)0.0267 (10)0.0059 (12)
O40.0547 (13)0.0828 (18)0.0761 (17)0.0016 (13)0.0272 (12)0.0027 (14)
C10.0374 (14)0.0455 (17)0.0454 (16)0.0002 (13)0.0162 (13)0.0024 (14)
C20.0463 (16)0.0555 (19)0.0440 (17)0.0047 (14)0.0235 (14)0.0027 (15)
C30.0394 (16)0.070 (2)0.056 (2)0.0007 (16)0.0150 (14)0.0078 (18)
C40.0479 (18)0.064 (2)0.0462 (18)0.0024 (16)0.0084 (15)0.0012 (16)
C50.061 (2)0.072 (2)0.0460 (18)0.0042 (18)0.0242 (16)0.0044 (17)
C60.0447 (16)0.067 (2)0.0501 (18)0.0004 (15)0.0239 (14)0.0033 (16)
C70.0401 (15)0.0405 (17)0.0440 (16)0.0023 (13)0.0184 (13)0.0062 (13)
C80.0460 (16)0.0496 (18)0.0452 (16)0.0030 (14)0.0220 (13)0.0043 (14)
C90.0431 (15)0.053 (2)0.0453 (17)0.0089 (14)0.0136 (13)0.0044 (15)
C100.0392 (15)0.0469 (18)0.0484 (17)0.0003 (13)0.0201 (13)0.0052 (14)
C110.0462 (16)0.058 (2)0.0468 (17)0.0006 (15)0.0232 (14)0.0080 (15)
C120.0409 (15)0.0530 (19)0.0424 (16)0.0041 (14)0.0151 (13)0.0049 (15)
C130.0394 (15)0.0490 (18)0.0511 (17)0.0018 (13)0.0230 (13)0.0003 (14)
C140.0417 (15)0.0436 (17)0.0470 (17)0.0008 (13)0.0220 (13)0.0003 (14)
C150.0500 (17)0.0467 (18)0.0510 (18)0.0026 (14)0.0256 (15)0.0012 (15)
C160.085 (3)0.104 (3)0.0470 (19)0.005 (2)0.0371 (19)0.005 (2)
C170.109 (3)0.090 (3)0.047 (2)0.014 (3)0.025 (2)0.006 (2)
C180.0424 (17)0.086 (3)0.077 (2)0.0103 (18)0.0202 (17)0.003 (2)
Geometric parameters (Å, º) top
F1—C21.358 (3)C8—C91.380 (4)
F2—C41.364 (3)C8—H80.9300
O1—C151.222 (3)C9—C101.388 (4)
O2—C151.343 (3)C9—H90.9300
O2—C161.440 (4)C10—C111.381 (4)
O3—C101.366 (3)C11—C121.376 (4)
O3—C181.415 (4)C11—H110.9300
O4—C131.357 (3)C12—H120.9300
O4—C11.401 (3)C13—C141.356 (4)
C1—C21.380 (4)C13—H130.9300
C1—C61.391 (4)C14—C151.464 (4)
C2—C31.370 (4)C16—C171.475 (5)
C3—C41.373 (4)C16—H16A0.9700
C3—H30.9300C16—H16B0.9700
C4—C51.362 (4)C17—H17A0.9600
C5—C61.384 (4)C17—H17B0.9600
C5—H50.9300C17—H17C0.9600
C6—H60.9300C18—H18A0.9600
C7—C81.385 (4)C18—H18B0.9600
C7—C121.395 (4)C18—H18C0.9600
C7—C141.491 (4)
C15—O2—C16116.8 (2)C12—C11—C10120.4 (3)
C10—O3—C18117.7 (2)C12—C11—H11119.8
C13—O4—C1125.0 (2)C10—C11—H11119.8
C2—C1—C6116.5 (3)C11—C12—C7121.5 (3)
C2—C1—O4118.4 (3)C11—C12—H12119.2
C6—C1—O4125.1 (2)C7—C12—H12119.2
F1—C2—C3118.8 (3)C14—C13—O4126.9 (3)
F1—C2—C1117.1 (3)C14—C13—H13116.6
C3—C2—C1124.1 (3)O4—C13—H13116.6
C2—C3—C4116.8 (3)C13—C14—C15118.8 (2)
C2—C3—H3121.6C13—C14—C7119.7 (2)
C4—C3—H3121.6C15—C14—C7121.5 (3)
C5—C4—F2119.5 (3)O1—C15—O2122.2 (3)
C5—C4—C3122.3 (3)O1—C15—C14124.6 (3)
F2—C4—C3118.2 (3)O2—C15—C14113.2 (2)
C4—C5—C6119.3 (3)O2—C16—C17108.4 (3)
C4—C5—H5120.4O2—C16—H16A110.0
C6—C5—H5120.4C17—C16—H16A110.0
C5—C6—C1121.0 (3)O2—C16—H16B110.0
C5—C6—H6119.5C17—C16—H16B110.0
C1—C6—H6119.5H16A—C16—H16B108.4
C8—C7—C12117.0 (2)C16—C17—H17A109.5
C8—C7—C14121.6 (3)C16—C17—H17B109.5
C12—C7—C14121.3 (3)H17A—C17—H17B109.5
C9—C8—C7122.3 (3)C16—C17—H17C109.5
C9—C8—H8118.9H17A—C17—H17C109.5
C7—C8—H8118.9H17B—C17—H17C109.5
C8—C9—C10119.6 (3)O3—C18—H18A109.5
C8—C9—H9120.2O3—C18—H18B109.5
C10—C9—H9120.2H18A—C18—H18B109.5
O3—C10—C11116.3 (3)O3—C18—H18C109.5
O3—C10—C9124.4 (3)H18A—C18—H18C109.5
C11—C10—C9119.3 (3)H18B—C18—H18C109.5
C13—O4—C1—C2179.1 (3)C8—C9—C10—C110.1 (5)
C13—O4—C1—C60.8 (5)O3—C10—C11—C12178.6 (3)
C6—C1—C2—F1179.1 (3)C9—C10—C11—C120.6 (5)
O4—C1—C2—F10.6 (4)C10—C11—C12—C71.1 (5)
C6—C1—C2—C30.6 (5)C8—C7—C12—C111.0 (4)
O4—C1—C2—C3179.1 (3)C14—C7—C12—C11176.3 (3)
F1—C2—C3—C4179.2 (3)C1—O4—C13—C14175.5 (3)
C1—C2—C3—C40.4 (5)O4—C13—C14—C150.6 (5)
C2—C3—C4—C50.0 (5)O4—C13—C14—C7179.7 (3)
C2—C3—C4—F2179.5 (3)C8—C7—C14—C13128.4 (3)
F2—C4—C5—C6179.7 (3)C12—C7—C14—C1348.7 (4)
C3—C4—C5—C60.2 (6)C8—C7—C14—C1550.7 (4)
C4—C5—C6—C10.0 (5)C12—C7—C14—C15132.1 (3)
C2—C1—C6—C50.4 (5)C16—O2—C15—O15.3 (5)
O4—C1—C6—C5178.7 (3)C16—O2—C15—C14175.9 (3)
C12—C7—C8—C90.4 (4)C13—C14—C15—O13.9 (5)
C14—C7—C8—C9176.8 (3)C7—C14—C15—O1175.2 (3)
C7—C8—C9—C100.0 (5)C13—C14—C15—O2174.9 (3)
C18—O3—C10—C11179.3 (3)C7—C14—C15—O26.0 (4)
C18—O3—C10—C91.5 (4)C15—O2—C16—C17173.7 (3)
C8—C9—C10—O3179.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.932.523.280 (2)140
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC18H16F2O4
Mr334.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)17.295 (3), 7.294 (2), 14.233 (2)
β (°) 113.73 (3)
V3)1643.7 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.31 × 0.30 × 0.28
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.967, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
3340, 3198, 1959
Rint0.017
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.173, 1.03
No. of reflections3198
No. of parameters220
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.31

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.932.523.280 (2)140
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

This work was supported by Program in the National Science & Technology of China (No. 2006BAC02A11), Key Technologies R&D Program in the Educational Commission of Hubei Province of China (No. Z20081701), Technologies R&D Program in Hubei Province of China (No. 2007AA301B62).

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFang, R.-Q., Li, H.-Q., Shi, L., Xiao, Z.-P. & Zhu, H.-L. (2007). Acta Cryst. E63, o3975.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, X.-F., Ruan, B.-F., Wang, X.-T., Xu, C., Ge, H.-M. & Zhu, H.-L. (2007). Eur. J. Med. Chem. 42, 263–267.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, H.-Q., Xu, C., Li, H.-S., Xiao, Z.-P., Shi, L. & Zhu, H.-L. (2007). ChemMedChem, 2, 1361-1369.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds