organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Dopaminium perchlorate

aDepartment of Chemistry, Sharif University of Technology, PO Box 11155-8639, Tehran, Iran, and bDepartment of Chemistry, Loughborough University, Leicestershire LE11 3TU, England
*Correspondence e-mail: dboghaei@sharif.edu

(Received 20 October 2008; accepted 30 October 2008; online 8 November 2008)

In the title compound [systematic name: 2-(3,4-dihydroxy­phen­yl)ethanaminium perchlorate], C8H12NO2+·ClO4, the cations and anions are linked into three-dimensional structure via inter­molecular N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For related crystal structures, see: Bergin & Carlström (1968[Bergin, R. & Carlström, D. (1968). Acta Cryst. B24, 1506-1510.]); Giesecke (1980[Giesecke, J. (1980). Acta Cryst. B36, 178-181.]). For details of the pharmacological properties of dopamine, see Salamone & Correa (2002[Salamone, J. D. & Correa, M. (2002). Behav. Brain Res. 137, 3-25.]).

[Scheme 1]

Experimental

Crystal data
  • C8H12NO2+·ClO4

  • Mr = 253.64

  • Triclinic, [P \overline 1]

  • a = 7.4925 (3) Å

  • b = 8.2254 (3) Å

  • c = 8.9524 (4) Å

  • α = 106.910 (1)°

  • β = 94.186 (1)°

  • γ = 101.206 (1)°

  • V = 512.85 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 150 (2) K

  • 0.30 × 0.15 × 0.06 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.893, Tmax = 0.977

  • 6199 measured reflections

  • 3146 independent reflections

  • 2858 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.105

  • S = 1.08

  • 3146 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O11 0.85 2.16 2.9065 (14) 146
O2—H2O⋯O11i 0.85 1.96 2.7936 (15) 164
N1—H1A⋯O1ii 0.91 2.07 2.8822 (14) 148
N1—H1B⋯O14iii 0.91 1.93 2.8317 (16) 169
N1—H1C⋯O12iv 0.91 2.11 2.8002 (16) 132
N1—H1C⋯O2iv 0.91 2.39 3.0512 (16) 130
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1, -y+1, -z+2; (iii) x-1, y, z+1; (iv) x, y, z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Many neuro transmitters have been discovered over the past century, such as serotonin, norepinephrine, substance P and dopamine. Dopamine is synthesized in the cenral brain from tyrosine. Dopamine has been considered as an important signal transmitter between the neurons and muscles (Salamone & Correa, 2002). Herewith we present the crystal structure of the title compound (I).

In (I) (Fig. 1), all bond lengths and angles are normal (Giesecke, 1980, Bergin & Carlström, 1968). The torsion angles C6—C1—C7—C8 and C1—C7—C8—N1 are 111.9 (1)° and 179.9 (6)°, respectively, showing that C1—C7—C8—N1 chain is almost fully extended, forming a plane that is nearly orthogonal to the plane of the ring. The crystal packing is stabilized by an extensive network of O—H···O and N—H···O hydrogen bonds (Table 1).

Related literature top

For related crystal structures, see: Bergin & Carlström (1968); Giesecke (1980). For details of the pharmacological properties of dopamine, see Salamone & Correa (2002).

Experimental top

The title compound was prepared by dissolving dopamine hydrochloride (2 mmol, 379 mg) and NaClO4.H2O (2 mmol, 280 mg) in water/HClO4 (1mM, 10 ml). The mixture was stirred for about 2 h at room temperature. This solution yielded colourless crystals of (I) after 10 d.

Refinement top

All H atoms atoms were placed in calculated positions and refined using the riding model approximation, with C—H = 0.95–1.0 Å, O—H = 0.85 Å, N—H = 0.91 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(N). The isotropic displacement parameter of the hydroxy H atoms were fixed to 0.04 Å2

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic labels and displacement ellipsoids for non-H atoms drawn at the 50% probability level.
2-(3,4-dihydroxyphenyl)ethanaminium perchlorate top
Crystal data top
C8H12NO2+·ClO4Z = 2
Mr = 253.64F(000) = 264
Triclinic, P1Dx = 1.642 Mg m3
Hall symbol: -P1Mo Kα radiation, λ = 0.71073 Å
a = 7.4925 (3) ÅCell parameters from 3633 reflections
b = 8.2254 (3) Åθ = 2.4–31.6°
c = 8.9524 (4) ŵ = 0.39 mm1
α = 106.910 (1)°T = 150 K
β = 94.186 (1)°Plate, colourless
γ = 101.206 (1)°0.30 × 0.15 × 0.06 mm
V = 512.85 (4) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3146 independent reflections
Radiation source: fine-focus sealed tube2858 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 31.7°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1010
Tmin = 0.893, Tmax = 0.977k = 1211
6199 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0559P)2 + 0.2163P]
where P = (Fo2 + 2Fc2)/3
3146 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C8H12NO2+·ClO4γ = 101.206 (1)°
Mr = 253.64V = 512.85 (4) Å3
Triclinic, P1Z = 2
a = 7.4925 (3) ÅMo Kα radiation
b = 8.2254 (3) ŵ = 0.39 mm1
c = 8.9524 (4) ÅT = 150 K
α = 106.910 (1)°0.30 × 0.15 × 0.06 mm
β = 94.186 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3146 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2858 reflections with I > 2σ(I)
Tmin = 0.893, Tmax = 0.977Rint = 0.018
6199 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.09Δρmax = 0.49 e Å3
3146 reflectionsΔρmin = 0.45 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.78299 (4)0.71277 (4)0.38696 (3)0.01882 (9)
O110.78911 (17)0.88541 (14)0.49463 (13)0.0299 (2)
O120.61768 (16)0.59722 (16)0.39753 (16)0.0370 (3)
O130.7897 (2)0.7193 (2)0.23036 (14)0.0436 (3)
O140.93581 (16)0.65238 (18)0.43983 (14)0.0373 (3)
C10.28726 (18)0.78530 (16)1.02178 (15)0.0185 (2)
C20.45074 (18)0.77363 (16)0.95805 (14)0.0185 (2)
H20.54790.74641.01350.022*
C30.47193 (17)0.80155 (16)0.81453 (14)0.0177 (2)
O10.63545 (13)0.79282 (13)0.75554 (11)0.02136 (19)
C40.32907 (18)0.84083 (16)0.73205 (14)0.0188 (2)
O20.36279 (15)0.86353 (13)0.58877 (11)0.0240 (2)
C50.16751 (18)0.85522 (17)0.79484 (16)0.0212 (2)
H50.07130.88420.73970.025*
C60.14636 (18)0.82696 (17)0.93990 (16)0.0208 (2)
H60.03520.83620.98290.025*
C70.2661 (2)0.75345 (17)1.17802 (15)0.0215 (2)
H7A0.15220.78501.21470.026*
H7B0.37130.82791.25750.026*
C80.2576 (2)0.56300 (17)1.16162 (15)0.0222 (3)
H8A0.15260.48921.08150.027*
H8B0.37140.53201.12440.027*
N10.23650 (15)0.52615 (15)1.31419 (13)0.0200 (2)
H1A0.23170.41121.29990.030*
H1B0.13100.55281.34790.030*
H1C0.33400.59211.38750.030*
H2O0.29680.92730.56260.040*
H1O0.63560.82810.67480.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01669 (14)0.02486 (16)0.01828 (15)0.00806 (11)0.00411 (10)0.00922 (11)
O110.0394 (6)0.0222 (5)0.0305 (5)0.0104 (4)0.0048 (4)0.0096 (4)
O120.0253 (5)0.0348 (6)0.0453 (7)0.0014 (5)0.0097 (5)0.0083 (5)
O130.0561 (8)0.0597 (8)0.0200 (5)0.0123 (7)0.0065 (5)0.0201 (5)
O140.0303 (6)0.0537 (7)0.0342 (6)0.0287 (5)0.0029 (4)0.0113 (5)
C10.0249 (6)0.0149 (5)0.0170 (5)0.0059 (4)0.0049 (4)0.0058 (4)
C20.0241 (6)0.0173 (5)0.0166 (5)0.0079 (4)0.0028 (4)0.0070 (4)
C30.0224 (5)0.0153 (5)0.0168 (5)0.0066 (4)0.0046 (4)0.0052 (4)
O10.0248 (5)0.0250 (5)0.0206 (4)0.0118 (4)0.0087 (3)0.0114 (4)
C40.0256 (6)0.0168 (5)0.0150 (5)0.0061 (4)0.0016 (4)0.0059 (4)
O20.0327 (5)0.0276 (5)0.0174 (4)0.0132 (4)0.0047 (4)0.0116 (4)
C50.0229 (6)0.0209 (5)0.0213 (6)0.0070 (5)0.0005 (4)0.0079 (5)
C60.0215 (6)0.0199 (5)0.0229 (6)0.0063 (4)0.0052 (5)0.0079 (5)
C70.0301 (6)0.0193 (5)0.0194 (6)0.0091 (5)0.0094 (5)0.0085 (4)
C80.0331 (7)0.0189 (5)0.0168 (5)0.0077 (5)0.0048 (5)0.0077 (4)
N10.0215 (5)0.0229 (5)0.0208 (5)0.0085 (4)0.0064 (4)0.0118 (4)
Geometric parameters (Å, º) top
Cl1—O131.4225 (11)O2—H2O0.8540
Cl1—O121.4347 (11)C5—C61.3989 (18)
Cl1—O141.4355 (11)C5—H50.9500
Cl1—O111.4559 (11)C6—H60.9500
C1—C61.3939 (18)C7—C81.5185 (18)
C1—C21.3968 (18)C7—H7A0.9900
C1—C71.5099 (17)C7—H7B0.9900
C2—C31.3842 (16)C8—N11.4954 (16)
C2—H20.9500C8—H8A0.9900
C3—O11.3753 (15)C8—H8B0.9900
C3—C41.3975 (18)N1—H1A0.9100
O1—H1O0.8537N1—H1B0.9100
C4—C51.3826 (19)N1—H1C0.9100
C4—O21.3828 (15)
O13—Cl1—O12111.25 (8)C6—C5—H5120.2
O13—Cl1—O14111.08 (8)C1—C6—C5120.47 (12)
O12—Cl1—O14107.81 (8)C1—C6—H6119.8
O13—Cl1—O11110.40 (8)C5—C6—H6119.8
O12—Cl1—O11108.15 (7)C1—C7—C8110.27 (10)
O14—Cl1—O11108.02 (7)C1—C7—H7A109.6
C6—C1—C2119.24 (11)C8—C7—H7A109.6
C6—C1—C7121.09 (11)C1—C7—H7B109.6
C2—C1—C7119.67 (11)C8—C7—H7B109.6
C3—C2—C1120.37 (12)H7A—C7—H7B108.1
C3—C2—H2119.8N1—C8—C7111.89 (10)
C1—C2—H2119.8N1—C8—H8A109.2
O1—C3—C2119.37 (11)C7—C8—H8A109.2
O1—C3—C4120.57 (11)N1—C8—H8B109.2
C2—C3—C4120.06 (11)C7—C8—H8B109.2
C3—O1—H1O109.3H8A—C8—H8B107.9
C5—C4—O2124.27 (11)C8—N1—H1A109.5
C5—C4—C3120.16 (11)C8—N1—H1B109.5
O2—C4—C3115.56 (11)H1A—N1—H1B109.5
C4—O2—H2O111.4C8—N1—H1C109.5
C4—C5—C6119.69 (12)H1A—N1—H1C109.5
C4—C5—H5120.2H1B—N1—H1C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O110.852.162.9065 (14)146
O2—H2O···O11i0.851.962.7936 (15)164
N1—H1A···O1ii0.912.072.8822 (14)148
N1—H1B···O14iii0.911.932.8317 (16)169
N1—H1C···O12iv0.912.112.8002 (16)132
N1—H1C···O2iv0.912.393.0512 (16)130
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+2; (iii) x1, y, z+1; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC8H12NO2+·ClO4
Mr253.64
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)7.4925 (3), 8.2254 (3), 8.9524 (4)
α, β, γ (°)106.910 (1), 94.186 (1), 101.206 (1)
V3)512.85 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.30 × 0.15 × 0.06
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.893, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
6199, 3146, 2858
Rint0.018
(sin θ/λ)max1)0.740
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.105, 1.09
No. of reflections3146
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.45

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O110.852.162.9065 (14)146
O2—H2O···O11i0.851.962.7936 (15)164
N1—H1A···O1ii0.912.072.8822 (14)148
N1—H1B···O14iii0.911.932.8317 (16)169
N1—H1C···O12iv0.912.112.8002 (16)132
N1—H1C···O2iv0.912.393.0512 (16)130
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+2; (iii) x1, y, z+1; (iv) x, y, z+1.
 

Acknowledgements

We are grateful to the Research Council of Sharif University of Technology and Loughborough University for their financial support.

References

First citationBergin, R. & Carlström, D. (1968). Acta Cryst. B24, 1506–1510.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGiesecke, J. (1980). Acta Cryst. B36, 178–181.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSalamone, J. D. & Correa, M. (2002). Behav. Brain Res. 137, 3–25.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds