metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(1,10-phenanthroline)manganese(II)]-μ3-5-methyl­isophthalato]

aCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China
*Correspondence e-mail: zhangwy_hi@126.com

(Received 21 October 2008; accepted 6 November 2008; online 13 November 2008)

In the title coupound, [Mn(C9H6O4)(C12H8N2)]n, the MnII ion is coordinated by two N atoms [Mn—N = 2.273 (3) and 2.305 (2) Å] from a 1,10-phenanthroline ligand and four O atoms [Mn—O = 2.112 (2)–2.343 (3) Å] from three 5-methyl­isophthalate (mip) ligands in a distorted octa­hedral geometry. Each mip dianion acts as a tetra­dentate ligand connecting three Mn ions. The crystal packing exhibits ππ inter­actions [3.599 (2)–3.755 (2) Å] between the centroids of the six-membered rings of neighbouring 1,10-phenanthroline ligands.

Related literature

For crystal structure of related polymeric compound, see Nie et al. (2001[Nie, J.-J., Liu, L.-J., Luo, Y. & Xu, D.-J. (2001). J. Coord. Chem. 53, 365-371.]). For details of the coordination abilities of 1,3-benzene­dicarboxyl­ate derivatives, see: Pan et al. (2006[Pan, L., Parker, B., Huang, X. Y., Oison, D. H., Lee, J. Y. & Li, J. (2006). J. Am. Chem. Soc. 128, 4180-4181.]); Yang et al. (2002[Yang, S.-Y., Long, L.-S., Huang, R.-B. & Zheng, L.-S. (2002). Chem. Commun. pp. 472-473.]); Ma et al. (2008[Ma, C.-B., Chen, C.-N., Liu, Q.-T., Liao, D.-Z. & Li, L.-C. (2008). Eur. J. Inorg. Chem. pp. 1865-1870.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C9H6O4)(C12H8N2)]

  • Mr = 413.28

  • Monoclinic, P 2/c

  • a = 9.2837 (11) Å

  • b = 10.3786 (13) Å

  • c = 18.824 (2) Å

  • β = 101.372 (2)°

  • V = 1778.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 295 (2) K

  • 0.19 × 0.10 × 0.07 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]) Tmin = 0.847, Tmax = 0.948

  • 13275 measured reflections

  • 3313 independent reflections

  • 2230 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.097

  • S = 1.02

  • 3313 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The rational design and syntheses of novel coordination polymers have achieved considerable progress in the field of supramolecular chemistry and crystal engineering, owing to their potential applications as gas storage, sensor technology, separation processes, ion exchange, luminescene, magnetism, and catalysis, as well as due to their intriguing variety of architectures and topologies. It has also been proved that careful selection of an appropriate multidentate bridging ligands provides further impetus for the investigation of metal-organic structural architectures as well as potential technological applications. So multicarboxylate acid 1,3-benzenedicarboxylates (H2bdc) with variously oriented carboxylate groups have widely been utilized to construct coordination polymers (Pan et al., 2006; Yang et al., 2002; Ma et al., 2008). Herewith we present the title polymeric compound, (I).

The asymmetric unit of (I) contains one MnII cation, one phen (= 1,10-phenanthroline) ligand and one mip (H2mip=5-methylisophthalic acid) anion. Each Mn ion is octahedrally coordinated by two N atoms of one phen ligand and four oxygen atoms from three mip ligands (Fig. 1). The Mn-N bond lengths are 2.273 (3), 2.305 (2) A° and the Mn-O bond lengths are in the range of 2.112 (2) - 2.343 (3) A°, which are similiar to those reported for nearly isostructural complex (Nie et al., 2001). X-ray structure analysis reveals that (I) consists of 1D chains bridged by mip anions. Each mip anion acts as a tetradentate ligand connecting three Mn ions. Two carboxylic groups of mip ligand have two coordination modes, one bidentately bridging two Mn ions in a syn-syn fashion and the other chelating one Mn ion. Along the (110) direction, the Mn ions are bridged by the mip anions to generate stranded polymeric ribbon containing alternative 8- and 16-membered rings (Fig. 2). Two carboxylic groups bridge two Mn (II) ions to form an 8-membered ring and two mip ligands bridge two Mn (II) ions to form a 16-membered ring. Within the 8-membered ring and 16-membered ring, the Mn—Mn separations are 4.013 (3) and 7.62 (7) A°, respectively.

Close stacking of aromatic rings is observed in the complex, the distances between their centroids from neighboring phen ligands are 3.599 (2)-3.755 (2) A° (Table 1).

Related literature top

For crystal structure of related polymeric compound, see Nie et al. (2001). For details of the coordination abilities of 1,3-benzenedicarboxylate derivatives, see: Pan et al. (2006); Yang et al. (2002); Ma et al. (2008).

Experimental top

A mixture of 5-methylisophthalic acid (0.2 mmol, 37 mg), phen (0.1 mmol, 21 mg) and Mn(OAc)2.4H2O (0.1 mmol, 24 mg) in distilled water (15 mL) and ethanol (1mL) was placed in a Teflon-lined stainless steel vessel, heated to 120 ° for 4 days, and then cooled to room temperature over 48 h. Yellow block crystals of (I) were obtained.

Refinement top

The H atoms were positioned geometrically (C—H 0.93-0.96Å), and treated as riding on their parent atoms, with Uiso(H) = 1.2-1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A portion of the title polymeric compound showing the atomic numbering and 40% probability displacement ellipsoids [symmetry code: (A) x,-y+1,z-1/2].
[Figure 2] Fig. 2. A portion of the stranded polymeric ribbon in (I).
catena-Poly[[(1,10-phenanthroline)manganese(II)]-µ3-5-methylisophthalato] top
Crystal data top
[Mn(C9H6O4)(C12H8N2)]F(000) = 844
Mr = 413.28Dx = 1.544 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
a = 9.2837 (11) ÅCell parameters from 1788 reflections
b = 10.3786 (13) Åθ = 2.3–19.8°
c = 18.824 (2) ŵ = 0.77 mm1
β = 101.372 (2)°T = 295 K
V = 1778.1 (4) Å3Block, yellow
Z = 40.19 × 0.10 × 0.07 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3313 independent reflections
Radiation source: fine-focus sealed tube2230 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ϕ and ω scansθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1111
Tmin = 0.847, Tmax = 0.948k = 1212
13275 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0334P)2 + 0.7839P]
where P = (Fo2 + 2Fc2)/3
3313 reflections(Δ/σ)max < 0.001
254 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
[Mn(C9H6O4)(C12H8N2)]V = 1778.1 (4) Å3
Mr = 413.28Z = 4
Monoclinic, P2/cMo Kα radiation
a = 9.2837 (11) ŵ = 0.77 mm1
b = 10.3786 (13) ÅT = 295 K
c = 18.824 (2) Å0.19 × 0.10 × 0.07 mm
β = 101.372 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3313 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
2230 reflections with I > 2σ(I)
Tmin = 0.847, Tmax = 0.948Rint = 0.056
13275 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.02Δρmax = 0.26 e Å3
3313 reflectionsΔρmin = 0.24 e Å3
254 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.36904 (5)0.31882 (4)0.32302 (2)0.03865 (16)
O10.3711 (3)0.4040 (3)0.42907 (12)0.0685 (8)
O20.1789 (3)0.2896 (3)0.38683 (13)0.0757 (8)
O30.2707 (2)0.5464 (2)0.74411 (11)0.0480 (6)
O40.4110 (3)0.6197 (2)0.67041 (11)0.0548 (6)
N10.4764 (3)0.1298 (3)0.36551 (15)0.0520 (7)
N20.2489 (3)0.1543 (2)0.25312 (13)0.0443 (7)
C10.1932 (3)0.3809 (3)0.50355 (15)0.0385 (7)
C20.2745 (3)0.4529 (3)0.55968 (15)0.0362 (7)
H20.36550.48600.55540.043*
C30.2200 (3)0.4753 (3)0.62196 (15)0.0353 (7)
C40.0818 (3)0.4276 (3)0.62701 (16)0.0407 (8)
H40.04500.44370.66870.049*
C50.0017 (3)0.3569 (3)0.57130 (17)0.0441 (8)
C60.0567 (4)0.3342 (3)0.51018 (16)0.0449 (8)
H60.00260.28610.47240.054*
C70.2510 (4)0.3568 (3)0.43524 (16)0.0458 (8)
C80.3075 (4)0.5517 (3)0.68310 (16)0.0387 (7)
C90.1512 (4)0.3073 (4)0.5774 (2)0.0629 (10)
H9A0.22360.34110.53830.094*
H9B0.17360.33440.62280.094*
H9C0.15160.21490.57510.094*
C100.5876 (4)0.1195 (4)0.4209 (2)0.0795 (13)
H100.63010.19420.44300.095*
C110.6440 (5)0.0001 (5)0.4477 (3)0.1003 (17)
H110.72150.00450.48730.120*
C120.5841 (5)0.1089 (5)0.4151 (3)0.0919 (15)
H120.62130.18870.43230.110*
C130.4680 (4)0.1032 (4)0.3564 (2)0.0641 (11)
C140.3982 (5)0.2131 (4)0.3178 (3)0.0758 (13)
H140.43250.29520.33180.091*
C150.2853 (5)0.1995 (4)0.2624 (3)0.0759 (13)
H150.24210.27290.23900.091*
C160.2290 (4)0.0773 (3)0.2381 (2)0.0576 (10)
C170.1094 (5)0.0582 (5)0.1816 (2)0.0809 (13)
H170.06330.12880.15650.097*
C180.0596 (5)0.0622 (5)0.1628 (2)0.0765 (12)
H180.02220.07460.12600.092*
C190.1331 (4)0.1674 (4)0.19962 (17)0.0576 (10)
H190.09950.24990.18610.069*
C200.2954 (4)0.0339 (3)0.27317 (17)0.0428 (8)
C210.4156 (4)0.0209 (3)0.33261 (18)0.0475 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0482 (3)0.0372 (3)0.0286 (2)0.0040 (2)0.0030 (2)0.0008 (2)
O10.0677 (18)0.093 (2)0.0506 (15)0.0197 (16)0.0247 (14)0.0229 (14)
O20.0743 (18)0.103 (2)0.0479 (15)0.0192 (16)0.0075 (14)0.0337 (15)
O30.0631 (15)0.0485 (14)0.0331 (12)0.0072 (11)0.0111 (11)0.0046 (10)
O40.0553 (15)0.0618 (15)0.0442 (13)0.0182 (13)0.0023 (11)0.0025 (12)
N10.0442 (17)0.0498 (18)0.0580 (18)0.0018 (14)0.0003 (15)0.0111 (15)
N20.0490 (17)0.0452 (18)0.0376 (15)0.0063 (13)0.0055 (13)0.0031 (12)
C10.0432 (19)0.0382 (18)0.0318 (16)0.0036 (15)0.0014 (14)0.0011 (14)
C20.0366 (17)0.0352 (17)0.0353 (16)0.0021 (14)0.0034 (14)0.0031 (13)
C30.0391 (18)0.0339 (17)0.0301 (16)0.0010 (14)0.0000 (14)0.0009 (13)
C40.0441 (19)0.0441 (19)0.0336 (17)0.0037 (15)0.0070 (15)0.0064 (14)
C50.0397 (19)0.0421 (19)0.046 (2)0.0038 (15)0.0016 (16)0.0100 (15)
C60.051 (2)0.0423 (19)0.0366 (18)0.0012 (16)0.0038 (16)0.0023 (15)
C70.053 (2)0.049 (2)0.0314 (17)0.0088 (17)0.0008 (16)0.0032 (15)
C80.044 (2)0.0355 (18)0.0336 (17)0.0004 (15)0.0019 (15)0.0017 (14)
C90.045 (2)0.074 (3)0.066 (2)0.016 (2)0.0016 (18)0.012 (2)
C100.068 (3)0.074 (3)0.082 (3)0.001 (2)0.018 (2)0.016 (2)
C110.077 (3)0.094 (4)0.113 (4)0.017 (3)0.023 (3)0.038 (3)
C120.083 (3)0.069 (3)0.121 (4)0.025 (3)0.014 (3)0.040 (3)
C130.061 (3)0.050 (2)0.086 (3)0.013 (2)0.030 (2)0.017 (2)
C140.091 (3)0.031 (2)0.119 (4)0.009 (2)0.054 (3)0.007 (2)
C150.094 (3)0.046 (3)0.099 (3)0.011 (2)0.045 (3)0.018 (2)
C160.070 (3)0.042 (2)0.069 (3)0.0120 (19)0.032 (2)0.0112 (18)
C170.096 (4)0.071 (3)0.071 (3)0.025 (3)0.006 (3)0.026 (2)
C180.076 (3)0.086 (3)0.060 (3)0.025 (3)0.004 (2)0.015 (2)
C190.064 (2)0.061 (2)0.043 (2)0.012 (2)0.0016 (19)0.0031 (17)
C200.047 (2)0.040 (2)0.0439 (19)0.0033 (16)0.0165 (16)0.0064 (15)
C210.048 (2)0.041 (2)0.060 (2)0.0015 (16)0.0276 (18)0.0062 (17)
Geometric parameters (Å, º) top
Mn1—O3i2.112 (2)C5—C61.385 (4)
Mn1—O4ii2.120 (2)C5—C91.505 (4)
Mn1—O12.180 (2)C6—H60.9300
Mn1—N12.273 (3)C9—H9A0.9600
Mn1—N22.305 (2)C9—H9B0.9600
Mn1—O22.343 (3)C9—H9C0.9600
Mn1—C72.595 (3)C10—C111.402 (5)
O1—C71.244 (4)C10—H100.9300
O2—C71.235 (4)C11—C121.352 (6)
O3—C81.262 (3)C11—H110.9300
O3—Mn1iii2.112 (2)C12—C131.385 (6)
O4—C81.252 (3)C12—H120.9300
O4—Mn1ii2.120 (2)C13—C211.418 (5)
N1—C101.319 (4)C13—C141.435 (5)
N1—C211.357 (4)C14—C151.332 (5)
N2—C191.327 (4)C14—H140.9300
N2—C201.351 (4)C15—C161.414 (5)
C1—C61.385 (4)C15—H150.9300
C1—C21.390 (4)C16—C171.392 (5)
C1—C71.509 (4)C16—C201.410 (4)
C2—C31.385 (4)C17—C181.355 (6)
C2—H20.9300C17—H170.9300
C3—C41.396 (4)C18—C191.397 (5)
C3—C81.498 (4)C18—H180.9300
C4—C51.386 (4)C19—H190.9300
C4—H40.9300C20—C211.423 (4)
Cg1···Cg2iv3.709 (2)Cg3···Cg3iv3.599 (2)
Cg2···Cg2v3.755 (2)
O3i—Mn1—O4ii96.85 (9)O2—C7—C1119.3 (3)
O3i—Mn1—O1107.46 (10)O1—C7—C1119.4 (3)
O4ii—Mn1—O189.43 (9)O2—C7—Mn164.41 (18)
O3i—Mn1—N1156.59 (10)O1—C7—Mn156.88 (17)
O4ii—Mn1—N183.61 (9)C1—C7—Mn1175.9 (2)
O1—Mn1—N195.94 (11)O4—C8—O3123.6 (3)
O3i—Mn1—N289.75 (9)O4—C8—C3118.1 (3)
O4ii—Mn1—N2127.49 (9)O3—C8—C3118.3 (3)
O1—Mn1—N2137.66 (10)C5—C9—H9A109.5
N1—Mn1—N272.00 (10)C5—C9—H9B109.5
O3i—Mn1—O2100.46 (9)H9A—C9—H9B109.5
O4ii—Mn1—O2145.47 (8)C5—C9—H9C109.5
O1—Mn1—O256.93 (9)H9A—C9—H9C109.5
N1—Mn1—O291.74 (10)H9B—C9—H9C109.5
N2—Mn1—O282.42 (9)N1—C10—C11122.4 (4)
O3i—Mn1—C7106.19 (9)N1—C10—H10118.8
O4ii—Mn1—C7117.61 (10)C11—C10—H10118.8
O1—Mn1—C728.55 (9)C12—C11—C10119.1 (4)
N1—Mn1—C794.06 (10)C12—C11—H11120.5
N2—Mn1—C7110.05 (10)C10—C11—H11120.5
O2—Mn1—C728.38 (9)C11—C12—C13120.8 (4)
C7—O1—Mn194.6 (2)C11—C12—H12119.6
C7—O2—Mn187.2 (2)C13—C12—H12119.6
C8—O3—Mn1iii117.0 (2)C12—C13—C21117.1 (4)
C8—O4—Mn1ii157.6 (2)C12—C13—C14124.9 (4)
C10—N1—C21118.9 (3)C21—C13—C14118.0 (4)
C10—N1—Mn1124.7 (3)C15—C14—C13121.3 (4)
C21—N1—Mn1116.4 (2)C15—C14—H14119.4
C19—N2—C20118.2 (3)C13—C14—H14119.4
C19—N2—Mn1125.9 (2)C14—C15—C16122.1 (4)
C20—N2—Mn1115.7 (2)C14—C15—H15119.0
C6—C1—C2119.3 (3)C16—C15—H15119.0
C6—C1—C7120.3 (3)C17—C16—C20116.8 (4)
C2—C1—C7120.4 (3)C17—C16—C15124.3 (4)
C3—C2—C1120.0 (3)C20—C16—C15118.9 (4)
C3—C2—H2120.0C18—C17—C16120.7 (4)
C1—C2—H2120.0C18—C17—H17119.6
C2—C3—C4119.5 (3)C16—C17—H17119.6
C2—C3—C8120.4 (3)C17—C18—C19118.8 (4)
C4—C3—C8120.1 (3)C17—C18—H18120.6
C5—C4—C3121.4 (3)C19—C18—H18120.6
C5—C4—H4119.3N2—C19—C18122.7 (4)
C3—C4—H4119.3N2—C19—H19118.6
C6—C5—C4117.8 (3)C18—C19—H19118.6
C6—C5—C9121.6 (3)N2—C20—C16122.7 (3)
C4—C5—C9120.6 (3)N2—C20—C21117.8 (3)
C5—C6—C1122.0 (3)C16—C20—C21119.5 (3)
C5—C6—H6119.0N1—C21—C13121.8 (3)
C1—C6—H6119.0N1—C21—C20118.1 (3)
O2—C7—O1121.3 (3)C13—C21—C20120.1 (3)
O3i—Mn1—O1—C791.9 (2)O4ii—Mn1—C7—O2171.05 (19)
O4ii—Mn1—O1—C7171.1 (2)O1—Mn1—C7—O2178.9 (3)
N1—Mn1—O1—C787.6 (2)N1—Mn1—C7—O286.1 (2)
N2—Mn1—O1—C717.9 (3)N2—Mn1—C7—O213.8 (2)
O2—Mn1—O1—C70.6 (2)O3i—Mn1—C7—O196.9 (2)
O3i—Mn1—O2—C7104.8 (2)O4ii—Mn1—C7—O110.1 (2)
O4ii—Mn1—O2—C714.1 (3)N1—Mn1—C7—O195.0 (2)
O1—Mn1—O2—C70.6 (2)N2—Mn1—C7—O1167.3 (2)
N1—Mn1—O2—C795.3 (2)O2—Mn1—C7—O1178.9 (3)
N2—Mn1—O2—C7166.9 (2)Mn1ii—O4—C8—O367.5 (7)
O3i—Mn1—N1—C10139.9 (3)Mn1ii—O4—C8—C3114.3 (5)
O4ii—Mn1—N1—C1047.4 (3)Mn1iii—O3—C8—O49.6 (4)
O1—Mn1—N1—C1041.4 (3)Mn1iii—O3—C8—C3168.61 (19)
N2—Mn1—N1—C10179.7 (3)C2—C3—C8—O417.0 (4)
O2—Mn1—N1—C1098.3 (3)C4—C3—C8—O4162.1 (3)
C7—Mn1—N1—C1070.0 (3)C2—C3—C8—O3164.7 (3)
O3i—Mn1—N1—C2143.1 (4)C4—C3—C8—O316.1 (4)
O4ii—Mn1—N1—C21135.6 (2)C21—N1—C10—C110.9 (6)
O1—Mn1—N1—C21135.7 (2)Mn1—N1—C10—C11176.0 (3)
N2—Mn1—N1—C212.7 (2)N1—C10—C11—C121.0 (8)
O2—Mn1—N1—C2178.8 (2)C10—C11—C12—C130.4 (8)
C7—Mn1—N1—C21107.1 (2)C11—C12—C13—C210.2 (7)
O3i—Mn1—N2—C1917.7 (3)C11—C12—C13—C14179.4 (4)
O4ii—Mn1—N2—C19116.2 (3)C12—C13—C14—C15178.9 (4)
O1—Mn1—N2—C1998.4 (3)C21—C13—C14—C151.6 (6)
N1—Mn1—N2—C19177.2 (3)C13—C14—C15—C160.6 (6)
O2—Mn1—N2—C1982.8 (3)C14—C15—C16—C17178.6 (4)
C7—Mn1—N2—C1989.4 (3)C14—C15—C16—C200.6 (6)
O3i—Mn1—N2—C20167.8 (2)C20—C16—C17—C181.0 (6)
O4ii—Mn1—N2—C2069.3 (2)C15—C16—C17—C18178.2 (4)
O1—Mn1—N2—C2076.1 (3)C16—C17—C18—C192.0 (7)
N1—Mn1—N2—C202.7 (2)C20—N2—C19—C181.1 (5)
O2—Mn1—N2—C2091.7 (2)Mn1—N2—C19—C18175.5 (3)
C7—Mn1—N2—C2085.1 (2)C17—C18—C19—N20.9 (6)
C6—C1—C2—C31.2 (4)C19—N2—C20—C162.1 (5)
C7—C1—C2—C3179.5 (3)Mn1—N2—C20—C16177.1 (2)
C1—C2—C3—C41.5 (4)C19—N2—C20—C21177.3 (3)
C1—C2—C3—C8179.4 (3)Mn1—N2—C20—C212.4 (4)
C2—C3—C4—C50.8 (4)C17—C16—C20—N21.1 (5)
C8—C3—C4—C5179.9 (3)C15—C16—C20—N2179.6 (3)
C3—C4—C5—C60.3 (4)C17—C16—C20—C21178.4 (3)
C3—C4—C5—C9179.4 (3)C15—C16—C20—C210.9 (5)
C4—C5—C6—C10.6 (5)C10—N1—C21—C130.3 (5)
C9—C5—C6—C1179.1 (3)Mn1—N1—C21—C13176.9 (2)
C2—C1—C6—C50.1 (5)C10—N1—C21—C20179.7 (3)
C7—C1—C6—C5178.4 (3)Mn1—N1—C21—C202.5 (4)
Mn1—O2—C7—O11.1 (3)C12—C13—C21—N10.3 (5)
Mn1—O2—C7—C1178.2 (3)C14—C13—C21—N1179.3 (3)
Mn1—O1—C7—O21.2 (4)C12—C13—C21—C20179.2 (3)
Mn1—O1—C7—C1178.1 (2)C14—C13—C21—C201.3 (5)
C6—C1—C7—O23.6 (5)N2—C20—C21—N10.0 (4)
C2—C1—C7—O2178.0 (3)C16—C20—C21—N1179.5 (3)
C6—C1—C7—O1177.0 (3)N2—C20—C21—C13179.4 (3)
C2—C1—C7—O11.3 (5)C16—C20—C21—C130.1 (5)
O3i—Mn1—C7—O282.0 (2)
Symmetry codes: (i) x, y+1, z1/2; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1/2; (iv) x+1, y, z+1/2; (v) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Mn(C9H6O4)(C12H8N2)]
Mr413.28
Crystal system, space groupMonoclinic, P2/c
Temperature (K)295
a, b, c (Å)9.2837 (11), 10.3786 (13), 18.824 (2)
β (°) 101.372 (2)
V3)1778.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.19 × 0.10 × 0.07
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.847, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
13275, 3313, 2230
Rint0.056
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.097, 1.02
No. of reflections3313
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.24

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Natural Science Foundation of China (No. 20771054) and Henan Tackle Key Problems of Science and Technology (Nos. 072102270030 and 072102270034 ) and the Foundation of the Education Committee of Henan Province (Nos. 2006150017 and 2008A150018).

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationMa, C.-B., Chen, C.-N., Liu, Q.-T., Liao, D.-Z. & Li, L.-C. (2008). Eur. J. Inorg. Chem. pp. 1865–1870.  Web of Science CSD CrossRef Google Scholar
First citationNie, J.-J., Liu, L.-J., Luo, Y. & Xu, D.-J. (2001). J. Coord. Chem. 53, 365–371.  Web of Science CrossRef CAS Google Scholar
First citationPan, L., Parker, B., Huang, X. Y., Oison, D. H., Lee, J. Y. & Li, J. (2006). J. Am. Chem. Soc. 128, 4180–4181.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, S.-Y., Long, L.-S., Huang, R.-B. & Zheng, L.-S. (2002). Chem. Commun. pp. 472–473.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds