organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Phenyl-2-(piperidin-1-yl)-3,5,6,8-tetra­hydro-4H-thio­pyrano[3′,4′:2,3]thieno[5,4-d]pyrimidin-4-one

aCollege of Chemistry and Chemical Engineering, ShanXi Datong University, Datong, Shanxi 037009, People's Republic of China
*Correspondence e-mail: haixiedt@126.com

(Received 13 November 2008; accepted 19 November 2008; online 26 November 2008)

In the title compound, C20H21N3OS2, the piperidinyl ring has a distorted chair conformation. Weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers. The crystal packing exhibits short inter­molecular S⋯S distances of 3.590 (2) Å.

Related literature

For properties of the compounds containing th thienopyrimidine system, see: Muller et al. (2002[Muller, K., Knauf-Beiter, G., Hermann, D. & Walter, H. (2002). US Patent No. 6 432 965.]); Chambhare et al. (2003[Chambhare, R. V., Khadse, B. G., Bobde, A. S. & Bahekr, R. H. (2003). Eur. J. Med. Chem. 38, 89-100.]). For related crystal structures, see: Hu et al. (2007[Hu, Y.-G., Li, G.-H. & Zhou, M.-H. (2007). Acta Cryst. E63, o1836-o1838.]); Xie et al. (2007[Xie, H., Peng, X. & Hu, Y. (2007). Acta Cryst. E63, o4700.]).

[Scheme 1]

Experimental

Crystal data
  • C20H21N3OS2

  • Mr = 383.52

  • Triclinic, [P \overline 1]

  • a = 9.851 (2) Å

  • b = 10.755 (3) Å

  • c = 10.864 (3) Å

  • α = 117.573 (4)°

  • β = 106.099 (4)°

  • γ = 97.322 (4)°

  • V = 935.0 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 298 (2) K

  • 0.26 × 0.12 × 0.06 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.926, Tmax = 0.982

  • 4908 measured reflections

  • 3203 independent reflections

  • 2739 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.146

  • S = 1.08

  • 3203 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7B⋯O1i 0.97 2.56 3.321 (5) 136
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The derivatives of heterocycles containing the thienopyrimidine system have proved to show significant antifungal, antibacterical, anticonvulsant and angiotensin antagonistic activities(Muller et al.,2002; Chambhare et al.2003). Recently, we have focused on the synthesis of fused heterocyclic systems containing thienopyrimidine via aza-wittig reaction at room temperature. Some X-ray crystal structures of fused pyrimidinone derivatives have been reported (Xie et al., 2007; Hu et al., 2007). The title compound (I) can be used as a new precursor for obtaining of bioactive molecules with fluorescence properties.

In (I) (Fig. 1), the piperidinyl ring has a distored chair conformation. The weak intermolecular C—H···O hydrogen bonds (Table 2) link the molecules into centrosymmetric dimers (Fig. 2). The crystal packing exhibits relatively short intermolecular S···S distances of 3.590 (2) Å (Table 1), which is shorter than the sum of the van der Waals radii of the relevent atoms.

Related literature top

For properties of the compounds containing th thienopyrimidine system, see: Muller et al. (2002); Chambhare et al. (2003). For related crystal structures, see: Hu et al. (2007); Xie et al. (2007).

Experimental top

To a solution of iminophosphorane(2mmol) in anhyd.CH2Cl2(10ml)aromatic isocyanate(2mmol)was added under nitrogen atmosphere at room temperature.After the reaction mixture was left unstirred for 6-12h at 0-5°C,the iminophosphorane had disappeared (TLC monitored).The solvent was removed off under redunced pressure and Et2O/petroleum ether (1:2,20ml) was added to precipitate triphenylphosphine oxide. Removal of the solvent gave carbodiimides,which were used directly without further purification. To a solution of carbodiimides in CH2Cl2(10ml)dialkylamine(2mmol). After the reaction mixture was left unstirred for 4-6h. The solvent was removed and anhyd.EtOH(10ml)with several drops of EtONa in EtOH was added. The mixture was stirred for 6-12h at room temperature. The solution was condensed and residue was recrystallized from EtOH to give the expected title compound in a good yield.

Refinement top

All H atoms were positioned geometrically [C-H=0.93, 0.97 Å] and allowed to ride on their parent atoms , with Uiso(H)=1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A portion of the crystal packing showing hydrogen bonds as dashed lines. H atoms, except for those involved in hydrogen bonds, are not included.
3-Phenyl-2-(piperidin-1-yl)-3,5,6,8-tetrahydro-4H- thiopyrano[3',4':2,3]thieno[5,4-d]pyrimidin-4-one top
Crystal data top
C20H21N3OS2Z = 2
Mr = 383.52F(000) = 404
Triclinic, P1Dx = 1.362 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.851 (2) ÅCell parameters from 2241 reflections
b = 10.755 (3) Åθ = 2.2–27.6°
c = 10.864 (3) ŵ = 0.30 mm1
α = 117.573 (4)°T = 298 K
β = 106.099 (4)°Block, red
γ = 97.322 (4)°0.26 × 0.12 × 0.06 mm
V = 935.0 (4) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3203 independent reflections
Radiation source: fine-focus sealed tube2739 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 0 pixels mm-1θmax = 25.0°, θmin = 2.2°
ϕ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 612
Tmin = 0.926, Tmax = 0.982l = 1212
4908 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0458P)2 + 1.1731P]
where P = (Fo2 + 2Fc2)/3
3203 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C20H21N3OS2γ = 97.322 (4)°
Mr = 383.52V = 935.0 (4) Å3
Triclinic, P1Z = 2
a = 9.851 (2) ÅMo Kα radiation
b = 10.755 (3) ŵ = 0.30 mm1
c = 10.864 (3) ÅT = 298 K
α = 117.573 (4)°0.26 × 0.12 × 0.06 mm
β = 106.099 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3203 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2739 reflections with I > 2σ(I)
Tmin = 0.926, Tmax = 0.982Rint = 0.020
4908 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.08Δρmax = 0.29 e Å3
3203 reflectionsΔρmin = 0.35 e Å3
235 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4581 (3)0.6122 (3)0.2373 (3)0.0512 (6)
S10.01324 (10)0.73341 (11)0.03936 (9)0.0504 (3)
S20.11865 (11)0.48110 (13)0.35508 (10)0.0600 (3)
N10.1593 (3)0.8366 (3)0.3342 (3)0.0427 (6)
N20.3694 (3)0.7625 (3)0.4072 (3)0.0365 (6)
N30.2786 (3)0.9126 (3)0.5845 (3)0.0425 (6)
C10.2676 (3)0.8387 (3)0.4386 (3)0.0376 (7)
C20.3656 (3)0.6767 (3)0.2579 (3)0.0355 (7)
C30.2474 (3)0.6762 (3)0.1466 (3)0.0365 (7)
C40.1518 (3)0.7530 (3)0.1913 (3)0.0392 (7)
C50.2090 (3)0.5983 (3)0.0135 (3)0.0383 (7)
C60.2920 (4)0.5025 (4)0.0928 (4)0.0468 (8)
H6A0.32310.44830.04490.056*
H6B0.38030.56430.08240.056*
C70.2004 (4)0.3946 (4)0.2580 (4)0.0543 (9)
H7A0.12230.32160.26820.065*
H7B0.26290.34400.30530.065*
C80.0051 (4)0.5529 (4)0.2501 (4)0.0485 (8)
H8A0.02630.62720.26770.058*
H8B0.08300.47410.28620.058*
C90.0850 (3)0.6190 (4)0.0851 (3)0.0417 (7)
C100.1465 (4)0.9449 (5)0.6117 (4)0.0597 (10)
H10A0.05840.86700.53010.072*
H10B0.14041.03640.61680.072*
C110.1558 (5)0.9573 (5)0.7584 (5)0.0766 (13)
H11A0.07090.98370.77970.092*
H11B0.15190.86240.74850.092*
C120.2958 (5)1.0705 (5)0.8881 (4)0.0795 (14)
H12A0.30211.06750.97740.095*
H12B0.29311.16790.90860.095*
C130.4306 (5)1.0415 (5)0.8524 (4)0.0651 (11)
H13A0.51851.12130.93170.078*
H13B0.44200.95120.84750.078*
C140.4149 (4)1.0284 (4)0.7049 (4)0.0490 (8)
H14A0.41211.12150.71270.059*
H14B0.49981.00540.68120.059*
C150.4696 (3)0.7434 (3)0.5194 (3)0.0385 (7)
C160.4120 (4)0.6656 (4)0.5735 (4)0.0446 (8)
H16A0.31000.62870.54160.053*
C170.5068 (5)0.6429 (4)0.6754 (4)0.0562 (10)
H17A0.46840.59060.71270.067*
C180.6570 (5)0.6964 (5)0.7224 (4)0.0635 (11)
H18A0.72020.67930.79040.076*
C190.7144 (4)0.7753 (5)0.6691 (4)0.0643 (11)
H19A0.81650.81270.70210.077*
C200.6205 (4)0.7991 (4)0.5661 (4)0.0515 (9)
H20A0.65880.85190.52910.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0471 (14)0.0719 (16)0.0425 (13)0.0345 (13)0.0203 (11)0.0300 (12)
S10.0461 (5)0.0677 (6)0.0376 (5)0.0310 (4)0.0126 (4)0.0261 (4)
S20.0618 (6)0.0872 (8)0.0411 (5)0.0310 (5)0.0237 (4)0.0367 (5)
N10.0430 (15)0.0485 (16)0.0358 (14)0.0220 (13)0.0143 (12)0.0199 (13)
N20.0329 (13)0.0464 (15)0.0336 (13)0.0116 (12)0.0110 (11)0.0244 (12)
N30.0432 (15)0.0450 (16)0.0313 (13)0.0145 (13)0.0140 (12)0.0137 (12)
C10.0368 (16)0.0380 (17)0.0366 (16)0.0102 (14)0.0130 (13)0.0193 (14)
C20.0355 (16)0.0433 (17)0.0346 (16)0.0123 (14)0.0131 (13)0.0256 (14)
C30.0319 (16)0.0394 (17)0.0366 (16)0.0078 (13)0.0124 (13)0.0196 (14)
C40.0403 (17)0.0434 (18)0.0362 (16)0.0170 (15)0.0115 (14)0.0233 (14)
C50.0342 (16)0.0437 (18)0.0369 (16)0.0110 (14)0.0121 (13)0.0219 (14)
C60.0426 (18)0.056 (2)0.0397 (18)0.0184 (16)0.0161 (15)0.0229 (16)
C70.052 (2)0.065 (2)0.0411 (19)0.0272 (19)0.0196 (16)0.0212 (18)
C80.0454 (19)0.064 (2)0.0355 (17)0.0203 (17)0.0105 (15)0.0270 (17)
C90.0394 (17)0.0490 (19)0.0356 (17)0.0146 (15)0.0129 (14)0.0217 (15)
C100.050 (2)0.063 (2)0.049 (2)0.0232 (19)0.0186 (17)0.0146 (18)
C110.084 (3)0.083 (3)0.061 (3)0.025 (3)0.048 (2)0.026 (2)
C120.101 (4)0.087 (3)0.040 (2)0.035 (3)0.031 (2)0.021 (2)
C130.073 (3)0.064 (3)0.0358 (19)0.020 (2)0.0086 (18)0.0164 (18)
C140.052 (2)0.0406 (19)0.0397 (18)0.0122 (16)0.0104 (16)0.0147 (15)
C150.0372 (17)0.0429 (18)0.0314 (15)0.0153 (14)0.0097 (13)0.0176 (14)
C160.0477 (19)0.0467 (19)0.0401 (18)0.0159 (16)0.0159 (15)0.0234 (16)
C170.078 (3)0.064 (2)0.044 (2)0.037 (2)0.0265 (19)0.0366 (19)
C180.072 (3)0.084 (3)0.041 (2)0.047 (2)0.0161 (19)0.034 (2)
C190.038 (2)0.085 (3)0.056 (2)0.021 (2)0.0055 (17)0.033 (2)
C200.0413 (19)0.065 (2)0.048 (2)0.0136 (17)0.0137 (16)0.0320 (18)
Geometric parameters (Å, º) top
O1—C21.221 (4)C10—C111.512 (6)
S1—C41.729 (3)C10—H10A0.9700
S1—C91.748 (3)C10—H10B0.9700
S2—C71.804 (4)C11—C121.508 (6)
S2—C81.806 (3)C11—H11A0.9700
N1—C11.313 (4)C11—H11B0.9700
N1—C41.361 (4)C12—C131.514 (6)
N2—C11.390 (4)C12—H12A0.9700
N2—C21.433 (4)C12—H12B0.9700
N2—C151.456 (4)C13—C141.503 (5)
N3—C11.369 (4)C13—H13A0.9700
N3—C101.462 (4)C13—H13B0.9700
N3—C141.468 (4)C14—H14A0.9700
C2—C31.426 (4)C14—H14B0.9700
C3—C41.372 (4)C15—C161.374 (5)
C3—C51.440 (4)C15—C201.379 (5)
C5—C91.360 (4)C16—C171.375 (5)
C5—C61.502 (4)C16—H16A0.9300
C6—C71.513 (5)C17—C181.369 (6)
C6—H6A0.9700C17—H17A0.9300
C6—H6B0.9700C18—C191.375 (6)
C7—H7A0.9700C18—H18A0.9300
C7—H7B0.9700C19—C201.388 (5)
C8—C91.495 (4)C19—H19A0.9300
C8—H8A0.9700C20—H20A0.9300
C8—H8B0.9700
S2···S2i3.590 (2)
C4—S1—C991.31 (15)C11—C10—H10A109.9
C7—S2—C897.82 (16)N3—C10—H10B109.9
C1—N1—C4115.4 (3)C11—C10—H10B109.9
C1—N2—C2122.6 (2)H10A—C10—H10B108.3
C1—N2—C15121.4 (2)C12—C11—C10112.3 (4)
C2—N2—C15115.1 (2)C12—C11—H11A109.1
C1—N3—C10117.7 (3)C10—C11—H11A109.1
C1—N3—C14120.9 (3)C12—C11—H11B109.1
C10—N3—C14111.8 (3)C10—C11—H11B109.1
N1—C1—N3119.5 (3)H11A—C11—H11B107.9
N1—C1—N2122.9 (3)C11—C12—C13110.6 (3)
N3—C1—N2117.5 (3)C11—C12—H12A109.5
O1—C2—C3126.9 (3)C13—C12—H12A109.5
O1—C2—N2119.6 (3)C11—C12—H12B109.5
C3—C2—N2113.5 (3)C13—C12—H12B109.5
C4—C3—C2118.4 (3)H12A—C12—H12B108.1
C4—C3—C5113.6 (3)C14—C13—C12110.4 (3)
C2—C3—C5127.9 (3)C14—C13—H13A109.6
N1—C4—C3127.1 (3)C12—C13—H13A109.6
N1—C4—S1121.6 (2)C14—C13—H13B109.6
C3—C4—S1111.2 (2)C12—C13—H13B109.6
C9—C5—C3111.4 (3)H13A—C13—H13B108.1
C9—C5—C6123.9 (3)N3—C14—C13110.4 (3)
C3—C5—C6124.7 (3)N3—C14—H14A109.6
C5—C6—C7112.8 (3)C13—C14—H14A109.6
C5—C6—H6A109.0N3—C14—H14B109.6
C7—C6—H6A109.0C13—C14—H14B109.6
C5—C6—H6B109.0H14A—C14—H14B108.1
C7—C6—H6B109.0C16—C15—C20121.0 (3)
H6A—C6—H6B107.8C16—C15—N2119.3 (3)
C6—C7—S2113.1 (3)C20—C15—N2119.7 (3)
C6—C7—H7A109.0C15—C16—C17119.3 (3)
S2—C7—H7A109.0C15—C16—H16A120.4
C6—C7—H7B109.0C17—C16—H16A120.4
S2—C7—H7B109.0C18—C17—C16120.7 (4)
H7A—C7—H7B107.8C18—C17—H17A119.6
C9—C8—S2112.4 (2)C16—C17—H17A119.6
C9—C8—H8A109.1C17—C18—C19119.9 (3)
S2—C8—H8A109.1C17—C18—H18A120.1
C9—C8—H8B109.1C19—C18—H18A120.1
S2—C8—H8B109.1C18—C19—C20120.2 (4)
H8A—C8—H8B107.9C18—C19—H19A119.9
C5—C9—C8128.4 (3)C20—C19—H19A119.9
C5—C9—S1112.4 (2)C15—C20—C19118.9 (4)
C8—C9—S1119.1 (2)C15—C20—H20A120.5
N3—C10—C11108.7 (3)C19—C20—H20A120.5
N3—C10—H10A109.9
C4—N1—C1—N3176.1 (3)C5—C6—C7—S252.2 (4)
C4—N1—C1—N20.6 (5)C8—S2—C7—C661.9 (3)
C10—N3—C1—N119.5 (5)C7—S2—C8—C942.6 (3)
C14—N3—C1—N1124.1 (3)C3—C5—C9—C8177.1 (3)
C10—N3—C1—N2157.4 (3)C6—C5—C9—C81.1 (6)
C14—N3—C1—N259.1 (4)C3—C5—C9—S10.3 (4)
C2—N2—C1—N10.9 (5)C6—C5—C9—S1178.6 (3)
C15—N2—C1—N1167.9 (3)S2—C8—C9—C518.4 (5)
C2—N2—C1—N3177.6 (3)S2—C8—C9—S1164.27 (19)
C15—N2—C1—N38.9 (4)C4—S1—C9—C50.5 (3)
C1—N2—C2—O1179.9 (3)C4—S1—C9—C8177.2 (3)
C15—N2—C2—O110.6 (4)C1—N3—C10—C11153.3 (3)
C1—N2—C2—C30.7 (4)C14—N3—C10—C1160.0 (4)
C15—N2—C2—C3168.7 (3)N3—C10—C11—C1256.0 (5)
O1—C2—C3—C4178.4 (3)C10—C11—C12—C1353.2 (5)
N2—C2—C3—C40.9 (4)C11—C12—C13—C1452.7 (5)
O1—C2—C3—C51.4 (5)C1—N3—C14—C13153.0 (3)
N2—C2—C3—C5177.9 (3)C10—N3—C14—C1361.5 (4)
C1—N1—C4—C32.5 (5)C12—C13—C14—N356.6 (4)
C1—N1—C4—S1178.2 (2)C1—N2—C15—C1662.8 (4)
C2—C3—C4—N12.7 (5)C2—N2—C15—C16106.7 (3)
C5—C3—C4—N1179.9 (3)C1—N2—C15—C20119.3 (3)
C2—C3—C4—S1177.9 (2)C2—N2—C15—C2071.1 (4)
C5—C3—C4—S10.5 (4)C20—C15—C16—C170.2 (5)
C9—S1—C4—N1180.0 (3)N2—C15—C16—C17177.6 (3)
C9—S1—C4—C30.6 (3)C15—C16—C17—C180.3 (5)
C4—C3—C5—C90.1 (4)C16—C17—C18—C190.8 (6)
C2—C3—C5—C9177.2 (3)C17—C18—C19—C200.9 (6)
C4—C3—C5—C6178.2 (3)C16—C15—C20—C190.1 (5)
C2—C3—C5—C61.1 (5)N2—C15—C20—C19177.7 (3)
C9—C5—C6—C718.4 (5)C18—C19—C20—C150.4 (6)
C3—C5—C6—C7159.7 (3)
Symmetry code: (i) x, y+1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···O1ii0.972.563.321 (5)136
Symmetry code: (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H21N3OS2
Mr383.52
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.851 (2), 10.755 (3), 10.864 (3)
α, β, γ (°)117.573 (4), 106.099 (4), 97.322 (4)
V3)935.0 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.26 × 0.12 × 0.06
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.926, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
4908, 3203, 2739
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.146, 1.08
No. of reflections3203
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.35

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···O1i0.972.563.321 (5)136
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

We gratefully acknowledge financial support of this work by a key grant (No. 2008K1) from the Shanxi Datong University Foundation of Shanxi Province.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChambhare, R. V., Khadse, B. G., Bobde, A. S. & Bahekr, R. H. (2003). Eur. J. Med. Chem. 38, 89–100.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHu, Y.-G., Li, G.-H. & Zhou, M.-H. (2007). Acta Cryst. E63, o1836–o1838.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMuller, K., Knauf-Beiter, G., Hermann, D. & Walter, H. (2002). US Patent No. 6 432 965.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, H., Peng, X. & Hu, Y. (2007). Acta Cryst. E63, o4700.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds