organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-Ethyl 2-(3-nitro­benzyl­­idene)-3-oxo­butanoate

aDepartment of Chemistry and Biology, Xiangfan University, Xiangfan 441053, People's Republic of China
*Correspondence e-mail: chemch@163.com

(Received 20 November 2008; accepted 21 November 2008; online 26 November 2008)

The title mol­ecule, C13H13NO5, adopts a Z conformation at the C= C double bond. The eth­oxy atoms of the ethyl ester group are disordered over two orientations in a 3:2 ratio. Weak inter­molecular C—H⋯O hydrogen bonds help to establish the packing.

Related literature

For applications of β-keto ester derivatives, see: Benetti et al. (1995[Benetti, S., Romagnoli, R., Risi, C. D., Spalluto, G. & Zanirato, V. (1995). Chem. Rev. 95, 1065-1114.]); Simon et al. (2004[Simon, C., Constantieux, T. & Rodriguez, J. (2004). Eur. J. Org. Chem. pp. 4957-4980.]). For the preparation of the title compound, see Correa & Scott (2001[Correa, W. H. & Scott, J. L. (2001). Green Chem. 3, 296-301.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13NO5

  • Mr = 263.24

  • Monoclinic, C 2/c

  • a = 27.6055 (6) Å

  • b = 11.8164 (2) Å

  • c = 8.2934 (1) Å

  • β = 102.829 (2)°

  • V = 2637.75 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 (2) K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.980, Tmax = 0.990

  • 13516 measured reflections

  • 2593 independent reflections

  • 1793 reflections with I > 2σ(I)

  • Rint = 0.138

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.158

  • S = 0.97

  • 2593 reflections

  • 194 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.93 2.57 3.414 (3) 152
C6—H6⋯O3ii 0.93 2.49 3.381 (2) 161
C10—H10C⋯O4iii 0.96 2.44 3.350 (3) 159
Symmetry codes: (i) -x, -y+1, -z-1; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

β-Keto ester derivatives, as important synthetic intermediates, are widely applied in the synthesis of new heterocyclic derivatives presenting new pharmacological properties (Benetti et al., 1995; Simon et al., 2004).

The molecular structure of the title compound is shown in Fig. 1. It adopts a Z-conformation at the carbon-carbon double bond. The EtO atoms of the ethyl ester group are disordered over two orientations with a ratio 3:2. The molecules are connected mainly by intermolecular C—H···O interactions (Table 1).

Related literature top

For applications of β-keto ester derivatives, see: Benetti et al. (1995); Simon et al. (2004). For the preparation of the title compound, see Correa & Scott (2001).

Experimental top

The title compound was synthesized as previously described by Correa & Scott (2001) via Knoevenagel reaction. Colourless crystals suitable for X-ray data collection were obtained by slow evaporation of a 2:5 ratio CH2Cl2:cyclohexane solution at room temperture.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding, allowing for free rotation of the methyl groups. The constraint Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) (methyl C) was applied.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title molecule showing the atom-labelling scheme. The displacement ellipsoids are drawn at the 30% probability level. Only major parts of disordered atoms are shown.
(Z)-Ethyl 2-(3-nitrobenzylidene)-3-oxobutanoate top
Crystal data top
C13H13NO5F(000) = 1104
Mr = 263.24Dx = 1.326 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4029 reflections
a = 27.6055 (6) Åθ = 2.9–22.6°
b = 11.8164 (2) ŵ = 0.10 mm1
c = 8.2934 (1) ÅT = 298 K
β = 102.829 (2)°Block, colourless
V = 2637.75 (8) Å30.20 × 0.10 × 0.10 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
2593 independent reflections
Radiation source: fine-focus sealed tube1793 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.138
ϕ and ω scansθmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 3430
Tmin = 0.980, Tmax = 0.990k = 1414
13516 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0987P)2]
where P = (Fo2 + 2Fc2)/3
2593 reflections(Δ/σ)max < 0.001
194 parametersΔρmax = 0.20 e Å3
6 restraintsΔρmin = 0.27 e Å3
Crystal data top
C13H13NO5V = 2637.75 (8) Å3
Mr = 263.24Z = 8
Monoclinic, C2/cMo Kα radiation
a = 27.6055 (6) ŵ = 0.10 mm1
b = 11.8164 (2) ÅT = 298 K
c = 8.2934 (1) Å0.20 × 0.10 × 0.10 mm
β = 102.829 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2593 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
1793 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.990Rint = 0.138
13516 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0596 restraints
wR(F2) = 0.158H-atom parameters constrained
S = 0.97Δρmax = 0.20 e Å3
2593 reflectionsΔρmin = 0.27 e Å3
194 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.15219 (6)0.41046 (14)0.0533 (2)0.0538 (4)
C20.11986 (7)0.33560 (15)0.1504 (2)0.0614 (5)
H20.12560.25810.14070.074*
C30.07915 (7)0.37643 (16)0.2614 (2)0.0628 (5)
C40.06861 (7)0.49032 (17)0.2811 (2)0.0680 (5)
H40.04040.51580.35550.082*
C50.10111 (8)0.56415 (16)0.1875 (3)0.0712 (6)
H50.09520.64150.19920.085*
C60.14224 (7)0.52611 (15)0.0766 (2)0.0633 (5)
H60.16410.57830.01540.076*
C70.19594 (6)0.37627 (15)0.0721 (2)0.0560 (5)
H70.22010.43190.10280.067*
C80.20630 (6)0.27679 (14)0.1490 (2)0.0527 (4)
C90.25275 (7)0.25541 (17)0.2757 (2)0.0606 (5)
C100.28732 (8)0.3502 (2)0.3368 (3)0.0772 (6)
H10A0.31550.32190.41590.116*
H10B0.27050.40600.38840.116*
H10C0.29820.38380.24560.116*
C110.17337 (7)0.17457 (15)0.1156 (2)0.0560 (5)
C120.1062 (3)0.0766 (7)0.1660 (8)0.080 (2)0.59
H12A0.12220.00660.20950.095*0.59
H12B0.09510.06980.04690.095*0.59
C130.0635 (2)0.1021 (5)0.2428 (10)0.116 (2)0.59
H13A0.07550.11360.35950.174*0.59
H13B0.04060.03990.22450.174*0.59
H13C0.04700.16940.19390.174*0.59
C13'0.0614 (2)0.1029 (7)0.1166 (11)0.104 (2)0.41
H13D0.04680.16980.15140.156*0.41
H13E0.03930.03990.11580.156*0.41
H13F0.06680.11420.00740.156*0.41
C12'0.1100 (3)0.0790 (8)0.2341 (10)0.067 (2)0.41
H12C0.10610.07580.34730.081*0.41
H12D0.12410.00820.20710.081*0.41
N10.04577 (8)0.29598 (17)0.3646 (2)0.0920 (6)
O10.05676 (9)0.19660 (18)0.3537 (3)0.1630 (11)
O20.00831 (7)0.33048 (16)0.4573 (2)0.1147 (7)
O30.26098 (5)0.15976 (13)0.32832 (18)0.0838 (5)
O40.17660 (6)0.10267 (12)0.01722 (17)0.0800 (5)
O50.14066 (5)0.17397 (11)0.20985 (18)0.0728 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0544 (10)0.0450 (9)0.0619 (10)0.0003 (7)0.0128 (8)0.0058 (7)
C20.0653 (12)0.0393 (9)0.0735 (11)0.0063 (8)0.0024 (9)0.0045 (8)
C30.0621 (11)0.0530 (11)0.0668 (10)0.0034 (9)0.0007 (9)0.0049 (8)
C40.0647 (12)0.0584 (12)0.0762 (12)0.0116 (9)0.0056 (10)0.0173 (9)
C50.0826 (14)0.0425 (10)0.0851 (13)0.0066 (9)0.0114 (11)0.0132 (9)
C60.0693 (12)0.0425 (10)0.0757 (11)0.0043 (9)0.0112 (10)0.0082 (8)
C70.0508 (10)0.0484 (10)0.0657 (10)0.0028 (7)0.0067 (8)0.0023 (8)
C80.0510 (9)0.0478 (9)0.0574 (9)0.0034 (7)0.0081 (7)0.0014 (7)
C90.0547 (10)0.0651 (13)0.0608 (10)0.0036 (9)0.0103 (8)0.0054 (9)
C100.0618 (12)0.0905 (16)0.0716 (12)0.0141 (11)0.0020 (10)0.0072 (11)
C110.0587 (11)0.0434 (10)0.0609 (10)0.0077 (7)0.0027 (8)0.0047 (8)
C120.079 (4)0.064 (3)0.098 (5)0.026 (2)0.023 (4)0.008 (3)
C130.076 (3)0.080 (3)0.200 (6)0.016 (3)0.048 (4)0.004 (5)
C13'0.063 (4)0.069 (4)0.167 (7)0.001 (3)0.003 (5)0.006 (6)
C12'0.075 (5)0.052 (3)0.075 (5)0.002 (3)0.017 (4)0.010 (4)
N10.0897 (14)0.0633 (12)0.1012 (14)0.0036 (10)0.0255 (11)0.0002 (10)
O10.167 (2)0.0637 (13)0.196 (2)0.0117 (12)0.0941 (17)0.0253 (12)
O20.0937 (12)0.0909 (12)0.1271 (14)0.0037 (10)0.0454 (11)0.0030 (10)
O30.0748 (10)0.0686 (10)0.0951 (10)0.0104 (7)0.0090 (8)0.0172 (8)
O40.1037 (12)0.0516 (8)0.0834 (9)0.0019 (7)0.0182 (8)0.0095 (7)
O50.0674 (9)0.0496 (8)0.1055 (10)0.0087 (6)0.0277 (8)0.0052 (7)
Geometric parameters (Å, º) top
C1—C21.382 (2)C10—H10C0.9600
C1—C61.399 (2)C11—O41.195 (2)
C1—C71.465 (2)C11—O51.319 (2)
C2—C31.372 (3)C12—O51.486 (6)
C2—H20.9300C12—C131.487 (7)
C3—C41.379 (3)C12—H12A0.9700
C3—N11.461 (3)C12—H12B0.9700
C4—C51.364 (3)C13—H13A0.9600
C4—H40.9300C13—H13B0.9600
C5—C61.369 (3)C13—H13C0.9600
C5—H50.9300C13'—C12'1.500 (8)
C6—H60.9300C13'—H13D0.9600
C7—C81.338 (2)C13'—H13E0.9600
C7—H70.9300C13'—H13F0.9600
C8—C91.488 (3)C12'—O51.446 (8)
C8—C111.500 (2)C12'—H12C0.9700
C9—O31.215 (2)C12'—H12D0.9700
C9—C101.485 (3)N1—O11.211 (3)
C10—H10A0.9600N1—O21.213 (2)
C10—H10B0.9600
C2—C1—C6117.59 (17)C9—C10—H10C109.5
C2—C1—C7124.16 (16)H10A—C10—H10C109.5
C6—C1—C7118.25 (16)H10B—C10—H10C109.5
C3—C2—C1119.53 (16)O4—C11—O5124.43 (17)
C3—C2—H2120.2O4—C11—C8124.37 (17)
C1—C2—H2120.2O5—C11—C8111.19 (14)
C2—C3—C4122.85 (18)O5—C12—C13105.2 (5)
C2—C3—N1118.70 (17)O5—C12—H12A110.7
C4—C3—N1118.44 (17)C13—C12—H12A110.7
C5—C4—C3117.52 (17)O5—C12—H12B110.7
C5—C4—H4121.2C13—C12—H12B110.7
C3—C4—H4121.2H12A—C12—H12B108.8
C4—C5—C6121.01 (18)C12'—C13'—H13D109.5
C4—C5—H5119.5C12'—C13'—H13E109.5
C6—C5—H5119.5H13D—C13'—H13E109.5
C5—C6—C1121.46 (18)C12'—C13'—H13F109.5
C5—C6—H6119.3H13D—C13'—H13F109.5
C1—C6—H6119.3H13E—C13'—H13F109.5
C8—C7—C1129.51 (17)O5—C12'—C13'103.4 (6)
C8—C7—H7115.2O5—C12'—H12C111.1
C1—C7—H7115.2C13'—C12'—H12C111.1
C7—C8—C9123.05 (17)O5—C12'—H12D111.1
C7—C8—C11124.25 (16)C13'—C12'—H12D111.1
C9—C8—C11112.68 (15)H12C—C12'—H12D109.1
O3—C9—C10121.61 (18)O1—N1—O2122.5 (2)
O3—C9—C8118.35 (17)O1—N1—C3118.14 (19)
C10—C9—C8120.03 (17)O2—N1—C3119.4 (2)
C9—C10—H10A109.5C11—O5—C12'125.8 (4)
C9—C10—H10B109.5C11—O5—C12110.2 (3)
H10A—C10—H10B109.5
C6—C1—C2—C31.6 (3)C11—C8—C9—C10173.76 (16)
C7—C1—C2—C3178.23 (17)C7—C8—C11—O491.9 (2)
C1—C2—C3—C40.1 (3)C9—C8—C11—O487.0 (2)
C1—C2—C3—N1179.14 (17)C7—C8—C11—O588.6 (2)
C2—C3—C4—C51.4 (3)C9—C8—C11—O592.48 (17)
N1—C3—C4—C5177.85 (18)C2—C3—N1—O13.5 (3)
C3—C4—C5—C60.9 (3)C4—C3—N1—O1175.8 (2)
C4—C5—C6—C10.9 (3)C2—C3—N1—O2176.3 (2)
C2—C1—C6—C52.1 (3)C4—C3—N1—O24.4 (3)
C7—C1—C6—C5177.72 (17)O4—C11—O5—C12'12.4 (5)
C2—C1—C7—C820.0 (3)C8—C11—O5—C12'167.1 (4)
C6—C1—C7—C8159.84 (18)O4—C11—O5—C124.6 (4)
C1—C7—C8—C9179.60 (16)C8—C11—O5—C12175.9 (4)
C1—C7—C8—C111.6 (3)C13'—C12'—O5—C1198.1 (7)
C7—C8—C9—O3173.65 (17)C13'—C12'—O5—C1249.8 (16)
C11—C8—C9—O35.3 (2)C13—C12—O5—C11164.4 (4)
C7—C8—C9—C107.3 (3)C13—C12—O5—C12'55.7 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.573.414 (3)152
C6—H6···O3ii0.932.493.381 (2)161
C10—H10C···O4iii0.962.443.350 (3)159
Symmetry codes: (i) x, y+1, z1; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC13H13NO5
Mr263.24
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)27.6055 (6), 11.8164 (2), 8.2934 (1)
β (°) 102.829 (2)
V3)2637.75 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.980, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
13516, 2593, 1793
Rint0.138
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.158, 0.97
No. of reflections2593
No. of parameters194
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.27

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.573.414 (3)151.6
C6—H6···O3ii0.932.493.381 (2)160.9
C10—H10C···O4iii0.962.443.350 (3)159.1
Symmetry codes: (i) x, y+1, z1; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z.
 

Acknowledgements

The author is grateful to Hua Cheng for helpful discussions.

References

First citationBenetti, S., Romagnoli, R., Risi, C. D., Spalluto, G. & Zanirato, V. (1995). Chem. Rev. 95, 1065–1114.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCorrea, W. H. & Scott, J. L. (2001). Green Chem. 3, 296–301.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSimon, C., Constantieux, T. & Rodriguez, J. (2004). Eur. J. Org. Chem. pp. 4957–4980.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds