metal-organic compounds
{6,6′-Diethoxy-2,2′-[ethylenebis(nitrilomethylidyne)]diphenolato}nickel(II) monohydrate
aCollege of Chemistry & Chemical Engineering, Shanxi Datong University, Shanxi 037009, People's Republic of China
*Correspondence e-mail: xhtgao@126.com
In the title compound, [Ni(C20H22N2O4)]·H2O, the NiII ion and the water molecule are located on a twofold rotation axis. The Ni ion is coordinated by two N [Ni—N = 1.8462 (18) Å] and two O [Ni—O = 1.8645 (14) Å] atoms in a distorted square-planar geometry. The water molecule and the Ni complex molecule are paired via O—H⋯O hydrogen bonds.
Related literature
For details of the synthesis, see Mohanta et al. (2002). For a related see Yu (2006). For general background, see: Ghosh et al. (2006); Samanta et al. (2007); Singh et al. (2007); Yu et al. (2007).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2004); cell SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).
Supporting information
10.1107/S1600536808039822/cv2487sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808039822/cv2487Isup2.hkl
The Schiff base ligand H2L (H2L= N,N'-ethylenebis(3-ethoxysalicylaldimine)) was prepared according to the reported method (Mohanta, et al., 2002). The synthesis of the title complex was carried out by reacting Ni(CH3COO)2.4H2O, and H2L with the molar ratio 1:1 in methanol. After the stirring process was continued for about 30 min at room temperature, the mixture was filtered and the filtrate was allowed to partial evaporate in air for sevral days to produce crystals suitable for X-ray diffraction.
C-bound H atoms were placed in calculated positions, with C—H distances of 0.93 and 0.97 Å, respectively. Atom H3A was located on a difference Fourier map, but placed in idealized position with O—H = 0.82 Å. All H atoms were refined in riding model approximation, with Uiso(H) = 1.2Ueq(C, O).
Data collection: APEX2 (Bruker, 2004); cell
SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Ni(C20H22N2O4)]·H2O | F(000) = 904 |
Mr = 431.12 | Dx = 1.499 Mg m−3 |
Orthorhombic, Pbcn | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -p 2n 2ab | Cell parameters from 2990 reflections |
a = 12.8401 (8) Å | θ = 3.2–26.5° |
b = 19.6133 (12) Å | µ = 1.05 mm−1 |
c = 7.5853 (5) Å | T = 273 K |
V = 1910.3 (2) Å3 | Block, red-brown |
Z = 4 | 0.15 × 0.13 × 0.11 mm |
Bruker APEXII CCD area-detector diffractometer | 1676 independent reflections |
Radiation source: fine-focus sealed tube | 1381 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
ϕ and ω scans | θmax = 25.0°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −15→14 |
Tmin = 0.858, Tmax = 0.893 | k = −16→23 |
8741 measured reflections | l = −8→8 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.072 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0307P)2 + 0.9816P] where P = (Fo2 + 2Fc2)/3 |
1676 reflections | (Δ/σ)max < 0.001 |
129 parameters | Δρmax = 0.33 e Å−3 |
1 restraint | Δρmin = −0.41 e Å−3 |
[Ni(C20H22N2O4)]·H2O | V = 1910.3 (2) Å3 |
Mr = 431.12 | Z = 4 |
Orthorhombic, Pbcn | Mo Kα radiation |
a = 12.8401 (8) Å | µ = 1.05 mm−1 |
b = 19.6133 (12) Å | T = 273 K |
c = 7.5853 (5) Å | 0.15 × 0.13 × 0.11 mm |
Bruker APEXII CCD area-detector diffractometer | 1676 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 1381 reflections with I > 2σ(I) |
Tmin = 0.858, Tmax = 0.893 | Rint = 0.025 |
8741 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 1 restraint |
wR(F2) = 0.072 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.33 e Å−3 |
1676 reflections | Δρmin = −0.41 e Å−3 |
129 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.5000 | 0.023585 (17) | 0.2500 | 0.03740 (14) | |
O1 | 0.41162 (10) | 0.09308 (7) | 0.17417 (19) | 0.0406 (3) | |
O2 | 0.32670 (11) | 0.20336 (7) | 0.03750 (19) | 0.0454 (4) | |
O3 | 0.5000 | 0.23474 (14) | 0.2500 | 0.1240 (15) | |
H3A | 0.4599 | 0.2100 | 0.1962 | 0.149* | |
N1 | 0.58936 (15) | −0.04538 (8) | 0.3175 (2) | 0.0457 (5) | |
C1 | 0.54450 (19) | −0.11475 (10) | 0.3139 (3) | 0.0565 (6) | |
H1A | 0.5201 | −0.1274 | 0.4305 | 0.068* | |
H1B | 0.5969 | −0.1474 | 0.2773 | 0.068* | |
C2 | 0.6841 (2) | −0.03851 (12) | 0.3700 (3) | 0.0546 (6) | |
H2 | 0.7227 | −0.0782 | 0.3842 | 0.066* | |
C3 | 0.31834 (15) | 0.08654 (10) | 0.1050 (3) | 0.0398 (5) | |
C4 | 0.26463 (18) | 0.02419 (11) | 0.0914 (3) | 0.0495 (6) | |
C5 | 0.1623 (2) | 0.02214 (15) | 0.0224 (4) | 0.0684 (8) | |
H5 | 0.1269 | −0.0192 | 0.0171 | 0.082* | |
C6 | 0.1152 (2) | 0.07964 (15) | −0.0361 (4) | 0.0709 (8) | |
H6 | 0.0474 | 0.0777 | −0.0789 | 0.085* | |
C7 | 0.16808 (17) | 0.14183 (13) | −0.0323 (3) | 0.0550 (6) | |
H7 | 0.1361 | 0.1811 | −0.0748 | 0.066* | |
C8 | 0.26779 (16) | 0.14498 (11) | 0.0345 (3) | 0.0427 (5) | |
C9 | 0.28968 (19) | 0.26143 (11) | −0.0578 (3) | 0.0535 (6) | |
H9A | 0.2273 | 0.2793 | −0.0024 | 0.064* | |
H9B | 0.2727 | 0.2486 | −0.1780 | 0.064* | |
C10 | 0.3732 (2) | 0.31410 (12) | −0.0576 (4) | 0.0677 (7) | |
H10A | 0.3886 | 0.3270 | 0.0616 | 0.102* | |
H10B | 0.3500 | 0.3534 | −0.1223 | 0.102* | |
H10C | 0.4347 | 0.2959 | −0.1120 | 0.102* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0425 (2) | 0.0303 (2) | 0.0394 (2) | 0.000 | 0.01083 (17) | 0.000 |
O1 | 0.0376 (8) | 0.0359 (7) | 0.0481 (8) | −0.0025 (6) | 0.0007 (7) | −0.0011 (6) |
O2 | 0.0452 (8) | 0.0416 (8) | 0.0493 (9) | 0.0033 (7) | −0.0080 (7) | 0.0010 (7) |
O3 | 0.132 (3) | 0.0510 (17) | 0.189 (4) | 0.000 | −0.113 (3) | 0.000 |
N1 | 0.0557 (12) | 0.0352 (9) | 0.0464 (10) | 0.0072 (9) | 0.0186 (9) | 0.0028 (8) |
C1 | 0.0755 (17) | 0.0324 (11) | 0.0617 (16) | 0.0066 (11) | 0.0279 (12) | 0.0043 (10) |
C2 | 0.0599 (16) | 0.0458 (14) | 0.0581 (15) | 0.0219 (12) | 0.0157 (12) | 0.0051 (11) |
C3 | 0.0369 (11) | 0.0475 (12) | 0.0350 (11) | −0.0042 (9) | 0.0075 (9) | −0.0053 (9) |
C4 | 0.0469 (13) | 0.0523 (13) | 0.0492 (13) | −0.0144 (11) | 0.0076 (11) | −0.0052 (11) |
C5 | 0.0511 (15) | 0.0715 (18) | 0.082 (2) | −0.0239 (13) | 0.0014 (14) | −0.0063 (15) |
C6 | 0.0411 (14) | 0.092 (2) | 0.0792 (19) | −0.0118 (14) | −0.0080 (13) | −0.0123 (17) |
C7 | 0.0427 (13) | 0.0687 (16) | 0.0538 (14) | 0.0038 (12) | −0.0028 (11) | −0.0060 (12) |
C8 | 0.0392 (12) | 0.0522 (13) | 0.0367 (11) | −0.0006 (10) | 0.0034 (9) | −0.0073 (10) |
C9 | 0.0616 (15) | 0.0533 (14) | 0.0455 (13) | 0.0159 (12) | −0.0076 (11) | −0.0005 (11) |
C10 | 0.0848 (19) | 0.0510 (14) | 0.0673 (17) | 0.0039 (14) | −0.0112 (15) | 0.0131 (13) |
Ni1—N1i | 1.8462 (18) | C3—C8 | 1.422 (3) |
Ni1—N1 | 1.8462 (18) | C4—C5 | 1.415 (3) |
Ni1—O1i | 1.8645 (14) | C4—C2i | 1.426 (3) |
Ni1—O1 | 1.8645 (14) | C5—C6 | 1.354 (4) |
O1—C3 | 1.314 (2) | C5—H5 | 0.9300 |
O2—C8 | 1.372 (2) | C6—C7 | 1.396 (3) |
O2—C9 | 1.431 (2) | C6—H6 | 0.9300 |
O3—H3A | 0.8168 | C7—C8 | 1.378 (3) |
N1—C2 | 1.287 (3) | C7—H7 | 0.9300 |
N1—C1 | 1.478 (3) | C9—C10 | 1.489 (3) |
C1—C1i | 1.498 (5) | C9—H9A | 0.9700 |
C1—H1A | 0.9700 | C9—H9B | 0.9700 |
C1—H1B | 0.9700 | C10—H10A | 0.9600 |
C2—C4i | 1.426 (3) | C10—H10B | 0.9600 |
C2—H2 | 0.9300 | C10—H10C | 0.9600 |
C3—C4 | 1.408 (3) | ||
N1i—Ni1—N1 | 85.77 (12) | C5—C4—C2i | 118.7 (2) |
N1i—Ni1—O1i | 178.06 (7) | C6—C5—C4 | 120.8 (2) |
N1—Ni1—O1i | 94.12 (7) | C6—C5—H5 | 119.6 |
N1i—Ni1—O1 | 94.12 (7) | C4—C5—H5 | 119.6 |
N1—Ni1—O1 | 178.06 (7) | C5—C6—C7 | 120.2 (2) |
O1i—Ni1—O1 | 86.06 (8) | C5—C6—H6 | 119.9 |
C3—O1—Ni1 | 127.35 (13) | C7—C6—H6 | 119.9 |
C8—O2—C9 | 118.21 (16) | C8—C7—C6 | 119.9 (2) |
C2—N1—C1 | 118.07 (19) | C8—C7—H7 | 120.1 |
C2—N1—Ni1 | 126.62 (16) | C6—C7—H7 | 120.1 |
C1—N1—Ni1 | 115.29 (16) | O2—C8—C7 | 123.7 (2) |
N1—C1—C1i | 108.01 (14) | O2—C8—C3 | 114.51 (17) |
N1—C1—H1A | 110.1 | C7—C8—C3 | 121.8 (2) |
C1i—C1—H1A | 110.1 | O2—C9—C10 | 108.22 (18) |
N1—C1—H1B | 110.1 | O2—C9—H9A | 110.1 |
C1i—C1—H1B | 110.1 | C10—C9—H9A | 110.1 |
H1A—C1—H1B | 108.4 | O2—C9—H9B | 110.1 |
N1—C2—C4i | 126.2 (2) | C10—C9—H9B | 110.1 |
N1—C2—H2 | 116.9 | H9A—C9—H9B | 108.4 |
C4i—C2—H2 | 116.9 | C9—C10—H10A | 109.5 |
O1—C3—C4 | 124.1 (2) | C9—C10—H10B | 109.5 |
O1—C3—C8 | 119.19 (18) | H10A—C10—H10B | 109.5 |
C4—C3—C8 | 116.69 (19) | C9—C10—H10C | 109.5 |
C3—C4—C5 | 120.4 (2) | H10A—C10—H10C | 109.5 |
C3—C4—C2i | 120.5 (2) | H10B—C10—H10C | 109.5 |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3A···O1 | 0.82 | 2.38 | 3.056 (3) | 140 |
O3—H3A···O2 | 0.82 | 2.10 | 2.8158 (15) | 147 |
Experimental details
Crystal data | |
Chemical formula | [Ni(C20H22N2O4)]·H2O |
Mr | 431.12 |
Crystal system, space group | Orthorhombic, Pbcn |
Temperature (K) | 273 |
a, b, c (Å) | 12.8401 (8), 19.6133 (12), 7.5853 (5) |
V (Å3) | 1910.3 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.05 |
Crystal size (mm) | 0.15 × 0.13 × 0.11 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.858, 0.893 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8741, 1676, 1381 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.072, 1.04 |
No. of reflections | 1676 |
No. of parameters | 129 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.33, −0.41 |
Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 1998).
References
Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Ghosh, R., Rahaman, S. H., Lin, C. N., Lu, T. H. & Ghosh, B. K. (2006). Polyhedron, 25, 3104–3112. Web of Science CSD CrossRef CAS Google Scholar
Mohanta, S., Lin, H. H., Lee, C. J. & Wei, H. H. (2002). Inorg. Chem. Commun. 5, 585–588. Web of Science CSD CrossRef CAS Google Scholar
Samanta, B., Chakraborty, J., Choudhury, C. R., Dey, S. K., Dey, D. K., Batten, S. R., Jensen, P., Yap, G. P. A. & Mitra, S. (2007). Struct. Chem. 18, 33–41. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Singh, K., Barwa, M. S. & Tyagi, P. (2007). Eur. J. Med. Chem. 42, 394–402. Web of Science CrossRef PubMed CAS Google Scholar
Yu, Y.-Y. (2006). Acta Cryst. E62, m948–m949. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yu, T. Z., Zhang, K., Zhao, Y. L., Yang, C. H., Zhang, H., Fan, D. W. & Dong, W. K. (2007). Inorg. Chem. Commun. 10, 401–403. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Schiff-bases have played an important role in the development of coordination chemistry as they readily form stable complexes with most of the transition metals, in which some could exhibit interesting properties (Yu et al., 2007; Ghosh et al., 2006; Singh et al., 2007; Samanta et al., 2007). Herein we report a new NiII complex based on the tetradentate Schiff-base ligand N,N'-ethylenebis(3-ethoxysalicylaldimine).
The geometry and labeling scheme for the title compound are depicted in Figure 1. The coordination sphere for the NiII ion in the title complex is a slightly distorted square planar, in which the four positions are occupied by two N and two O atoms of the Schiff-base ligand. The mean deviation from the plane formed by the two N atoms, two O atoms and the Ni ion is only 0.025 Å. The bond lengths of Ni—N and Ni—O are 1.8462 (18) and 1.8645 (14) /A%, respectively, which are consistant with the corresponding distances in 6,6'-dimethoxy-2,2'-(ethane-1,2-diylbis(nitrilomethylidyne)diphenolato)- nickel(II) (Yu, 2006). The crystalline water molecule and Ni-complex are paired via O—H···.O hydrogen bonds (Table 1, Fig. 1).