metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{6,6′-Dieth­­oxy-2,2′-[ethyl­enebis(nitrilo­methyl­­idyne)]diphenolato}nickel(II) monohydrate

aCollege of Chemistry & Chemical Engineering, Shanxi Datong University, Shanxi 037009, People's Republic of China
*Correspondence e-mail: xhtgao@126.com

(Received 20 November 2008; accepted 25 November 2008; online 29 November 2008)

In the title compound, [Ni(C20H22N2O4)]·H2O, the NiII ion and the water mol­ecule are located on a twofold rotation axis. The Ni ion is coordinated by two N [Ni—N = 1.8462 (18) Å] and two O [Ni—O = 1.8645 (14) Å] atoms in a distorted square-planar geometry. The water mol­ecule and the Ni complex mol­ecule are paired via O—H⋯O hydrogen bonds.

Related literature

For details of the synthesis, see Mohanta et al. (2002[Mohanta, S., Lin, H. H., Lee, C. J. & Wei, H. H. (2002). Inorg. Chem. Commun. 5, 585-588.]). For a related crystal structure, see Yu (2006[Yu, Y.-Y. (2006). Acta Cryst. E62, m948-m949.]). For general background, see: Ghosh et al. (2006[Ghosh, R., Rahaman, S. H., Lin, C. N., Lu, T. H. & Ghosh, B. K. (2006). Polyhedron, 25, 3104-3112.]); Samanta et al. (2007[Samanta, B., Chakraborty, J., Choudhury, C. R., Dey, S. K., Dey, D. K., Batten, S. R., Jensen, P., Yap, G. P. A. & Mitra, S. (2007). Struct. Chem. 18, 33-41.]); Singh et al. (2007[Singh, K., Barwa, M. S. & Tyagi, P. (2007). Eur. J. Med. Chem. 42, 394-402.]); Yu et al. (2007[Yu, T. Z., Zhang, K., Zhao, Y. L., Yang, C. H., Zhang, H., Fan, D. W. & Dong, W. K. (2007). Inorg. Chem. Commun. 10, 401-403.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C20H22N2O4)]·H2O

  • Mr = 431.12

  • Orthorhombic, P b c n

  • a = 12.8401 (8) Å

  • b = 19.6133 (12) Å

  • c = 7.5853 (5) Å

  • V = 1910.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.05 mm−1

  • T = 273 (2) K

  • 0.15 × 0.13 × 0.11 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.858, Tmax = 0.893

  • 8741 measured reflections

  • 1676 independent reflections

  • 1381 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.072

  • S = 1.04

  • 1676 reflections

  • 129 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2 0.82 2.10 2.8158 (15) 147

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 1998[Sheldrick, G. M. (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Schiff-bases have played an important role in the development of coordination chemistry as they readily form stable complexes with most of the transition metals, in which some could exhibit interesting properties (Yu et al., 2007; Ghosh et al., 2006; Singh et al., 2007; Samanta et al., 2007). Herein we report a new NiII complex based on the tetradentate Schiff-base ligand N,N'-ethylenebis(3-ethoxysalicylaldimine).

The geometry and labeling scheme for the title compound are depicted in Figure 1. The coordination sphere for the NiII ion in the title complex is a slightly distorted square planar, in which the four positions are occupied by two N and two O atoms of the Schiff-base ligand. The mean deviation from the plane formed by the two N atoms, two O atoms and the Ni ion is only 0.025 Å. The bond lengths of Ni—N and Ni—O are 1.8462 (18) and 1.8645 (14) /A%, respectively, which are consistant with the corresponding distances in 6,6'-dimethoxy-2,2'-(ethane-1,2-diylbis(nitrilomethylidyne)diphenolato)- nickel(II) (Yu, 2006). The crystalline water molecule and Ni-complex are paired via O—H···.O hydrogen bonds (Table 1, Fig. 1).

Related literature top

For details of the synthesis, see Mohanta et al. (2002). For related crystal structure, see Yu (2006). For general background, see: Ghosh et al. (2006); Samanta et al. (2007); Singh et al. (2007); Yu et al. (2007).

Experimental top

The Schiff base ligand H2L (H2L= N,N'-ethylenebis(3-ethoxysalicylaldimine)) was prepared according to the reported method (Mohanta, et al., 2002). The synthesis of the title complex was carried out by reacting Ni(CH3COO)2.4H2O, and H2L with the molar ratio 1:1 in methanol. After the stirring process was continued for about 30 min at room temperature, the mixture was filtered and the filtrate was allowed to partial evaporate in air for sevral days to produce crystals suitable for X-ray diffraction.

Refinement top

C-bound H atoms were placed in calculated positions, with C—H distances of 0.93 and 0.97 Å, respectively. Atom H3A was located on a difference Fourier map, but placed in idealized position with O—H = 0.82 Å. All H atoms were refined in riding model approximation, with Uiso(H) = 1.2Ueq(C, O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom-labelling scheme [symmetry code: (A) -x + 1,y,-z + 1/2]. Displacement ellipsoids are drawn at the 30% probability level. Dashed lines denote H-bonds. C-bound H-atoms omitted for clarity.
{6,6'-Diethoxy-2,2'-[ethylenebis(nitrilomethylidyne)]diphenolato}nickel(II) monohydrate top
Crystal data top
[Ni(C20H22N2O4)]·H2OF(000) = 904
Mr = 431.12Dx = 1.499 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2n 2abCell parameters from 2990 reflections
a = 12.8401 (8) Åθ = 3.2–26.5°
b = 19.6133 (12) ŵ = 1.05 mm1
c = 7.5853 (5) ÅT = 273 K
V = 1910.3 (2) Å3Block, red-brown
Z = 40.15 × 0.13 × 0.11 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1676 independent reflections
Radiation source: fine-focus sealed tube1381 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1514
Tmin = 0.858, Tmax = 0.893k = 1623
8741 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0307P)2 + 0.9816P]
where P = (Fo2 + 2Fc2)/3
1676 reflections(Δ/σ)max < 0.001
129 parametersΔρmax = 0.33 e Å3
1 restraintΔρmin = 0.41 e Å3
Crystal data top
[Ni(C20H22N2O4)]·H2OV = 1910.3 (2) Å3
Mr = 431.12Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 12.8401 (8) ŵ = 1.05 mm1
b = 19.6133 (12) ÅT = 273 K
c = 7.5853 (5) Å0.15 × 0.13 × 0.11 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1676 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1381 reflections with I > 2σ(I)
Tmin = 0.858, Tmax = 0.893Rint = 0.025
8741 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0271 restraint
wR(F2) = 0.072H-atom parameters constrained
S = 1.04Δρmax = 0.33 e Å3
1676 reflectionsΔρmin = 0.41 e Å3
129 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.023585 (17)0.25000.03740 (14)
O10.41162 (10)0.09308 (7)0.17417 (19)0.0406 (3)
O20.32670 (11)0.20336 (7)0.03750 (19)0.0454 (4)
O30.50000.23474 (14)0.25000.1240 (15)
H3A0.45990.21000.19620.149*
N10.58936 (15)0.04538 (8)0.3175 (2)0.0457 (5)
C10.54450 (19)0.11475 (10)0.3139 (3)0.0565 (6)
H1A0.52010.12740.43050.068*
H1B0.59690.14740.27730.068*
C20.6841 (2)0.03851 (12)0.3700 (3)0.0546 (6)
H20.72270.07820.38420.066*
C30.31834 (15)0.08654 (10)0.1050 (3)0.0398 (5)
C40.26463 (18)0.02419 (11)0.0914 (3)0.0495 (6)
C50.1623 (2)0.02214 (15)0.0224 (4)0.0684 (8)
H50.12690.01920.01710.082*
C60.1152 (2)0.07964 (15)0.0361 (4)0.0709 (8)
H60.04740.07770.07890.085*
C70.16808 (17)0.14183 (13)0.0323 (3)0.0550 (6)
H70.13610.18110.07480.066*
C80.26779 (16)0.14498 (11)0.0345 (3)0.0427 (5)
C90.28968 (19)0.26143 (11)0.0578 (3)0.0535 (6)
H9A0.22730.27930.00240.064*
H9B0.27270.24860.17800.064*
C100.3732 (2)0.31410 (12)0.0576 (4)0.0677 (7)
H10A0.38860.32700.06160.102*
H10B0.35000.35340.12230.102*
H10C0.43470.29590.11200.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0425 (2)0.0303 (2)0.0394 (2)0.0000.01083 (17)0.000
O10.0376 (8)0.0359 (7)0.0481 (8)0.0025 (6)0.0007 (7)0.0011 (6)
O20.0452 (8)0.0416 (8)0.0493 (9)0.0033 (7)0.0080 (7)0.0010 (7)
O30.132 (3)0.0510 (17)0.189 (4)0.0000.113 (3)0.000
N10.0557 (12)0.0352 (9)0.0464 (10)0.0072 (9)0.0186 (9)0.0028 (8)
C10.0755 (17)0.0324 (11)0.0617 (16)0.0066 (11)0.0279 (12)0.0043 (10)
C20.0599 (16)0.0458 (14)0.0581 (15)0.0219 (12)0.0157 (12)0.0051 (11)
C30.0369 (11)0.0475 (12)0.0350 (11)0.0042 (9)0.0075 (9)0.0053 (9)
C40.0469 (13)0.0523 (13)0.0492 (13)0.0144 (11)0.0076 (11)0.0052 (11)
C50.0511 (15)0.0715 (18)0.082 (2)0.0239 (13)0.0014 (14)0.0063 (15)
C60.0411 (14)0.092 (2)0.0792 (19)0.0118 (14)0.0080 (13)0.0123 (17)
C70.0427 (13)0.0687 (16)0.0538 (14)0.0038 (12)0.0028 (11)0.0060 (12)
C80.0392 (12)0.0522 (13)0.0367 (11)0.0006 (10)0.0034 (9)0.0073 (10)
C90.0616 (15)0.0533 (14)0.0455 (13)0.0159 (12)0.0076 (11)0.0005 (11)
C100.0848 (19)0.0510 (14)0.0673 (17)0.0039 (14)0.0112 (15)0.0131 (13)
Geometric parameters (Å, º) top
Ni1—N1i1.8462 (18)C3—C81.422 (3)
Ni1—N11.8462 (18)C4—C51.415 (3)
Ni1—O1i1.8645 (14)C4—C2i1.426 (3)
Ni1—O11.8645 (14)C5—C61.354 (4)
O1—C31.314 (2)C5—H50.9300
O2—C81.372 (2)C6—C71.396 (3)
O2—C91.431 (2)C6—H60.9300
O3—H3A0.8168C7—C81.378 (3)
N1—C21.287 (3)C7—H70.9300
N1—C11.478 (3)C9—C101.489 (3)
C1—C1i1.498 (5)C9—H9A0.9700
C1—H1A0.9700C9—H9B0.9700
C1—H1B0.9700C10—H10A0.9600
C2—C4i1.426 (3)C10—H10B0.9600
C2—H20.9300C10—H10C0.9600
C3—C41.408 (3)
N1i—Ni1—N185.77 (12)C5—C4—C2i118.7 (2)
N1i—Ni1—O1i178.06 (7)C6—C5—C4120.8 (2)
N1—Ni1—O1i94.12 (7)C6—C5—H5119.6
N1i—Ni1—O194.12 (7)C4—C5—H5119.6
N1—Ni1—O1178.06 (7)C5—C6—C7120.2 (2)
O1i—Ni1—O186.06 (8)C5—C6—H6119.9
C3—O1—Ni1127.35 (13)C7—C6—H6119.9
C8—O2—C9118.21 (16)C8—C7—C6119.9 (2)
C2—N1—C1118.07 (19)C8—C7—H7120.1
C2—N1—Ni1126.62 (16)C6—C7—H7120.1
C1—N1—Ni1115.29 (16)O2—C8—C7123.7 (2)
N1—C1—C1i108.01 (14)O2—C8—C3114.51 (17)
N1—C1—H1A110.1C7—C8—C3121.8 (2)
C1i—C1—H1A110.1O2—C9—C10108.22 (18)
N1—C1—H1B110.1O2—C9—H9A110.1
C1i—C1—H1B110.1C10—C9—H9A110.1
H1A—C1—H1B108.4O2—C9—H9B110.1
N1—C2—C4i126.2 (2)C10—C9—H9B110.1
N1—C2—H2116.9H9A—C9—H9B108.4
C4i—C2—H2116.9C9—C10—H10A109.5
O1—C3—C4124.1 (2)C9—C10—H10B109.5
O1—C3—C8119.19 (18)H10A—C10—H10B109.5
C4—C3—C8116.69 (19)C9—C10—H10C109.5
C3—C4—C5120.4 (2)H10A—C10—H10C109.5
C3—C4—C2i120.5 (2)H10B—C10—H10C109.5
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O10.822.383.056 (3)140
O3—H3A···O20.822.102.8158 (15)147

Experimental details

Crystal data
Chemical formula[Ni(C20H22N2O4)]·H2O
Mr431.12
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)273
a, b, c (Å)12.8401 (8), 19.6133 (12), 7.5853 (5)
V3)1910.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.05
Crystal size (mm)0.15 × 0.13 × 0.11
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.858, 0.893
No. of measured, independent and
observed [I > 2σ(I)] reflections
8741, 1676, 1381
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.072, 1.04
No. of reflections1676
No. of parameters129
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.41

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O20.822.102.8158 (15)147.0
 

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGhosh, R., Rahaman, S. H., Lin, C. N., Lu, T. H. & Ghosh, B. K. (2006). Polyhedron, 25, 3104–3112.  Web of Science CSD CrossRef CAS Google Scholar
First citationMohanta, S., Lin, H. H., Lee, C. J. & Wei, H. H. (2002). Inorg. Chem. Commun. 5, 585–588.  Web of Science CSD CrossRef CAS Google Scholar
First citationSamanta, B., Chakraborty, J., Choudhury, C. R., Dey, S. K., Dey, D. K., Batten, S. R., Jensen, P., Yap, G. P. A. & Mitra, S. (2007). Struct. Chem. 18, 33–41.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, K., Barwa, M. S. & Tyagi, P. (2007). Eur. J. Med. Chem. 42, 394–402.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYu, Y.-Y. (2006). Acta Cryst. E62, m948–m949.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYu, T. Z., Zhang, K., Zhao, Y. L., Yang, C. H., Zhang, H., Fan, D. W. & Dong, W. K. (2007). Inorg. Chem. Commun. 10, 401–403.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds