organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Benzoyl­amino­meth­yl)pyridinium chloride

aInstitute of Inorganic and Analytical Chemistry, Friedrich-Schiller-Universität Jena, August-Bebel-Strasse 2, D-07743 Jena, Germany
*Correspondence e-mail: m.we@uni-jena.de

(Received 15 October 2008; accepted 10 November 2008; online 13 November 2008)

The title compound, C13H13N2O+·Cl, (1), was obtained as a colorless crystalline by-product during the synthesis of N-(2-pyridylmeth­yl)benzoyl­amine (2). The C—O bond length of 1.231 (2) Å in the benzoyl unit of (1) is slightly elongated in comparison with isolated C=O double bonds as also observed for (2) [1.237 (2) Å]. The N—C bond length of 1.345 (2) Å in the benzoic acid amide unit indicates the formation of an allylic O—C—N system and is very similar to the N—C bond lengths [1.345 (2) Å] of the pyridyl group. A further delocalization of charge from this allylic system into the phenyl fragment does not occur, which can be deduced from a characterisitc C—C single bond length of 1.499 (2) Å between these fragments. A dimer is formed via N—H⋯Cl hydrogen bonds. The two rings make a dihedral angle of 105.0 (2)°

Related literature

For general background, see: Westerhausen et al. (2001[Westerhausen, M., Bollwein, T., Makropoulos, N., Rotter, T. M., Habereder, T., suter, M. & Nöth, H. (2001). Eur. J. Inorg. Chem. pp. 851-857.], 2002[Westerhausen, M., Bollwein, T., Makropoulos, N., Schneiderbauer, S., Suter, M., Nöth, H., Mayer, P., Piotrowski, H., Polborn, K. & Pfitzner, A. (2002). Eur. J. Inorg. Chem. pp. 389-404.]). For related structures, see: Koch et al. (2008[Koch, C., Kahnes, M., Schulz, M., Görls, H. & Westerhausen, M. (2008). Eur. J. Inorg. Chem. pp. 1067-1077.]); Prostota et al. (2004[Prostota, A. (2004). Zh. Org. Form. Khim. 2, 26-32.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13N2O+·Cl

  • Mr = 248.70

  • Monoclinic, P 21 /c

  • a = 4.6159 (1) Å

  • b = 27.4573 (10) Å

  • c = 9.6851 (4) Å

  • β = 96.554 (2)°

  • V = 1219.47 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 183 (2) K

  • 0.05 × 0.05 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 7630 measured reflections

  • 2776 independent reflections

  • 2094 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.095

  • S = 1.00

  • 2776 reflections

  • 206 parameters

  • All H-atom parameters refined

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯Cl1 0.86 (2) 2.41 (2) 3.2057 (15) 153.3 (18)
N2—H1N2⋯Cl1i 0.93 (2) 2.13 (2) 3.0446 (16) 171.7 (18)
Symmetry code: (i) -x, -y+1, -z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the past, metallated (2-pyridylmethyl)(trialkysilyl)amines were used for zinc-mediated oxidative C–C coupling reactions yielding [1,2-dipyridyl-1,2-bis(triisopropylsilylamido)ethane] bis(methylzinc) (Westerhausen et al. 2001 and 2002). The reaction of (2-pyridylmethyl)(tert-butyldimethylsilyl)amine and benzoyl chloride in toluene quantitatively yields N-(2-pyridylmethyl)benzoylamine ((1)) (Koch et al. 2008). Treatment of (1) with benzoyl chloride after deprotonation with butyllithium gives N-(2-pyridylmethyl)dibenzoylamine with rather poor yields. The title compound N-(2-pyridylmethyl)benzoylamine hydrochloride was also obtained as a colorless crystalline by-product.

A view of the title compound is shown in Fig. 1 . The C1—O1 bond length of 1.231 (2) Å is slightly elongated in comparison to isolated C=O double bonds. The value of the N1—C1 bond length of 1.345 (2)Å shows the formation of an allylic O1—C1—N1 system and is very similar to the N2—C9 bond length [1.345 (2) Å] of the pyridyl group. A further delocalization of charge from this allylic system into the phenyl fragment can be excluded on the basis of a characterisitc C8—C9 single bond of 1.499 (2) Å.

Two molecules are linked through N-H···Cl hydrogen bonds to form a pseudo dimer (Table 1, Fig. 2)

Related literature top

For general background, see: Westerhausen et al. (2001, 2002). For related structures, see: Koch et al. (2008); Prostota et al. (2004).

Experimental top

All manipulations were carried out in an atmosphere of argon using standard Schlenk techniques. Toluene and pentane were dried (Na/benzophenone) and distilled prior to use. 2-Pyridylmethylamine and butyllithium were purchased form Aldrich. Tert-butyldimethylchlorosilane and benzoyl chloride were purchased from Merck.1H NMR and 13C NMR spectra were recorded at [D1]chloroform solutions at ambient temperature on a Bruker AC 400 MHz s pectrometer and were referenced to deuterated benzene as an internal standard. 1H NMR (200 MHz, [D1]chloroform) d = 8.93 (s, br.,1H, NH); 8.63 (d, 1H, Pyr13); 8.35 (t, 1H, Pyr11); 8.06 (d, 1H, Pyr10); 7.98 (d, 2H, Ph); 7.79 (t, 1H, Pyr12); 7.48–7.37 (m, 3H, Ph); 5.03 (d, 2H, CH2)

Refinement top

All hydrogen atoms bonded were located by difference Fourier synthesis and freely refined.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labeling scheme. Ellipsoids are drawn at the 40% probability level. H atoms are represented as smal spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the pseudo dimer formed by N-H···Cl hydrogen bonds shown as dashed lines. H atoms are represented as small spheres of arbitrary radii.[Symetry code: (A)1 - x, -y + 1, -z].
[Figure 3] Fig. 3. Compounds (1) and (2).
2-(Benzoylaminomethyl)pyridinium chloride top
Crystal data top
C13H13N2O+·ClF(000) = 520
Mr = 248.70Dx = 1.355 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 7630 reflections
a = 4.6159 (1) Åθ = 2.2–27.5°
b = 27.4573 (10) ŵ = 0.30 mm1
c = 9.6851 (4) ÅT = 183 K
β = 96.554 (2)°Prism, colourless
V = 1219.47 (7) Å30.05 × 0.05 × 0.05 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2094 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 27.5°, θmin = 2.2°
ϕ and ω scansh = 54
7630 measured reflectionsk = 3535
2776 independent reflectionsl = 1211
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095All H-atom parameters refined
S = 1.00 w = 1/[σ2(Fo2) + (0.0422P)2 + 0.4338P]
where P = (Fo2 + 2Fc2)/3
2776 reflections(Δ/σ)max = 0.001
206 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C13H13N2O+·ClV = 1219.47 (7) Å3
Mr = 248.70Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.6159 (1) ŵ = 0.30 mm1
b = 27.4573 (10) ÅT = 183 K
c = 9.6851 (4) Å0.05 × 0.05 × 0.05 mm
β = 96.554 (2)°
Data collection top
Nonius KappaCCD
diffractometer
2094 reflections with I > 2σ(I)
7630 measured reflectionsRint = 0.036
2776 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.095All H-atom parameters refined
S = 1.00Δρmax = 0.21 e Å3
2776 reflectionsΔρmin = 0.25 e Å3
206 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2116 (3)0.65339 (4)0.04007 (13)0.0309 (3)
N10.1330 (3)0.59929 (5)0.03755 (15)0.0239 (3)
H1N10.271 (5)0.5898 (8)0.099 (2)0.042 (6)*
N20.1329 (3)0.54981 (5)0.30377 (15)0.0243 (3)
H1N20.255 (5)0.5266 (7)0.272 (2)0.039 (6)*
C10.0007 (3)0.64277 (6)0.04314 (17)0.0221 (3)
C20.1261 (3)0.67800 (6)0.15220 (17)0.0232 (4)
C30.0038 (4)0.72351 (7)0.1548 (2)0.0330 (4)
H30.171 (5)0.7308 (7)0.087 (2)0.043 (6)*
C40.1007 (5)0.75799 (7)0.2522 (2)0.0408 (5)
H40.007 (5)0.7882 (9)0.255 (2)0.056 (7)*
C50.3380 (4)0.74759 (7)0.3472 (2)0.0377 (5)
H50.406 (4)0.7714 (7)0.414 (2)0.039 (5)*
C60.4694 (4)0.70252 (8)0.3461 (2)0.0369 (5)
H60.647 (5)0.6940 (8)0.407 (2)0.050 (6)*
C70.3643 (4)0.66740 (7)0.24958 (19)0.0298 (4)
H70.461 (4)0.6359 (8)0.250 (2)0.038 (5)*
C80.0147 (4)0.56249 (6)0.05929 (18)0.0242 (4)
H8A0.127 (4)0.5338 (7)0.042 (2)0.029 (5)*
H8B0.185 (4)0.5556 (7)0.0494 (19)0.033 (5)*
C90.0378 (3)0.57542 (6)0.20796 (17)0.0213 (3)
C100.2253 (4)0.60969 (6)0.25333 (19)0.0276 (4)
H100.344 (4)0.6278 (7)0.188 (2)0.035 (5)*
C110.2298 (4)0.61687 (7)0.3940 (2)0.0345 (4)
H110.358 (5)0.6417 (8)0.427 (2)0.049 (6)*
C120.0502 (4)0.58950 (8)0.4893 (2)0.0376 (5)
H120.054 (5)0.5944 (8)0.585 (2)0.048 (6)*
C130.1299 (4)0.55588 (7)0.44091 (19)0.0320 (4)
H130.260 (4)0.5361 (7)0.499 (2)0.041 (6)*
Cl10.55721 (9)0.528402 (15)0.23039 (4)0.02736 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0307 (6)0.0280 (7)0.0314 (7)0.0022 (5)0.0081 (5)0.0028 (5)
N10.0298 (8)0.0213 (7)0.0188 (8)0.0000 (6)0.0043 (6)0.0013 (6)
N20.0251 (7)0.0234 (7)0.0235 (8)0.0004 (6)0.0007 (6)0.0031 (6)
C10.0237 (8)0.0229 (8)0.0194 (9)0.0026 (6)0.0012 (6)0.0006 (7)
C20.0278 (8)0.0222 (8)0.0203 (9)0.0053 (7)0.0061 (6)0.0011 (7)
C30.0348 (10)0.0260 (10)0.0373 (12)0.0017 (8)0.0005 (8)0.0044 (8)
C40.0487 (12)0.0254 (10)0.0490 (13)0.0043 (9)0.0079 (10)0.0115 (9)
C50.0449 (11)0.0366 (11)0.0323 (11)0.0165 (9)0.0083 (9)0.0164 (9)
C60.0398 (11)0.0416 (12)0.0280 (11)0.0110 (9)0.0017 (8)0.0070 (9)
C70.0340 (9)0.0290 (9)0.0259 (10)0.0049 (8)0.0009 (7)0.0028 (8)
C80.0312 (9)0.0179 (8)0.0227 (9)0.0032 (7)0.0001 (7)0.0016 (7)
C90.0229 (8)0.0180 (8)0.0222 (9)0.0036 (6)0.0016 (6)0.0028 (7)
C100.0290 (9)0.0253 (9)0.0278 (10)0.0025 (7)0.0005 (7)0.0005 (8)
C110.0384 (10)0.0359 (10)0.0302 (11)0.0014 (8)0.0086 (8)0.0047 (9)
C120.0444 (11)0.0466 (12)0.0218 (10)0.0048 (9)0.0043 (8)0.0011 (9)
C130.0339 (10)0.0369 (11)0.0236 (10)0.0044 (8)0.0040 (7)0.0069 (8)
Cl10.0294 (2)0.0264 (2)0.0248 (2)0.00059 (16)0.00344 (16)0.00006 (17)
Geometric parameters (Å, º) top
O1—C11.2308 (19)C5—H50.95 (2)
N1—C11.345 (2)C6—C71.391 (3)
N1—C81.443 (2)C6—H60.99 (2)
N1—H1N10.86 (2)C7—H70.97 (2)
N2—C131.340 (2)C8—C91.499 (2)
N2—C91.345 (2)C8—H8A0.946 (19)
N2—H1N20.93 (2)C8—H8B0.95 (2)
C1—C21.499 (2)C9—C101.384 (2)
C2—C31.387 (2)C10—C111.380 (3)
C2—C71.395 (2)C10—H100.93 (2)
C3—C41.384 (3)C11—C121.389 (3)
C3—H30.98 (2)C11—H110.98 (2)
C4—C51.378 (3)C12—C131.361 (3)
C4—H40.94 (2)C12—H120.94 (2)
C5—C61.379 (3)C13—H130.95 (2)
C1—N1—C8120.53 (14)C6—C7—C2119.81 (18)
C1—N1—H1N1122.9 (14)C6—C7—H7119.5 (11)
C8—N1—H1N1115.7 (14)C2—C7—H7120.7 (11)
C13—N2—C9123.16 (16)N1—C8—C9113.30 (14)
C13—N2—H1N2119.3 (13)N1—C8—H8A108.1 (11)
C9—N2—H1N2117.6 (13)C9—C8—H8A105.5 (12)
O1—C1—N1121.02 (15)N1—C8—H8B111.8 (12)
O1—C1—C2121.53 (15)C9—C8—H8B108.5 (11)
N1—C1—C2117.43 (14)H8A—C8—H8B109.4 (16)
C3—C2—C7119.00 (16)N2—C9—C10118.35 (16)
C3—C2—C1117.44 (15)N2—C9—C8116.02 (14)
C7—C2—C1123.56 (15)C10—C9—C8125.59 (15)
C4—C3—C2120.69 (18)C11—C10—C9119.45 (17)
C4—C3—H3120.5 (12)C11—C10—H10121.3 (12)
C2—C3—H3118.8 (12)C9—C10—H10119.2 (12)
C5—C4—C3120.15 (19)C10—C11—C12120.25 (18)
C5—C4—H4119.7 (13)C10—C11—H11119.8 (13)
C3—C4—H4120.2 (14)C12—C11—H11120.0 (13)
C6—C5—C4119.87 (18)C13—C12—C11118.67 (19)
C6—C5—H5120.8 (12)C13—C12—H12121.2 (13)
C4—C5—H5119.3 (12)C11—C12—H12120.1 (13)
C5—C6—C7120.47 (19)N2—C13—C12120.11 (17)
C5—C6—H6123.1 (13)N2—C13—H13116.0 (13)
C7—C6—H6116.3 (13)C12—C13—H13123.9 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···Cl10.86 (2)2.41 (2)3.2057 (15)153.3 (18)
N2—H1N2···Cl1i0.93 (2)2.13 (2)3.0446 (16)171.7 (18)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC13H13N2O+·Cl
Mr248.70
Crystal system, space groupMonoclinic, P21/c
Temperature (K)183
a, b, c (Å)4.6159 (1), 27.4573 (10), 9.6851 (4)
β (°) 96.554 (2)
V3)1219.47 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.05 × 0.05 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7630, 2776, 2094
Rint0.036
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.095, 1.00
No. of reflections2776
No. of parameters206
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.21, 0.25

Computer programs: COLLECT (Nonius, 1998), DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···Cl10.86 (2)2.41 (2)3.2057 (15)153.3 (18)
N2—H1N2···Cl1i0.93 (2)2.13 (2)3.0446 (16)171.7 (18)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft (DFG, Bonn–Band Godesberg, Germany) for generous financial support. We also acknowledge the funding of the Fonds der Chemischen Indunstrie (Frankfurt/Main, Germany).

References

First citationKoch, C., Kahnes, M., Schulz, M., Görls, H. & Westerhausen, M. (2008). Eur. J. Inorg. Chem. pp. 1067–1077.  Web of Science CSD CrossRef Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationProstota, A. (2004). Zh. Org. Form. Khim. 2, 26–32.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWesterhausen, M., Bollwein, T., Makropoulos, N., Rotter, T. M., Habereder, T., suter, M. & Nöth, H. (2001). Eur. J. Inorg. Chem. pp. 851–857.  CSD CrossRef Google Scholar
First citationWesterhausen, M., Bollwein, T., Makropoulos, N., Schneiderbauer, S., Suter, M., Nöth, H., Mayer, P., Piotrowski, H., Polborn, K. & Pfitzner, A. (2002). Eur. J. Inorg. Chem. pp. 389–404.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds