metal-organic compounds
Aqua[2,6-bis(2-pyridylamino)pyridine]sulfatonickel(II) monohydrate
aDepartment of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, People's Republic of China
*Correspondence e-mail: lulusczg@126.com
The Ni atom in the title complex, [Ni(SO4)(C15H13N5)(H2O)]·H2O, has a distorted trigonal-bipyramidal coordination formed by the tridentate 2,6-bis(2-pyridylamino)pyridine (tpdaH2) ligand, one sulfate and one coordinated water molecule. The tpdaH2 ligand is three-coordinated, with the N atom of the central pyridine ring in the equatorial position [Ni—N = 1.9961 (14) Å] and the N atoms of the peripheral pyridine rings in the axial positions [Ni—N = 1.9668 (15) and 1.9895 (15) Å]. The remaining equatorial positions are occupied by the O atoms of the sulfate ligand and the water molecule. The H atoms of both NH groups of the tpdaH2 ligand are involved in hydrogen bonds with the O atoms of the uncoordinated water molecule and the sulfate group which link the complex molecules, forming an infinite three-dimensional network.
Related literature
For the properties of transition metal complexes with polypyridylamine ligands, see: Wang et al. (1999). For the tri-pyridyldiamine ligand, see: Jing et al. (2000). For metal–metal interactions, see: Cotton et al. (1998); Yang et al. (1997).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell APEX2 and SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808035101/dn2397sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808035101/dn2397Isup2.hkl
Tripyridyldiamine (0.031 g, 0.12 mmol), NiSO4 (0.26 g, 0.13 mmol), were added in a solvent of acetonitrile, the mixture was heated for six hours under reflux. during the process stirring and influx were required. The resultant was then filtered to give a pure solution which was infiltrated by diethyl ether freely in a closed vessel, three weeks later some single crystals of the size suitable for X-Ray diffraction analysis.
Carbon H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H distances of 0.93Å (pyridine ring) with UisoH) 1.2Ueq(C). The amine H atoms were located in difference maps and freely refined with Uiso(H) 1.2Ueq(N). The water H atoms were located in different map and, in the first stage of
refined with the O-H and H—H distances restraints to 0.85Å and 1.39Å respectively and with Uiso(H) 1.5Ueq(O). In the last cycle, they were treated as riding on their parent O atoms.Data collection: APEX2 (Bruker, 2004); cell
APEX2 (Bruker, 2004) and SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997);; software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. View of compound (I) with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. Only H atoms attached to water have been represented as small spheres of arbitrary radii. H bond is shown as dashed line. |
[Ni(SO4)(C15H13N5)(H2O)]·H2O | F(000) = 936 |
Mr = 454.11 | Dx = 1.771 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 3068 reflections |
a = 7.3536 (8) Å | θ = 2.0–25.2° |
b = 18.026 (2) Å | µ = 1.31 mm−1 |
c = 12.9125 (14) Å | T = 298 K |
β = 95.634 (2)° | Block, green |
V = 1703.3 (3) Å3 | 0.22 × 0.16 × 0.12 mm |
Z = 4 |
Bruker APEXII area-detector diffractometer | 3068 independent reflections |
Radiation source: fine-focus sealed tube | 2821 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.014 |
ϕ and ω scans | θmax = 25.2°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −8→8 |
Tmin = 0.762, Tmax = 0.859 | k = −20→21 |
8650 measured reflections | l = −15→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.021 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.056 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[s2(Fo2) + (0.0291P)2 + 0.6456P] where P = (Fo2 + 2Fc2)/3 |
3068 reflections | (Δ/σ)max < 0.001 |
259 parameters | Δρmax = 0.24 e Å−3 |
8 restraints | Δρmin = −0.32 e Å−3 |
[Ni(SO4)(C15H13N5)(H2O)]·H2O | V = 1703.3 (3) Å3 |
Mr = 454.11 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.3536 (8) Å | µ = 1.31 mm−1 |
b = 18.026 (2) Å | T = 298 K |
c = 12.9125 (14) Å | 0.22 × 0.16 × 0.12 mm |
β = 95.634 (2)° |
Bruker APEXII area-detector diffractometer | 3068 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 2821 reflections with I > 2σ(I) |
Tmin = 0.762, Tmax = 0.859 | Rint = 0.014 |
8650 measured reflections |
R[F2 > 2σ(F2)] = 0.021 | 8 restraints |
wR(F2) = 0.056 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.24 e Å−3 |
3068 reflections | Δρmin = −0.32 e Å−3 |
259 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.26748 (3) | 0.067232 (10) | 0.233759 (14) | 0.02550 (8) | |
N1 | 0.3089 (2) | 0.06540 (7) | 0.38831 (11) | 0.0315 (3) | |
N2 | 0.2360 (2) | −0.06140 (8) | 0.39796 (11) | 0.0372 (4) | |
H2B | 0.215 (3) | −0.0957 (9) | 0.4422 (13) | 0.045* | |
N3 | 0.28575 (18) | −0.04276 (7) | 0.22027 (10) | 0.0263 (3) | |
N4 | 0.3172 (2) | −0.03370 (8) | 0.03833 (10) | 0.0308 (3) | |
H4B | 0.348 (3) | −0.0593 (9) | −0.0137 (11) | 0.037* | |
N5 | 0.1828 (2) | 0.07800 (7) | 0.08526 (11) | 0.0302 (3) | |
C1 | 0.3337 (3) | 0.13148 (10) | 0.43903 (14) | 0.0397 (4) | |
H1 | 0.3680 | 0.1724 | 0.4015 | 0.048* | |
C2 | 0.3110 (3) | 0.14091 (11) | 0.54147 (15) | 0.0464 (5) | |
H2 | 0.3247 | 0.1874 | 0.5725 | 0.056* | |
C3 | 0.2670 (3) | 0.07959 (13) | 0.59813 (15) | 0.0525 (5) | |
H3 | 0.2530 | 0.0842 | 0.6687 | 0.063* | |
C4 | 0.2442 (3) | 0.01220 (12) | 0.55020 (14) | 0.0468 (5) | |
H4 | 0.2156 | −0.0295 | 0.5878 | 0.056* | |
C5 | 0.2643 (2) | 0.00678 (9) | 0.44353 (13) | 0.0314 (4) | |
C6 | 0.2794 (2) | −0.08911 (9) | 0.30303 (12) | 0.0288 (3) | |
C7 | 0.3110 (3) | −0.16439 (9) | 0.29762 (13) | 0.0355 (4) | |
H7 | 0.2963 | −0.1949 | 0.3543 | 0.043* | |
C8 | 0.3645 (3) | −0.19360 (9) | 0.20725 (14) | 0.0362 (4) | |
H8 | 0.3949 | −0.2436 | 0.2037 | 0.043* | |
C9 | 0.3728 (2) | −0.14842 (9) | 0.12190 (13) | 0.0327 (4) | |
H9 | 0.4099 | −0.1672 | 0.0603 | 0.039* | |
C10 | 0.3249 (2) | −0.07446 (8) | 0.12950 (12) | 0.0268 (3) | |
C11 | 0.2342 (2) | 0.03302 (9) | 0.01132 (12) | 0.0274 (3) | |
C12 | 0.2087 (3) | 0.05246 (10) | −0.09421 (13) | 0.0353 (4) | |
H12 | 0.2458 | 0.0206 | −0.1448 | 0.042* | |
C13 | 0.1283 (3) | 0.11901 (10) | −0.12178 (14) | 0.0389 (4) | |
H13 | 0.1129 | 0.1334 | −0.1913 | 0.047* | |
C14 | 0.0701 (2) | 0.16493 (10) | −0.04534 (14) | 0.0370 (4) | |
H14 | 0.0126 | 0.2098 | −0.0628 | 0.044* | |
C15 | 0.0987 (2) | 0.14286 (9) | 0.05574 (14) | 0.0351 (4) | |
H15 | 0.0590 | 0.1735 | 0.1069 | 0.042* | |
S1 | 0.55296 (6) | 0.18214 (2) | 0.18169 (3) | 0.02779 (10) | |
O1 | 0.37943 (18) | 0.16682 (6) | 0.22894 (10) | 0.0409 (3) | |
O2 | 0.5111 (2) | 0.22657 (8) | 0.08910 (10) | 0.0496 (4) | |
O3 | 0.6762 (2) | 0.22117 (8) | 0.25801 (11) | 0.0553 (4) | |
O4 | 0.63271 (18) | 0.11012 (7) | 0.15417 (10) | 0.0417 (3) | |
O5 | −0.02550 (18) | 0.09435 (8) | 0.27157 (10) | 0.0466 (3) | |
H5A | −0.0394 | 0.1213 | 0.3252 | 0.070* | |
H5B | −0.1208 | 0.1008 | 0.2292 | 0.070* | |
O6 | −0.1511 (2) | 0.17329 (7) | 0.44790 (10) | 0.0473 (3) | |
H6A | −0.0976 | 0.2059 | 0.4872 | 0.071* | |
H6B | −0.2151 | 0.1947 | 0.3983 | 0.071* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.03692 (13) | 0.01854 (12) | 0.02107 (12) | 0.00086 (8) | 0.00302 (8) | −0.00001 (7) |
N1 | 0.0354 (8) | 0.0303 (8) | 0.0283 (7) | 0.0020 (6) | −0.0002 (6) | −0.0009 (6) |
N2 | 0.0549 (10) | 0.0298 (8) | 0.0288 (8) | −0.0026 (7) | 0.0136 (7) | 0.0031 (6) |
N3 | 0.0305 (7) | 0.0233 (7) | 0.0256 (7) | −0.0004 (5) | 0.0051 (5) | 0.0005 (5) |
N4 | 0.0429 (9) | 0.0260 (7) | 0.0247 (7) | 0.0043 (6) | 0.0097 (6) | 0.0005 (6) |
N5 | 0.0371 (8) | 0.0250 (7) | 0.0289 (7) | 0.0033 (6) | 0.0048 (6) | 0.0019 (6) |
C1 | 0.0503 (11) | 0.0323 (9) | 0.0346 (9) | 0.0003 (8) | −0.0053 (8) | −0.0044 (7) |
C2 | 0.0556 (13) | 0.0447 (11) | 0.0373 (10) | 0.0055 (9) | −0.0041 (9) | −0.0141 (9) |
C3 | 0.0634 (14) | 0.0641 (14) | 0.0313 (10) | 0.0005 (11) | 0.0108 (9) | −0.0123 (10) |
C4 | 0.0602 (13) | 0.0507 (12) | 0.0314 (10) | −0.0041 (10) | 0.0140 (9) | 0.0006 (8) |
C5 | 0.0315 (9) | 0.0335 (9) | 0.0294 (8) | 0.0029 (7) | 0.0039 (7) | 0.0002 (7) |
C6 | 0.0316 (9) | 0.0278 (8) | 0.0275 (8) | −0.0018 (7) | 0.0054 (6) | 0.0018 (7) |
C7 | 0.0469 (11) | 0.0272 (9) | 0.0327 (9) | −0.0019 (7) | 0.0051 (8) | 0.0063 (7) |
C8 | 0.0451 (11) | 0.0221 (8) | 0.0413 (10) | 0.0027 (7) | 0.0032 (8) | 0.0010 (7) |
C9 | 0.0392 (10) | 0.0270 (8) | 0.0327 (9) | 0.0022 (7) | 0.0071 (7) | −0.0024 (7) |
C10 | 0.0266 (8) | 0.0259 (8) | 0.0280 (8) | −0.0010 (6) | 0.0039 (6) | 0.0002 (6) |
C11 | 0.0285 (8) | 0.0256 (8) | 0.0283 (8) | −0.0029 (6) | 0.0041 (6) | 0.0014 (6) |
C12 | 0.0443 (11) | 0.0342 (9) | 0.0278 (8) | 0.0003 (8) | 0.0057 (7) | 0.0002 (7) |
C13 | 0.0459 (11) | 0.0401 (10) | 0.0299 (9) | 0.0004 (8) | −0.0001 (8) | 0.0079 (8) |
C14 | 0.0385 (10) | 0.0299 (9) | 0.0414 (10) | 0.0032 (7) | −0.0016 (8) | 0.0071 (8) |
C15 | 0.0401 (10) | 0.0286 (9) | 0.0366 (9) | 0.0049 (7) | 0.0037 (7) | 0.0005 (7) |
S1 | 0.0340 (2) | 0.0242 (2) | 0.02483 (19) | 0.00013 (16) | 0.00140 (16) | −0.00106 (15) |
O1 | 0.0525 (8) | 0.0268 (6) | 0.0467 (7) | −0.0059 (5) | 0.0217 (6) | −0.0056 (5) |
O2 | 0.0642 (9) | 0.0480 (8) | 0.0378 (7) | 0.0110 (7) | 0.0114 (6) | 0.0162 (6) |
O3 | 0.0541 (9) | 0.0483 (9) | 0.0593 (9) | −0.0030 (7) | −0.0153 (7) | −0.0187 (7) |
O4 | 0.0489 (8) | 0.0356 (7) | 0.0401 (7) | 0.0116 (6) | 0.0020 (6) | −0.0076 (5) |
O5 | 0.0364 (7) | 0.0672 (9) | 0.0361 (7) | 0.0131 (7) | 0.0035 (5) | −0.0052 (6) |
O6 | 0.0628 (9) | 0.0392 (7) | 0.0391 (7) | −0.0064 (6) | 0.0004 (6) | −0.0034 (6) |
Ni1—N5 | 1.9665 (14) | C4—H4 | 0.9300 |
Ni1—O1 | 1.9784 (12) | C6—C7 | 1.380 (2) |
Ni1—N1 | 1.9892 (14) | C7—C8 | 1.373 (3) |
Ni1—N3 | 1.9961 (14) | C7—H7 | 0.9300 |
Ni1—O5 | 2.3077 (13) | C8—C9 | 1.377 (2) |
N1—C5 | 1.334 (2) | C8—H8 | 0.9300 |
N1—C1 | 1.363 (2) | C9—C10 | 1.385 (2) |
N2—C5 | 1.370 (2) | C9—H9 | 0.9300 |
N2—C6 | 1.389 (2) | C11—C12 | 1.402 (2) |
N2—H2B | 0.866 (9) | C12—C13 | 1.369 (2) |
N3—C10 | 1.360 (2) | C12—H12 | 0.9300 |
N3—C6 | 1.361 (2) | C13—C14 | 1.388 (3) |
N4—C11 | 1.378 (2) | C13—H13 | 0.9300 |
N4—C10 | 1.384 (2) | C14—C15 | 1.361 (2) |
N4—H4B | 0.862 (9) | C14—H14 | 0.9300 |
N5—C11 | 1.335 (2) | C15—H15 | 0.9300 |
N5—C15 | 1.360 (2) | S1—O2 | 1.4467 (13) |
C1—C2 | 1.360 (3) | S1—O3 | 1.4531 (14) |
C1—H1 | 0.9300 | S1—O4 | 1.4821 (12) |
C2—C3 | 1.381 (3) | S1—O1 | 1.4932 (13) |
C2—H2 | 0.9300 | O5—H5A | 0.8598 |
C3—C4 | 1.366 (3) | O5—H5B | 0.8532 |
C3—H3 | 0.9300 | O6—H6A | 0.8477 |
C4—C5 | 1.403 (2) | O6—H6B | 0.8488 |
N5—Ni1—O1 | 88.43 (6) | N3—C6—N2 | 120.04 (15) |
N5—Ni1—N1 | 169.25 (6) | C7—C6—N2 | 116.92 (15) |
O1—Ni1—N1 | 91.34 (6) | C8—C7—C6 | 118.96 (16) |
N5—Ni1—N3 | 91.75 (5) | C8—C7—H7 | 120.5 |
O1—Ni1—N3 | 150.08 (5) | C6—C7—H7 | 120.5 |
N1—Ni1—N3 | 93.79 (5) | C7—C8—C9 | 119.51 (16) |
N5—Ni1—O5 | 88.44 (5) | C7—C8—H8 | 120.2 |
O1—Ni1—O5 | 102.39 (5) | C9—C8—H8 | 120.2 |
N1—Ni1—O5 | 81.11 (5) | C8—C9—C10 | 118.76 (16) |
N3—Ni1—O5 | 107.52 (5) | C8—C9—H9 | 120.6 |
C5—N1—C1 | 117.63 (15) | C10—C9—H9 | 120.6 |
C5—N1—Ni1 | 121.88 (11) | N3—C10—N4 | 121.05 (14) |
C1—N1—Ni1 | 117.88 (11) | N3—C10—C9 | 122.84 (15) |
C5—N2—C6 | 131.54 (15) | N4—C10—C9 | 116.11 (14) |
C5—N2—H2B | 112.7 (14) | N5—C11—N4 | 119.90 (14) |
C6—N2—H2B | 113.3 (14) | N5—C11—C12 | 121.54 (15) |
C10—N3—C6 | 116.45 (14) | N4—C11—C12 | 118.55 (15) |
C10—N3—Ni1 | 120.95 (10) | C13—C12—C11 | 119.02 (16) |
C6—N3—Ni1 | 122.24 (11) | C13—C12—H12 | 120.5 |
C11—N4—C10 | 131.19 (14) | C11—C12—H12 | 120.5 |
C11—N4—H4B | 114.3 (13) | C12—C13—C14 | 119.56 (16) |
C10—N4—H4B | 112.8 (12) | C12—C13—H13 | 120.2 |
C11—N5—C15 | 118.33 (14) | C14—C13—H13 | 120.2 |
C11—N5—Ni1 | 123.55 (11) | C15—C14—C13 | 118.56 (16) |
C15—N5—Ni1 | 116.74 (11) | C15—C14—H14 | 120.7 |
C2—C1—N1 | 123.59 (18) | C13—C14—H14 | 120.7 |
C2—C1—H1 | 118.2 | N5—C15—C14 | 122.94 (16) |
N1—C1—H1 | 118.2 | N5—C15—H15 | 118.5 |
C1—C2—C3 | 118.20 (18) | C14—C15—H15 | 118.5 |
C1—C2—H2 | 120.9 | O2—S1—O3 | 111.12 (9) |
C3—C2—H2 | 120.9 | O2—S1—O4 | 110.11 (8) |
C4—C3—C2 | 119.76 (18) | O3—S1—O4 | 110.59 (8) |
C4—C3—H3 | 120.1 | O2—S1—O1 | 108.60 (8) |
C2—C3—H3 | 120.1 | O3—S1—O1 | 108.26 (9) |
C3—C4—C5 | 119.10 (19) | O4—S1—O1 | 108.06 (7) |
C3—C4—H4 | 120.4 | S1—O1—Ni1 | 123.76 (7) |
C5—C4—H4 | 120.4 | Ni1—O5—H5A | 118.5 |
N1—C5—N2 | 121.08 (15) | Ni1—O5—H5B | 128.2 |
N1—C5—C4 | 121.67 (16) | H5A—O5—H5B | 106.5 |
N2—C5—C4 | 117.25 (16) | H6A—O6—H6B | 109.1 |
N3—C6—C7 | 123.03 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2B···O6i | 0.87 (1) | 2.08 (1) | 2.9433 (19) | 176 (2) |
N4—H4B···O4ii | 0.86 (1) | 2.05 (1) | 2.8967 (18) | 167 (2) |
O5—H5A···O6 | 0.86 | 2.08 | 2.9112 (18) | 163 |
O5—H5B···O4iii | 0.85 | 1.98 | 2.8192 (19) | 169 |
O6—H6A···O2iv | 0.85 | 1.91 | 2.7531 (18) | 173 |
O6—H6B···O3iii | 0.85 | 1.97 | 2.785 (2) | 162 |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y, −z; (iii) x−1, y, z; (iv) x−1/2, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Ni(SO4)(C15H13N5)(H2O)]·H2O |
Mr | 454.11 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 298 |
a, b, c (Å) | 7.3536 (8), 18.026 (2), 12.9125 (14) |
β (°) | 95.634 (2) |
V (Å3) | 1703.3 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.31 |
Crystal size (mm) | 0.22 × 0.16 × 0.12 |
Data collection | |
Diffractometer | Bruker APEXII area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.762, 0.859 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8650, 3068, 2821 |
Rint | 0.014 |
(sin θ/λ)max (Å−1) | 0.599 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.021, 0.056, 1.06 |
No. of reflections | 3068 |
No. of parameters | 259 |
No. of restraints | 8 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.24, −0.32 |
Computer programs: , APEX2 (Bruker, 2004) and SAINT (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997);.
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2B···O6i | 0.866 (9) | 2.079 (10) | 2.9433 (19) | 176 (2) |
N4—H4B···O4ii | 0.862 (9) | 2.050 (10) | 2.8967 (18) | 167.1 (18) |
O5—H5A···O6 | 0.86 | 2.08 | 2.9112 (18) | 162.9 |
O5—H5B···O4iii | 0.85 | 1.98 | 2.8192 (19) | 168.9 |
O6—H6A···O2iv | 0.85 | 1.91 | 2.7531 (18) | 173.2 |
O6—H6B···O3iii | 0.85 | 1.97 | 2.785 (2) | 161.9 |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y, −z; (iii) x−1, y, z; (iv) x−1/2, −y+1/2, z+1/2. |
Acknowledgements
The authors are grateful to Sichuan University of Science and Engineering for financial support.
References
Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Cotton, F. A., Daniels, L. M., Murillo, C. A. & Wang, X. (1998). Chem. Commun. pp. 39–40. CrossRef Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Jing, B.-W., Wu, T., Zhang, M.-W. & Shen, T. (2000). Chem. J. Chin. Univ. 21, 395–400. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, Z., Xiong, R.-G., Naggar, E., Foxman, B. M. & Lin, W.-B. (1999). Inorg. Chim. Acta, 288, 215–219. Web of Science CSD CrossRef CAS Google Scholar
Yang, M. H., Lin, T. W., Chou, C. C., Lee, H. C., Chang, H. C., Lee, G. H., Leung, M. K. & Peng, S. M. (1997). Chem. Commun. pp. 39–40. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Transition metal complexes with polypyridylamine ligands, possessing diverse structures and special optical and electromagnetic properties (Wang et al.,1999), have aroused great interest among researchers, Tri-pyridyldiamine ligand usually exhibits donor as well as acceptor properties and can be used as a popular chelating ligand (Jing et al., 2000). In recent years great efforts have been taken to synthesize and characterize metal chain complexes which can be used to study the metal-metal interactions (Yang et al., 1997; Cotton et al., 1998). Herein we report the synthesis and crystal structure of the title complex with tri-pyridyldiamine ligand.
The Ni1 atom in the title complex has a distorted trigonal-bipyramidal coordination formed by the tridentate tpdaH2 ligand, one sulfate and one coordinated water molecule. (Fig. 1). The tpdaH2 ligand is tri-coordinated, with the peripheral N1 and N5 atoms in the axial positions [Ni1—N1 = 1.9895 (15) Å, Ni1—N5 = 1.9668 (15) Å and N1—Ni1—N5 = 169.26 (6)°] and the central N3 atom in the equatorial plane of the bipyramid [Ni1—N3 = 1.9961 (14) Å]. The remaining equatorial positions are occupied by one sulfate and one coordinated water molecule. Selected geometric parameters have been listed in tabel 1.
The three pyridine rings of the tpdaH2 ligand are not coplanar. The dihedral angles between the planes of the central pyridine ring and two peripheral rings are 15.0 (7) and 22.7 (3)° respectively. In the title complex the two H atoms of both NH groups of tpdaH2 act as active H atoms in forming inter-molecular classical hydrogen bonds (Table 2). The inter-molecular hydrogen bonds function greatly in linking the complex to be a infinite three-dimensional network.