metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1490-m1491

Aqua­[2,6-bis­­(2-pyridylamino)pyridine]sulfatonickel(II) monohydrate

aDepartment of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, People's Republic of China
*Correspondence e-mail: lulusczg@126.com

(Received 23 October 2008; accepted 28 October 2008; online 8 November 2008)

The Ni atom in the title complex, [Ni(SO4)(C15H13N5)(H2O)]·H2O, has a distorted trigonal-bipyramidal coordination formed by the tridentate 2,6-bis­(2-pyridylamino)pyridine (tpdaH2) ligand, one sulfate and one coordinated water mol­ecule. The tpdaH2 ligand is three-coordinated, with the N atom of the central pyridine ring in the equatorial position [Ni—N = 1.9961 (14) Å] and the N atoms of the peripheral pyridine rings in the axial positions [Ni—N = 1.9668 (15) and 1.9895 (15) Å]. The remaining equatorial positions are occupied by the O atoms of the sulfate ligand and the water molecule. The H atoms of both NH groups of the tpdaH2 ligand are involved in hydrogen bonds with the O atoms of the uncoordinated water mol­ecule and the sulfate group which link the complex mol­ecules, forming an infinite three-dimensional network.

Related literature

For the properties of transition metal complexes with polypyridylamine ligands, see: Wang et al. (1999[Wang, Z., Xiong, R.-G., Naggar, E., Foxman, B. M. & Lin, W.-B. (1999). Inorg. Chim. Acta, 288, 215-219.]). For the tri-pyridyldiamine ligand, see: Jing et al. (2000[Jing, B.-W., Wu, T., Zhang, M.-W. & Shen, T. (2000). Chem. J. Chin. Univ. 21, 395-400.]). For metal–metal inter­actions, see: Cotton et al. (1998[Cotton, F. A., Daniels, L. M., Murillo, C. A. & Wang, X. (1998). Chem. Commun. pp. 39-40.]); Yang et al. (1997[Yang, M. H., Lin, T. W., Chou, C. C., Lee, H. C., Chang, H. C., Lee, G. H., Leung, M. K. & Peng, S. M. (1997). Chem. Commun. pp. 39-40.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(SO4)(C15H13N5)(H2O)]·H2O

  • Mr = 454.11

  • Monoclinic, P 21 /n

  • a = 7.3536 (8) Å

  • b = 18.026 (2) Å

  • c = 12.9125 (14) Å

  • β = 95.634 (2)°

  • V = 1703.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.31 mm−1

  • T = 298 (2) K

  • 0.22 × 0.16 × 0.12 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.761, Tmax = 0.859

  • 8650 measured reflections

  • 3068 independent reflections

  • 2821 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.056

  • S = 1.06

  • 3068 reflections

  • 259 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O6i 0.866 (9) 2.079 (10) 2.9433 (19) 176 (2)
N4—H4B⋯O4ii 0.862 (9) 2.050 (10) 2.8967 (18) 167.1 (18)
O5—H5A⋯O6 0.86 2.08 2.9112 (18) 163
O5—H5B⋯O4iii 0.85 1.98 2.8192 (19) 169
O6—H6A⋯O2iv 0.85 1.91 2.7531 (18) 173
O6—H6B⋯O3iii 0.85 1.97 2.785 (2) 162
Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y, -z; (iii) x-1, y, z; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Transition metal complexes with polypyridylamine ligands, possessing diverse structures and special optical and electromagnetic properties (Wang et al.,1999), have aroused great interest among researchers, Tri-pyridyldiamine ligand usually exhibits donor as well as acceptor properties and can be used as a popular chelating ligand (Jing et al., 2000). In recent years great efforts have been taken to synthesize and characterize metal chain complexes which can be used to study the metal-metal interactions (Yang et al., 1997; Cotton et al., 1998). Herein we report the synthesis and crystal structure of the title complex with tri-pyridyldiamine ligand.

The Ni1 atom in the title complex has a distorted trigonal-bipyramidal coordination formed by the tridentate tpdaH2 ligand, one sulfate and one coordinated water molecule. (Fig. 1). The tpdaH2 ligand is tri-coordinated, with the peripheral N1 and N5 atoms in the axial positions [Ni1—N1 = 1.9895 (15) Å, Ni1—N5 = 1.9668 (15) Å and N1—Ni1—N5 = 169.26 (6)°] and the central N3 atom in the equatorial plane of the bipyramid [Ni1—N3 = 1.9961 (14) Å]. The remaining equatorial positions are occupied by one sulfate and one coordinated water molecule. Selected geometric parameters have been listed in tabel 1.

The three pyridine rings of the tpdaH2 ligand are not coplanar. The dihedral angles between the planes of the central pyridine ring and two peripheral rings are 15.0 (7) and 22.7 (3)° respectively. In the title complex the two H atoms of both NH groups of tpdaH2 act as active H atoms in forming inter-molecular classical hydrogen bonds (Table 2). The inter-molecular hydrogen bonds function greatly in linking the complex to be a infinite three-dimensional network.

Related literature top

For the properties of transition metal complexes with polypyridylamine ligands, see: Wang et al. (1999). For the tri-pyridyldiamine ligand, see: Jing et al. (2000). For metal–metal

interactions, see: Cotton et al. (1998); Yang et al. (1997).

Experimental top

Tripyridyldiamine (0.031 g, 0.12 mmol), NiSO4 (0.26 g, 0.13 mmol), were added in a solvent of acetonitrile, the mixture was heated for six hours under reflux. during the process stirring and influx were required. The resultant was then filtered to give a pure solution which was infiltrated by diethyl ether freely in a closed vessel, three weeks later some single crystals of the size suitable for X-Ray diffraction analysis.

Refinement top

Carbon H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H distances of 0.93Å (pyridine ring) with UisoH) 1.2Ueq(C). The amine H atoms were located in difference maps and freely refined with Uiso(H) 1.2Ueq(N). The water H atoms were located in different map and, in the first stage of refinement, refined with the O-H and H—H distances restraints to 0.85Å and 1.39Å respectively and with Uiso(H) 1.5Ueq(O). In the last cycle, they were treated as riding on their parent O atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004) and SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997);; software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of compound (I) with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. Only H atoms attached to water have been represented as small spheres of arbitrary radii. H bond is shown as dashed line.
Aqua[2,6-bis(2-pyridylamino)pyridine]sulfatonickel(II) monohydrate top
Crystal data top
[Ni(SO4)(C15H13N5)(H2O)]·H2OF(000) = 936
Mr = 454.11Dx = 1.771 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3068 reflections
a = 7.3536 (8) Åθ = 2.0–25.2°
b = 18.026 (2) ŵ = 1.31 mm1
c = 12.9125 (14) ÅT = 298 K
β = 95.634 (2)°Block, green
V = 1703.3 (3) Å30.22 × 0.16 × 0.12 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
3068 independent reflections
Radiation source: fine-focus sealed tube2821 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ϕ and ω scansθmax = 25.2°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 88
Tmin = 0.762, Tmax = 0.859k = 2021
8650 measured reflectionsl = 1513
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[s2(Fo2) + (0.0291P)2 + 0.6456P]
where P = (Fo2 + 2Fc2)/3
3068 reflections(Δ/σ)max < 0.001
259 parametersΔρmax = 0.24 e Å3
8 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Ni(SO4)(C15H13N5)(H2O)]·H2OV = 1703.3 (3) Å3
Mr = 454.11Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.3536 (8) ŵ = 1.31 mm1
b = 18.026 (2) ÅT = 298 K
c = 12.9125 (14) Å0.22 × 0.16 × 0.12 mm
β = 95.634 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
3068 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2821 reflections with I > 2σ(I)
Tmin = 0.762, Tmax = 0.859Rint = 0.014
8650 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0218 restraints
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.24 e Å3
3068 reflectionsΔρmin = 0.32 e Å3
259 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.26748 (3)0.067232 (10)0.233759 (14)0.02550 (8)
N10.3089 (2)0.06540 (7)0.38831 (11)0.0315 (3)
N20.2360 (2)0.06140 (8)0.39796 (11)0.0372 (4)
H2B0.215 (3)0.0957 (9)0.4422 (13)0.045*
N30.28575 (18)0.04276 (7)0.22027 (10)0.0263 (3)
N40.3172 (2)0.03370 (8)0.03833 (10)0.0308 (3)
H4B0.348 (3)0.0593 (9)0.0137 (11)0.037*
N50.1828 (2)0.07800 (7)0.08526 (11)0.0302 (3)
C10.3337 (3)0.13148 (10)0.43903 (14)0.0397 (4)
H10.36800.17240.40150.048*
C20.3110 (3)0.14091 (11)0.54147 (15)0.0464 (5)
H20.32470.18740.57250.056*
C30.2670 (3)0.07959 (13)0.59813 (15)0.0525 (5)
H30.25300.08420.66870.063*
C40.2442 (3)0.01220 (12)0.55020 (14)0.0468 (5)
H40.21560.02950.58780.056*
C50.2643 (2)0.00678 (9)0.44353 (13)0.0314 (4)
C60.2794 (2)0.08911 (9)0.30303 (12)0.0288 (3)
C70.3110 (3)0.16439 (9)0.29762 (13)0.0355 (4)
H70.29630.19490.35430.043*
C80.3645 (3)0.19360 (9)0.20725 (14)0.0362 (4)
H80.39490.24360.20370.043*
C90.3728 (2)0.14842 (9)0.12190 (13)0.0327 (4)
H90.40990.16720.06030.039*
C100.3249 (2)0.07446 (8)0.12950 (12)0.0268 (3)
C110.2342 (2)0.03302 (9)0.01132 (12)0.0274 (3)
C120.2087 (3)0.05246 (10)0.09421 (13)0.0353 (4)
H120.24580.02060.14480.042*
C130.1283 (3)0.11901 (10)0.12178 (14)0.0389 (4)
H130.11290.13340.19130.047*
C140.0701 (2)0.16493 (10)0.04534 (14)0.0370 (4)
H140.01260.20980.06280.044*
C150.0987 (2)0.14286 (9)0.05574 (14)0.0351 (4)
H150.05900.17350.10690.042*
S10.55296 (6)0.18214 (2)0.18169 (3)0.02779 (10)
O10.37943 (18)0.16682 (6)0.22894 (10)0.0409 (3)
O20.5111 (2)0.22657 (8)0.08910 (10)0.0496 (4)
O30.6762 (2)0.22117 (8)0.25801 (11)0.0553 (4)
O40.63271 (18)0.11012 (7)0.15417 (10)0.0417 (3)
O50.02550 (18)0.09435 (8)0.27157 (10)0.0466 (3)
H5A0.03940.12130.32520.070*
H5B0.12080.10080.22920.070*
O60.1511 (2)0.17329 (7)0.44790 (10)0.0473 (3)
H6A0.09760.20590.48720.071*
H6B0.21510.19470.39830.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.03692 (13)0.01854 (12)0.02107 (12)0.00086 (8)0.00302 (8)0.00001 (7)
N10.0354 (8)0.0303 (8)0.0283 (7)0.0020 (6)0.0002 (6)0.0009 (6)
N20.0549 (10)0.0298 (8)0.0288 (8)0.0026 (7)0.0136 (7)0.0031 (6)
N30.0305 (7)0.0233 (7)0.0256 (7)0.0004 (5)0.0051 (5)0.0005 (5)
N40.0429 (9)0.0260 (7)0.0247 (7)0.0043 (6)0.0097 (6)0.0005 (6)
N50.0371 (8)0.0250 (7)0.0289 (7)0.0033 (6)0.0048 (6)0.0019 (6)
C10.0503 (11)0.0323 (9)0.0346 (9)0.0003 (8)0.0053 (8)0.0044 (7)
C20.0556 (13)0.0447 (11)0.0373 (10)0.0055 (9)0.0041 (9)0.0141 (9)
C30.0634 (14)0.0641 (14)0.0313 (10)0.0005 (11)0.0108 (9)0.0123 (10)
C40.0602 (13)0.0507 (12)0.0314 (10)0.0041 (10)0.0140 (9)0.0006 (8)
C50.0315 (9)0.0335 (9)0.0294 (8)0.0029 (7)0.0039 (7)0.0002 (7)
C60.0316 (9)0.0278 (8)0.0275 (8)0.0018 (7)0.0054 (6)0.0018 (7)
C70.0469 (11)0.0272 (9)0.0327 (9)0.0019 (7)0.0051 (8)0.0063 (7)
C80.0451 (11)0.0221 (8)0.0413 (10)0.0027 (7)0.0032 (8)0.0010 (7)
C90.0392 (10)0.0270 (8)0.0327 (9)0.0022 (7)0.0071 (7)0.0024 (7)
C100.0266 (8)0.0259 (8)0.0280 (8)0.0010 (6)0.0039 (6)0.0002 (6)
C110.0285 (8)0.0256 (8)0.0283 (8)0.0029 (6)0.0041 (6)0.0014 (6)
C120.0443 (11)0.0342 (9)0.0278 (8)0.0003 (8)0.0057 (7)0.0002 (7)
C130.0459 (11)0.0401 (10)0.0299 (9)0.0004 (8)0.0001 (8)0.0079 (8)
C140.0385 (10)0.0299 (9)0.0414 (10)0.0032 (7)0.0016 (8)0.0071 (8)
C150.0401 (10)0.0286 (9)0.0366 (9)0.0049 (7)0.0037 (7)0.0005 (7)
S10.0340 (2)0.0242 (2)0.02483 (19)0.00013 (16)0.00140 (16)0.00106 (15)
O10.0525 (8)0.0268 (6)0.0467 (7)0.0059 (5)0.0217 (6)0.0056 (5)
O20.0642 (9)0.0480 (8)0.0378 (7)0.0110 (7)0.0114 (6)0.0162 (6)
O30.0541 (9)0.0483 (9)0.0593 (9)0.0030 (7)0.0153 (7)0.0187 (7)
O40.0489 (8)0.0356 (7)0.0401 (7)0.0116 (6)0.0020 (6)0.0076 (5)
O50.0364 (7)0.0672 (9)0.0361 (7)0.0131 (7)0.0035 (5)0.0052 (6)
O60.0628 (9)0.0392 (7)0.0391 (7)0.0064 (6)0.0004 (6)0.0034 (6)
Geometric parameters (Å, º) top
Ni1—N51.9665 (14)C4—H40.9300
Ni1—O11.9784 (12)C6—C71.380 (2)
Ni1—N11.9892 (14)C7—C81.373 (3)
Ni1—N31.9961 (14)C7—H70.9300
Ni1—O52.3077 (13)C8—C91.377 (2)
N1—C51.334 (2)C8—H80.9300
N1—C11.363 (2)C9—C101.385 (2)
N2—C51.370 (2)C9—H90.9300
N2—C61.389 (2)C11—C121.402 (2)
N2—H2B0.866 (9)C12—C131.369 (2)
N3—C101.360 (2)C12—H120.9300
N3—C61.361 (2)C13—C141.388 (3)
N4—C111.378 (2)C13—H130.9300
N4—C101.384 (2)C14—C151.361 (2)
N4—H4B0.862 (9)C14—H140.9300
N5—C111.335 (2)C15—H150.9300
N5—C151.360 (2)S1—O21.4467 (13)
C1—C21.360 (3)S1—O31.4531 (14)
C1—H10.9300S1—O41.4821 (12)
C2—C31.381 (3)S1—O11.4932 (13)
C2—H20.9300O5—H5A0.8598
C3—C41.366 (3)O5—H5B0.8532
C3—H30.9300O6—H6A0.8477
C4—C51.403 (2)O6—H6B0.8488
N5—Ni1—O188.43 (6)N3—C6—N2120.04 (15)
N5—Ni1—N1169.25 (6)C7—C6—N2116.92 (15)
O1—Ni1—N191.34 (6)C8—C7—C6118.96 (16)
N5—Ni1—N391.75 (5)C8—C7—H7120.5
O1—Ni1—N3150.08 (5)C6—C7—H7120.5
N1—Ni1—N393.79 (5)C7—C8—C9119.51 (16)
N5—Ni1—O588.44 (5)C7—C8—H8120.2
O1—Ni1—O5102.39 (5)C9—C8—H8120.2
N1—Ni1—O581.11 (5)C8—C9—C10118.76 (16)
N3—Ni1—O5107.52 (5)C8—C9—H9120.6
C5—N1—C1117.63 (15)C10—C9—H9120.6
C5—N1—Ni1121.88 (11)N3—C10—N4121.05 (14)
C1—N1—Ni1117.88 (11)N3—C10—C9122.84 (15)
C5—N2—C6131.54 (15)N4—C10—C9116.11 (14)
C5—N2—H2B112.7 (14)N5—C11—N4119.90 (14)
C6—N2—H2B113.3 (14)N5—C11—C12121.54 (15)
C10—N3—C6116.45 (14)N4—C11—C12118.55 (15)
C10—N3—Ni1120.95 (10)C13—C12—C11119.02 (16)
C6—N3—Ni1122.24 (11)C13—C12—H12120.5
C11—N4—C10131.19 (14)C11—C12—H12120.5
C11—N4—H4B114.3 (13)C12—C13—C14119.56 (16)
C10—N4—H4B112.8 (12)C12—C13—H13120.2
C11—N5—C15118.33 (14)C14—C13—H13120.2
C11—N5—Ni1123.55 (11)C15—C14—C13118.56 (16)
C15—N5—Ni1116.74 (11)C15—C14—H14120.7
C2—C1—N1123.59 (18)C13—C14—H14120.7
C2—C1—H1118.2N5—C15—C14122.94 (16)
N1—C1—H1118.2N5—C15—H15118.5
C1—C2—C3118.20 (18)C14—C15—H15118.5
C1—C2—H2120.9O2—S1—O3111.12 (9)
C3—C2—H2120.9O2—S1—O4110.11 (8)
C4—C3—C2119.76 (18)O3—S1—O4110.59 (8)
C4—C3—H3120.1O2—S1—O1108.60 (8)
C2—C3—H3120.1O3—S1—O1108.26 (9)
C3—C4—C5119.10 (19)O4—S1—O1108.06 (7)
C3—C4—H4120.4S1—O1—Ni1123.76 (7)
C5—C4—H4120.4Ni1—O5—H5A118.5
N1—C5—N2121.08 (15)Ni1—O5—H5B128.2
N1—C5—C4121.67 (16)H5A—O5—H5B106.5
N2—C5—C4117.25 (16)H6A—O6—H6B109.1
N3—C6—C7123.03 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O6i0.87 (1)2.08 (1)2.9433 (19)176 (2)
N4—H4B···O4ii0.86 (1)2.05 (1)2.8967 (18)167 (2)
O5—H5A···O60.862.082.9112 (18)163
O5—H5B···O4iii0.851.982.8192 (19)169
O6—H6A···O2iv0.851.912.7531 (18)173
O6—H6B···O3iii0.851.972.785 (2)162
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x1, y, z; (iv) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(SO4)(C15H13N5)(H2O)]·H2O
Mr454.11
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.3536 (8), 18.026 (2), 12.9125 (14)
β (°) 95.634 (2)
V3)1703.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.31
Crystal size (mm)0.22 × 0.16 × 0.12
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.762, 0.859
No. of measured, independent and
observed [I > 2σ(I)] reflections
8650, 3068, 2821
Rint0.014
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.056, 1.06
No. of reflections3068
No. of parameters259
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.32

Computer programs: , APEX2 (Bruker, 2004) and SAINT (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997);.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O6i0.866 (9)2.079 (10)2.9433 (19)176 (2)
N4—H4B···O4ii0.862 (9)2.050 (10)2.8967 (18)167.1 (18)
O5—H5A···O60.862.082.9112 (18)162.9
O5—H5B···O4iii0.851.982.8192 (19)168.9
O6—H6A···O2iv0.851.912.7531 (18)173.2
O6—H6B···O3iii0.851.972.785 (2)161.9
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x1, y, z; (iv) x1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors are grateful to Sichuan University of Science and Engineering for financial support.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCotton, F. A., Daniels, L. M., Murillo, C. A. & Wang, X. (1998). Chem. Commun. pp. 39–40.  CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJing, B.-W., Wu, T., Zhang, M.-W. & Shen, T. (2000). Chem. J. Chin. Univ. 21, 395–400.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z., Xiong, R.-G., Naggar, E., Foxman, B. M. & Lin, W.-B. (1999). Inorg. Chim. Acta, 288, 215–219.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, M. H., Lin, T. W., Chou, C. C., Lee, H. C., Chang, H. C., Lee, G. H., Leung, M. K. & Peng, S. M. (1997). Chem. Commun. pp. 39–40.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1490-m1491
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds