metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(μ-2-anilinobenzoato)bis­­[methano­lcopper(II)](CuCu)

aSchool of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300191, People's Republic of China
*Correspondence e-mail: fuchenliutj@yahoo.com

(Received 27 October 2008; accepted 16 November 2008; online 22 November 2008)

The title compound, [Cu2(C13H10NO2)4(CH4O)2], has been prepared by the reaction of 2-anilinobenzoic acid, HL, with copper(II) nitrate in methanol. This dinuclear complex is arranged around an inversion center. Each Cu atom displays a distorted trigonal–pyramidal coordination with four O atoms from the four ligands L and one axial O atom of the methanol solvent mol­ecule. Each carboxyl­ate group of the ligands L links two Cu atoms, building a dinuclear complex with a Cu—Cu distance of 2.5774 (10) Å. There are intra­molecular N—H⋯O hydrogen bonds, and the H atom of the methanol mol­ecule is involved in weak bifurcated hydrogen-bonding inter­actions with two carboxyl­ate O atoms of related mol­ecules, forming a chain developing parallel to the a axis.

Related literature

For general background, see: Melnik et al. (1998[Melnik, M., Koman, M. & Glowiak, T. (1998). Polyhedron, 17, 1767-1771.]); Facchin et al. (1998[Facchin, G., Torre, M. H., Kremer, E., Piro, O. E. & Baran, E. J. (1998). Z. Anorg. Allg. Chem. 53, 871-874.]); Martin & Greenwood (1997[Martin, J. D. & Greenwood, K. B. (1997). Angew. Chem. Int. Ed. 36, 2072-2075.]); Moulton et al. (2003[Moulton, B., Abourahma, H., Bradner, M. W., Lu, J.-J., McManus, G. J. & Zaworotko, M. J. (2003). Chem. Commun. pp. 1342-1343.]). For a related structure, see: Churchill et al. (1985[Churchill, M. R., Li, Y.-J., Nalewajek, D., Schaber, P. M. & Dorfamanii, J. (1985). Inorg. Chem. 24, 2684-2687.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C13H10NO2)4(CH4O)2]

  • Mr = 1040.06

  • Monoclinic, P 21 /c

  • a = 7.2467 (14) Å

  • b = 14.171 (3) Å

  • c = 23.813 (5) Å

  • β = 97.11 (3)°

  • V = 2426.6 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 293 (2) K

  • 0.22 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 23688 measured reflections

  • 5568 independent reflections

  • 3886 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.115

  • S = 1.05

  • 5568 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.83 2.04 2.690 (4) 135
N2—H2⋯O3 0.83 2.05 2.688 (4) 133
O5—H5A⋯O1i 0.84 2.54 3.306 (4) 152
O5—H5A⋯O4i 0.84 2.55 3.260 (4) 143
Symmetry code: (i) x+1, y, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

There is an increasing interest in the design of metal complexes based on polydentate ligands(Martin & Greenwood, 1997). 2-anilinobenzoato and its derivatives with multifunctional sites can bridge metal ions in different mode allowing a large variety of structures (Melnik et al., 1998). In the copper carboxylate based complexes dinuclear tetracarboxylate paddlewheel clusters have been frequently observed (Moulton et al., 2003 and references therein). Several dimer complexes having similar structure to the title complex were reported (Facchin et al., 1998 and references therein).

The dinuclear copper complex is built up around inversion center. Each copper atom displays a trigonal-bipyramidal coordination with four oxygen atoms from the four ligands L and one axial methanol solvent. Each carboxylate groups of the ligands L link two Cu atoms building a dinuclear complex (Fig. 1) with a Cu-Cu distance of 2.5774 (10) Å , typical of tetracarboxylate paddlewheel Cu dinuclear complex(Churchill et al., 1985).

There are intramolecular N-H···O hydrogen bond whereas the H atom of the methanol is in weak bifurcated interactions with two carboxyalte O atoms of related molecule forming a chain developping parallel to the a axis (Table 1).

Related literature top

For general background, see: Melnik et al. (1998); Facchin et al. (1998); Martin & Greenwood (1997); Moulton et al. (2003). For a related structure, see: Churchill et al. (1985).

Experimental top

The title compound was prepared by adding 10 ml of methanol solution of copper nitrate (1 mmol) to 10 ml of methanol solution of L(0.5 mmol) neutralized by sodium aeide(1 mmol). The mixture was stirred for about 2 h and filtered.The filtrate was slowly evaporated at room temperture to yield cubic black crystals of (I) suitable for X-ray analysis. Yield 30% based on copper(II).

Refinement top

The H atoms attached to C atoms were included in calculated positions and treated as riding on their parent atoms with C—H = 0.93 Å(aromatic) or 0.96Å (methyl) with Uiso(H) = 1.2Ueq(Caromatic) or Uiso(H) = 1.5Ueq(Cmethyl) . The H atoms attached to N and O atoms were initially refined using N-H or O-H restraints (0.83 (2)Å), then they were treated as riding on their parent atoms in the last cycles of refinement with Uiso(H) = 1.2Ueq(N) or Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the dinuclear complex with the atom-labelling scheme. Ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) -x+2, -y, -z+2]
Tetrakis(µ-2-anilinobenzoato)bis[methanolcopper(II)](Cu—Cu) top
Crystal data top
[Cu2(C13H10NO2)4(CH4O)2]F(000) = 1076
Mr = 1040.06Dx = 1.423 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 19383 reflections
a = 7.2467 (14) Åθ = 3.0–27.6°
b = 14.171 (3) ŵ = 0.94 mm1
c = 23.813 (5) ÅT = 293 K
β = 97.11 (3)°Block, black
V = 2426.6 (9) Å30.22 × 0.20 × 0.15 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
3886 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.073
Graphite monochromatorθmax = 27.5°, θmin = 3.0°
ω scansh = 99
23688 measured reflectionsk = 1817
5568 independent reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0338P)2 + 2.4261P]
where P = (Fo2 + 2Fc2)/3
5568 reflections(Δ/σ)max = 0.001
316 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Cu2(C13H10NO2)4(CH4O)2]V = 2426.6 (9) Å3
Mr = 1040.06Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.2467 (14) ŵ = 0.94 mm1
b = 14.171 (3) ÅT = 293 K
c = 23.813 (5) Å0.22 × 0.20 × 0.15 mm
β = 97.11 (3)°
Data collection top
Bruker SMART CCD
diffractometer
3886 reflections with I > 2σ(I)
23688 measured reflectionsRint = 0.073
5568 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.05Δρmax = 0.41 e Å3
5568 reflectionsΔρmin = 0.35 e Å3
316 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11.13786 (5)0.05253 (3)0.990416 (16)0.02737 (12)
N10.9279 (4)0.2080 (2)0.83101 (12)0.0481 (8)
H10.99280.19440.86120.058*
N21.0262 (4)0.3315 (2)1.06884 (14)0.0492 (8)
H21.07680.29171.05000.059*
O10.7459 (3)0.00204 (19)0.93852 (11)0.0549 (7)
O20.9804 (3)0.09287 (18)0.92135 (9)0.0424 (6)
O31.0252 (3)0.15225 (16)1.03190 (10)0.0436 (6)
O40.7885 (3)0.06096 (16)1.04750 (12)0.0532 (7)
O51.3926 (3)0.12326 (16)0.97707 (10)0.0460 (6)
H5A1.49980.09990.97890.055*
C10.8163 (4)0.0628 (2)0.90930 (13)0.0319 (7)
C20.6955 (4)0.0996 (2)0.85929 (13)0.0311 (7)
C30.5154 (5)0.0638 (2)0.84879 (14)0.0404 (8)
H30.47950.01650.87230.049*
C40.3890 (5)0.0955 (3)0.80525 (16)0.0502 (10)
H40.27120.06880.79830.060*
C50.4416 (5)0.1681 (3)0.77200 (16)0.0536 (11)
H50.35640.19220.74320.064*
C60.6177 (5)0.2053 (3)0.78080 (15)0.0473 (10)
H60.64910.25440.75780.057*
C70.7506 (4)0.1714 (2)0.82325 (14)0.0354 (8)
C81.0119 (5)0.2737 (2)0.79817 (15)0.0391 (8)
C91.1365 (5)0.3380 (3)0.82540 (16)0.0464 (9)
H91.15780.33810.86470.056*
C101.2290 (6)0.4012 (3)0.7956 (2)0.0625 (12)
H101.31260.44350.81470.075*
C111.1986 (7)0.4023 (4)0.7379 (2)0.0776 (15)
H111.26040.44560.71750.093*
C121.0764 (6)0.3393 (4)0.71023 (19)0.0752 (15)
H121.05540.34030.67090.090*
C130.9836 (5)0.2743 (3)0.73948 (16)0.0544 (11)
H130.90270.23120.72000.065*
C140.8729 (4)0.1384 (2)1.05159 (13)0.0323 (7)
C150.7840 (4)0.2162 (2)1.07961 (13)0.0308 (7)
C160.6150 (5)0.1969 (3)1.10022 (14)0.0395 (8)
H160.56800.13581.09710.047*
C170.5161 (5)0.2646 (3)1.12476 (16)0.0454 (9)
H170.40440.24991.13820.055*
C180.5858 (5)0.3544 (3)1.12903 (16)0.0485 (10)
H180.51950.40131.14510.058*
C190.7510 (5)0.3763 (2)1.11009 (16)0.0441 (9)
H190.79340.43831.11300.053*
C200.8583 (4)0.3083 (2)1.08640 (14)0.0353 (8)
C211.1236 (5)0.4172 (2)1.08019 (18)0.0446 (9)
C221.2051 (5)0.4608 (3)1.03751 (19)0.0583 (11)
H221.19400.43451.00150.070*
C231.3035 (6)0.5441 (3)1.0488 (2)0.0743 (14)
H231.35700.57381.02000.089*
C241.3229 (6)0.5830 (3)1.1018 (3)0.0756 (15)
H241.38910.63881.10890.091*
C251.2444 (6)0.5391 (3)1.1442 (2)0.0630 (12)
H251.25700.56561.18020.076*
C261.1472 (5)0.4564 (3)1.13402 (18)0.0520 (10)
H261.09680.42641.16340.062*
C271.4132 (6)0.2166 (3)0.95906 (19)0.0658 (12)
H27A1.54220.22920.95680.099*
H27B1.36820.25920.98560.099*
H27C1.34330.22520.92250.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0269 (2)0.0242 (2)0.0313 (2)0.00364 (18)0.00475 (14)0.00085 (17)
N10.0402 (18)0.061 (2)0.0409 (18)0.0093 (16)0.0023 (14)0.0202 (15)
N20.0371 (17)0.0344 (17)0.080 (2)0.0060 (14)0.0218 (16)0.0171 (16)
O10.0446 (15)0.0644 (18)0.0516 (16)0.0184 (14)0.0104 (12)0.0285 (14)
O20.0358 (14)0.0535 (15)0.0366 (14)0.0067 (12)0.0015 (11)0.0123 (12)
O30.0407 (14)0.0362 (14)0.0571 (16)0.0074 (12)0.0189 (12)0.0157 (12)
O40.0511 (16)0.0295 (14)0.085 (2)0.0092 (13)0.0326 (14)0.0149 (13)
O50.0321 (13)0.0390 (14)0.0679 (18)0.0078 (11)0.0098 (12)0.0084 (13)
C10.0351 (19)0.0304 (18)0.0307 (17)0.0024 (16)0.0060 (14)0.0032 (15)
C20.0326 (18)0.0308 (18)0.0304 (17)0.0025 (15)0.0059 (14)0.0027 (14)
C30.038 (2)0.042 (2)0.041 (2)0.0035 (17)0.0059 (16)0.0038 (17)
C40.032 (2)0.068 (3)0.049 (2)0.0077 (19)0.0012 (17)0.006 (2)
C50.037 (2)0.077 (3)0.045 (2)0.009 (2)0.0025 (17)0.017 (2)
C60.041 (2)0.056 (2)0.045 (2)0.0051 (19)0.0051 (17)0.0188 (18)
C70.0319 (19)0.040 (2)0.0345 (19)0.0012 (16)0.0052 (14)0.0004 (15)
C80.0348 (19)0.040 (2)0.042 (2)0.0010 (17)0.0046 (16)0.0095 (16)
C90.046 (2)0.047 (2)0.045 (2)0.0055 (19)0.0005 (17)0.0036 (18)
C100.053 (3)0.046 (3)0.088 (4)0.013 (2)0.006 (2)0.003 (2)
C110.064 (3)0.083 (4)0.085 (4)0.021 (3)0.006 (3)0.044 (3)
C120.055 (3)0.120 (4)0.048 (3)0.018 (3)0.000 (2)0.035 (3)
C130.042 (2)0.074 (3)0.046 (2)0.017 (2)0.0003 (18)0.010 (2)
C140.0312 (18)0.0302 (19)0.0347 (19)0.0006 (15)0.0004 (14)0.0009 (14)
C150.0272 (17)0.0312 (18)0.0335 (18)0.0007 (14)0.0014 (14)0.0026 (14)
C160.039 (2)0.035 (2)0.045 (2)0.0044 (16)0.0083 (16)0.0021 (16)
C170.035 (2)0.045 (2)0.060 (2)0.0055 (18)0.0168 (18)0.0112 (19)
C180.033 (2)0.047 (2)0.066 (3)0.0111 (18)0.0081 (18)0.014 (2)
C190.035 (2)0.0287 (19)0.068 (3)0.0007 (16)0.0032 (18)0.0070 (17)
C200.0268 (18)0.0327 (19)0.046 (2)0.0006 (15)0.0031 (15)0.0048 (16)
C210.0280 (19)0.0310 (19)0.075 (3)0.0015 (16)0.0094 (18)0.0045 (18)
C220.047 (2)0.052 (3)0.074 (3)0.005 (2)0.003 (2)0.006 (2)
C230.058 (3)0.056 (3)0.107 (4)0.018 (2)0.003 (3)0.027 (3)
C240.057 (3)0.037 (2)0.128 (5)0.011 (2)0.007 (3)0.003 (3)
C250.043 (2)0.048 (3)0.096 (4)0.000 (2)0.001 (2)0.023 (2)
C260.037 (2)0.044 (2)0.077 (3)0.0041 (19)0.0122 (19)0.012 (2)
C270.074 (3)0.046 (2)0.077 (3)0.016 (2)0.007 (2)0.014 (2)
Geometric parameters (Å, º) top
Cu1—O4i1.951 (2)C9—H90.9300
Cu1—O1i1.954 (2)C10—C111.365 (6)
Cu1—O31.959 (2)C10—H100.9300
Cu1—O21.967 (2)C11—C121.367 (6)
Cu1—O52.159 (2)C11—H110.9300
Cu1—Cu1i2.5774 (10)C12—C131.379 (5)
N1—C71.377 (4)C12—H120.9300
N1—C81.402 (4)C13—H130.9300
N1—H10.8314C14—C151.477 (4)
N2—C201.375 (4)C15—C161.402 (4)
N2—C211.413 (4)C15—C201.413 (4)
N2—H20.8323C16—C171.371 (5)
O1—C11.254 (4)C16—H160.9300
O1—Cu1i1.954 (2)C17—C181.368 (5)
O2—C11.263 (4)C17—H170.9300
O3—C141.266 (4)C18—C191.366 (5)
O4—C141.255 (4)C18—H180.9300
O4—Cu1i1.951 (2)C19—C201.400 (5)
O5—C271.404 (4)C19—H190.9300
O5—H5A0.8409C21—C221.383 (5)
C1—C21.483 (4)C21—C261.388 (5)
C2—C31.394 (5)C22—C231.387 (6)
C2—C71.420 (4)C22—H220.9300
C3—C41.371 (5)C23—C241.368 (7)
C3—H30.9300C23—H230.9300
C4—C51.380 (5)C24—C251.369 (6)
C4—H40.9300C24—H240.9300
C5—C61.373 (5)C25—C261.374 (5)
C5—H50.9300C25—H250.9300
C6—C71.392 (5)C26—H260.9300
C6—H60.9300C27—H27A0.9600
C8—C91.386 (5)C27—H27B0.9600
C8—C131.387 (5)C27—H27C0.9600
C9—C101.369 (5)
O4i—Cu1—O1i87.77 (12)C11—C10—H10120.0
O4i—Cu1—O3169.37 (10)C9—C10—H10120.0
O1i—Cu1—O390.61 (12)C10—C11—C12119.4 (4)
O4i—Cu1—O290.93 (12)C10—C11—H11120.3
O1i—Cu1—O2169.23 (10)C12—C11—H11120.3
O3—Cu1—O288.69 (11)C11—C12—C13121.3 (4)
O4i—Cu1—O591.53 (10)C11—C12—H12119.3
O1i—Cu1—O591.52 (10)C13—C12—H12119.3
O3—Cu1—O599.02 (10)C12—C13—C8119.6 (4)
O2—Cu1—O599.21 (10)C12—C13—H13120.2
O4i—Cu1—Cu1i82.43 (8)C8—C13—H13120.2
O1i—Cu1—Cu1i83.02 (8)O4—C14—O3123.1 (3)
O3—Cu1—Cu1i86.94 (7)O4—C14—C15116.9 (3)
O2—Cu1—Cu1i86.21 (7)O3—C14—C15120.0 (3)
O5—Cu1—Cu1i171.98 (7)C16—C15—C20118.5 (3)
C7—N1—C8129.6 (3)C16—C15—C14117.5 (3)
C7—N1—H1116.6C20—C15—C14124.0 (3)
C8—N1—H1113.4C17—C16—C15122.6 (3)
C20—N2—C21125.9 (3)C17—C16—H16118.7
C20—N2—H2117.8C15—C16—H16118.7
C21—N2—H2116.2C18—C17—C16118.4 (3)
C1—O1—Cu1i126.2 (2)C18—C17—H17120.8
C1—O2—Cu1121.6 (2)C16—C17—H17120.8
C14—O3—Cu1120.8 (2)C19—C18—C17121.2 (3)
C14—O4—Cu1i126.8 (2)C19—C18—H18119.4
C27—O5—Cu1127.4 (2)C17—C18—H18119.4
C27—O5—H5A104.8C18—C19—C20122.0 (3)
Cu1—O5—H5A127.6C18—C19—H19119.0
O1—C1—O2122.8 (3)C20—C19—H19119.0
O1—C1—C2116.5 (3)N2—C20—C19121.0 (3)
O2—C1—C2120.6 (3)N2—C20—C15121.7 (3)
C3—C2—C7118.6 (3)C19—C20—C15117.3 (3)
C3—C2—C1117.6 (3)C22—C21—C26119.0 (4)
C7—C2—C1123.7 (3)C22—C21—N2119.5 (4)
C4—C3—C2122.6 (3)C26—C21—N2121.5 (4)
C4—C3—H3118.7C21—C22—C23119.6 (4)
C2—C3—H3118.7C21—C22—H22120.2
C3—C4—C5118.2 (3)C23—C22—H22120.2
C3—C4—H4120.9C24—C23—C22120.9 (5)
C5—C4—H4120.9C24—C23—H23119.6
C6—C5—C4121.1 (3)C22—C23—H23119.6
C6—C5—H5119.5C23—C24—C25119.6 (4)
C4—C5—H5119.5C23—C24—H24120.2
C5—C6—C7121.6 (4)C25—C24—H24120.2
C5—C6—H6119.2C24—C25—C26120.5 (5)
C7—C6—H6119.2C24—C25—H25119.7
N1—C7—C6121.1 (3)C26—C25—H25119.7
N1—C7—C2121.1 (3)C25—C26—C21120.4 (4)
C6—C7—C2117.7 (3)C25—C26—H26119.8
C9—C8—C13118.2 (3)C21—C26—H26119.8
C9—C8—N1118.5 (3)O5—C27—H27A109.5
C13—C8—N1123.1 (3)O5—C27—H27B109.5
C10—C9—C8121.4 (4)H27A—C27—H27B109.5
C10—C9—H9119.3O5—C27—H27C109.5
C8—C9—H9119.3H27A—C27—H27C109.5
C11—C10—C9120.1 (4)H27B—C27—H27C109.5
Symmetry code: (i) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.832.042.690 (4)135
N2—H2···O30.832.052.688 (4)133
O5—H5A···O1ii0.842.543.306 (4)152
O5—H5A···O4ii0.842.553.260 (4)143
Symmetry code: (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu2(C13H10NO2)4(CH4O)2]
Mr1040.06
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.2467 (14), 14.171 (3), 23.813 (5)
β (°) 97.11 (3)
V3)2426.6 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.22 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
23688, 5568, 3886
Rint0.073
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.115, 1.05
No. of reflections5568
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.35

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.832.042.690 (4)134.5
N2—H2···O30.832.052.688 (4)133.3
O5—H5A···O1i0.842.543.306 (4)152.0
O5—H5A···O4i0.842.553.260 (4)142.9
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors acknowledge financial support from Tianjin Municipal Education Commission (grant No. 20060503)

References

First citationBruker (1998). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationChurchill, M. R., Li, Y.-J., Nalewajek, D., Schaber, P. M. & Dorfamanii, J. (1985). Inorg. Chem. 24, 2684–2687.  CSD CrossRef CAS Web of Science Google Scholar
First citationFacchin, G., Torre, M. H., Kremer, E., Piro, O. E. & Baran, E. J. (1998). Z. Anorg. Allg. Chem. 53, 871–874.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMartin, J. D. & Greenwood, K. B. (1997). Angew. Chem. Int. Ed. 36, 2072–2075.  CrossRef CAS Google Scholar
First citationMelnik, M., Koman, M. & Glowiak, T. (1998). Polyhedron, 17, 1767–1771.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoulton, B., Abourahma, H., Bradner, M. W., Lu, J.-J., McManus, G. J. & Zaworotko, M. J. (2003). Chem. Commun. pp. 1342–1343.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds