metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Ferrocenylphenol

aSchool of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
*Correspondence e-mail: bala@ukzn.ac.za

(Received 1 November 2008; accepted 24 November 2008; online 29 November 2008)

The title compound, [Fe(C5H5)(C11H9O)], is of inter­est as a precursor to the synthesis of cheap ferrocene-based liquid crystals. The –OH substituent only results in weak C—H⋯O weak inter­actions between one of cyclo­penta­dienyl (Cp) ring H atoms and the O atom of a neighbouring mol­ecule with a distance of 3.308 (3) Å between the donor and acceptor atoms. The inter­planar angle between the Cp and benzene rings is 13.0 (4)°. There are also weak O—H⋯π and C—H⋯π inter­actions involving the unsubstituted Cp and the benzene ring, respectively.

Related literature

For general background, see: Togni & Hayashi (1995[Togni, A. & Hayashi, T. (1995). Ferrocene, Homogeneous Catalysis, Organic Synthesis, Material Science. Weinheim: VCH.]); Imrie et al. (2002[Imrie, C., Engelbrecht, P., Loubser, C., McCleland, C. W., Nyamori, V. O., Bogadi, R., Levendis, D. C., Tolom, N., Rooyen, J. & Williams, N. (2002). J. Organomet. Chem. 645, 65-81.]). For related structures, see: Imrie et al. (2003[Imrie, C., Loubser, C., Engelbrecht, P., McCleland, C. W. & Zheng, Y. (2003). J. Organomet. Chem. 665, 48-64.]); Nyamori & Bala (2008a[Nyamori, V. O. & Bala, M. D. (2008a). Acta Cryst. E64, m1376.],b[Nyamori, V. O. & Bala, M. D. (2008b). Acta Cryst. E64, m1451.]). For related syntheses, see: Guillaneux & Kagan (1995[Guillaneux, D. & Kagan, H. B. (1995). J. Org. Chem. 60, 2502-2505.]); Foxman & Rosenblum (1993[Foxman, B. M. & Rosenblum, M. (1993). Organometallics, 12, 4805-4809.]); Tsukazaki et al. (1996[Tsukazaki, M., Tinkl, M., Roglans, A., Chapell, B. J., Taylor, N. J. & Snieckus, V. (1996). J. Am. Chem. Soc. 118, 685-686.]); Lin et al. (1995[Lin, J. T., Sun, S.-S., Wu, J. J., Lee, L., Lin, K.-J. & Huang, Y. F. (1995). Inorg. Chem. 34, 2323-2333.]); Knapp & Rehahn, (1993[Knapp, R. & Rehahn, M. (1993). J. Organomet. Chem. 452, 235-240.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C11H9O)]

  • Mr = 278.12

  • Orthorhombic, P b c a

  • a = 9.950 (2) Å

  • b = 7.9205 (17) Å

  • c = 31.046 (6) Å

  • V = 2446.8 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.22 mm−1

  • T = 173 (2) K

  • 0.42 × 0.22 × 0.07 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: integration (XPREP; Bruker, 2005[Bruker (2005). APEX2, SAINT-NT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.750, Tmax = 0.929

  • 14324 measured reflections

  • 3039 independent reflections

  • 2214 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.084

  • S = 1.02

  • 3039 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 0.95 2.55 3.308 (3) 137
O1—H1ACg3ii 0.84 2.66 3.281 (2) 141
C2—H2⋯Cg1iii 0.95 2.90 3.766 (2) 155
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-1, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]. Cg1 and Cg3 are the centroids of the unsubstituted Cp and the benzene rings, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT-NT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-NT (Bruker, 2005[Bruker (2005). APEX2, SAINT-NT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-NT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The synthesis of arylferrocenes especially compounds prepared by the reaction of para-substituted anilines via diazonium reactions to yield phenylferrocenes has evoked the interest of material scientists (Togni & Hayashi, 1995). For example, arylferrocenes have been established as precursors in the synthesis of ferrocenomesogens especially those with ferrocenyl moiety incorporated as a terminal group (Imrie et al., 2002). These class of compounds are most readily prepared by cross-coupling reactions, e.g. of iodoferrocene (Imrie et al., 2003) with arylboronic (Tsukazaki et al., 1996) and organotin compounds (Lin et al., 1995). Alternative cross-coupling reagents include aryl halides with tin (Guillaneux & Kagan, 1995), zinc (Foxman & Rosenblum, 1993) and ferrocenylboronic acids (Knapp & Rehahn, 1993). In this paper we report the synthesis of 4-hydroxyphenylferrocene using 4-aminophenol which was obtained via diazonium reaction.

The title compound (I) (Fig. 1) is a precursor prepared as part of a study to develop starting materials from cheaper sources for the development of new ionic liquid and liquid crystal materials (Nyamori & Bala, 2008a; 2008b). Due to the –OH subtituent on the benzyl ring it was thought that the property of (I) will be dominated by intra- or intermolecular hydrogen bonding, but analysis revealed no classical hydrogen bonds. Hence, the high melting point of 162 oC may be attributed to a concerted contribution from all molecular contacts within the crystal of (I) (Table 1: Cg(1) is the centroid of the unsubstituted Cp and Cg(3) the centroid of the benzene ring).

In the crystal of (I), the two cp rings are marginally tilted towards each other with a tilt angle between the planes of the two rings of 0.41 (5)°, while the interplanar angle between the cp and the phenyl ring is 13.0 (4)°.

Related literature top

For general background, see: Togni & Hayashi (1995); Imrie et al. (2002). For related structures, see: Imrie et al. (2003); Nyamori & Bala (2008a,b). For related syntheses, see: Guillaneux & Kagan (1995); Foxman & Rosenblum (1993); Tsukazaki et al. (1996); Lin et al. (1995); Knapp & Rehahn, (1993). Cg1 and Cg3 are the centroids of the unsubstituted Cp and the benzene rings, respectively.

Experimental top

In an excess of 2M hydrochloric acid at 5 °C was dissolved 4-aminophenol (12.00 g, 0.11 mol) followed by slow addition of sodium nitrite (8.00 g, 0.11 mol) in cold water (20 cm3) also at 5 °C. The solution was left to stir at this temperature for 30 min and the resultant solution was filtered. The filtrate was immediately added to a cold thoroughly stirred solution of ferrocene (18.00 g, 0.10 mol) in diethyl ether (500 cm3). Stirring was continued at 5 °C for 8 h. The ether layer was then separated, washed with water (3 x 100 cm3) and dried over anhydrous sodium sulfate. The solution was concentrated and the residue was passed through a column of alumina. Dichloromethane: hexane (1:1) eluted unreacted ferrocene. Further elution of the column with diethyl ether yielded 4-ferrocenylphenol (5.22 g, 32%) as yellow crystals recrystallized from hexane, mp 162 oC.

FTIR: νmax(KBr/cm-1) 3515, 3091, 1901, 1607, 1525, 1454, 1434, 1264, 1210, 1176, 1102, 1027, 998, 885, 839, 816, 665, 620; 1H-NMR: δH(CDCl3) 7.38(2H, d, J 8.5, ArH), 6.79(2H, d, J 8.1, ArH), 4.87(1H, s,OH), 4.58(2H, t, J 1.9, C5H4), 4.28(2H, t, J 1.9, C5H4), 4.05(5H, s, C5H5); 13C-NMR: δC(CDCl3) 154.25, 131.88, 127.76, 115.70, 86.192, 69.87, 68.89, 66.51; EI–MS 70 eV m/z (%): 280(39%), 277(M+, 81%), 276(100%), 220(10%), 213(39%); Found: M+, 278.0388 for C16H14FeO, requires M, 278.0392.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). Hydrogen atom attached to oxygen was freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title complex with the atom labelling scheme. Ellipsoids are drawn at the 50% probability level.
4-Ferrocenylphenol top
Crystal data top
[Fe(C5H5)(C11H9O)]F(000) = 1152
Mr = 278.12Dx = 1.51 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 946 reflections
a = 9.950 (2) Åθ = 3.9–27.6°
b = 7.9205 (17) ŵ = 1.22 mm1
c = 31.046 (6) ÅT = 173 K
V = 2446.8 (9) Å3Plate, orange
Z = 80.42 × 0.22 × 0.07 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2214 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.051
Absorption correction: integration
(XPREP; Bruker, 2005)
θmax = 28.3°, θmin = 2.4°
Tmin = 0.750, Tmax = 0.929h = 138
14324 measured reflectionsk = 910
3039 independent reflectionsl = 4141
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0424P)2 + 0.544P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.084(Δ/σ)max = 0.001
S = 1.02Δρmax = 0.31 e Å3
3039 reflectionsΔρmin = 0.43 e Å3
164 parameters
Crystal data top
[Fe(C5H5)(C11H9O)]V = 2446.8 (9) Å3
Mr = 278.12Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.950 (2) ŵ = 1.22 mm1
b = 7.9205 (17) ÅT = 173 K
c = 31.046 (6) Å0.42 × 0.22 × 0.07 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3039 independent reflections
Absorption correction: integration
(XPREP; Bruker, 2005)
2214 reflections with I > 2σ(I)
Tmin = 0.750, Tmax = 0.929Rint = 0.051
14324 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.02Δρmax = 0.31 e Å3
3039 reflectionsΔρmin = 0.43 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1342 (2)0.1001 (3)0.11907 (7)0.0408 (6)
H10.15860.14890.14590.049*
C20.1895 (2)0.1413 (3)0.07829 (8)0.0354 (5)
H20.25750.22280.07290.042*
C30.1253 (2)0.0396 (3)0.04727 (7)0.0347 (5)
H30.14260.04010.01720.042*
C40.0312 (2)0.0627 (3)0.06860 (9)0.0380 (6)
H40.02630.14310.05540.046*
C50.0366 (2)0.0263 (3)0.11265 (9)0.0420 (6)
H50.01630.07780.13450.05*
C60.10992 (19)0.3807 (2)0.10912 (6)0.0210 (4)
C70.0405 (2)0.4386 (2)0.07116 (6)0.0250 (4)
H70.02810.5220.07040.03*
C80.0926 (2)0.3492 (2)0.03499 (6)0.0263 (4)
H80.0650.36290.00590.032*
C90.1930 (2)0.2361 (3)0.04994 (7)0.0267 (4)
H90.24410.16080.03260.032*
C100.20381 (19)0.2549 (2)0.09535 (7)0.0237 (4)
H100.26340.19410.11350.028*
C110.09297 (19)0.4446 (2)0.15359 (6)0.0218 (4)
C120.0132 (2)0.5527 (3)0.16436 (7)0.0281 (4)
H120.07890.57910.14320.034*
C130.0248 (2)0.6219 (3)0.20519 (7)0.0332 (5)
H130.09750.69530.21170.04*
C140.0701 (3)0.5840 (3)0.23658 (7)0.0339 (5)
C150.1749 (2)0.4741 (3)0.22686 (7)0.0322 (5)
H150.2390.44580.24840.039*
C160.1861 (2)0.4061 (3)0.18597 (6)0.0266 (4)
H160.25840.33170.17970.032*
O10.0663 (2)0.6509 (3)0.27745 (5)0.0519 (5)
H1A0.00330.70990.28030.078*
Fe10.01267 (3)0.18508 (3)0.078786 (8)0.02002 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0393 (14)0.0524 (15)0.0306 (12)0.0248 (12)0.0100 (10)0.0062 (11)
C20.0181 (10)0.0312 (11)0.0567 (16)0.0031 (8)0.0022 (10)0.0064 (10)
C30.0340 (12)0.0417 (13)0.0286 (11)0.0154 (10)0.0044 (9)0.0013 (10)
C40.0294 (12)0.0196 (10)0.0650 (17)0.0067 (9)0.0036 (11)0.0031 (10)
C50.0360 (13)0.0390 (14)0.0511 (15)0.0137 (10)0.0123 (11)0.0252 (12)
C60.0207 (10)0.0187 (9)0.0236 (10)0.0036 (7)0.0012 (8)0.0020 (7)
C70.0273 (11)0.0198 (9)0.0278 (11)0.0011 (8)0.0005 (8)0.0027 (8)
C80.0334 (12)0.0248 (10)0.0207 (10)0.0065 (8)0.0018 (8)0.0026 (8)
C90.0237 (10)0.0268 (10)0.0295 (11)0.0047 (8)0.0069 (9)0.0064 (8)
C100.0192 (10)0.0218 (10)0.0303 (10)0.0020 (8)0.0016 (8)0.0009 (8)
C110.0234 (10)0.0190 (9)0.0230 (10)0.0025 (8)0.0012 (8)0.0009 (7)
C120.0285 (11)0.0295 (11)0.0262 (10)0.0035 (9)0.0027 (8)0.0009 (8)
C130.0378 (13)0.0323 (11)0.0294 (11)0.0078 (10)0.0053 (10)0.0026 (9)
C140.0487 (14)0.0327 (12)0.0202 (10)0.0010 (10)0.0032 (10)0.0029 (8)
C150.0369 (12)0.0348 (12)0.0249 (11)0.0015 (10)0.0052 (9)0.0032 (9)
C160.0265 (11)0.0255 (11)0.0278 (11)0.0015 (8)0.0005 (9)0.0025 (8)
O10.0721 (14)0.0599 (12)0.0237 (8)0.0148 (10)0.0012 (9)0.0124 (8)
Fe10.01885 (16)0.01960 (15)0.02160 (15)0.00114 (11)0.00087 (11)0.00129 (11)
Geometric parameters (Å, º) top
C1—C51.409 (4)C7—H70.95
C1—C21.419 (3)C8—C91.420 (3)
C1—Fe12.038 (2)C8—Fe12.0425 (19)
C1—H10.95C8—H80.95
C2—C31.409 (3)C9—C101.422 (3)
C2—Fe12.041 (2)C9—Fe12.046 (2)
C2—H20.95C9—H90.95
C3—C41.404 (3)C10—Fe12.046 (2)
C3—Fe12.042 (2)C10—H100.95
C3—H30.95C11—C121.400 (3)
C4—C51.399 (4)C11—C161.401 (3)
C4—Fe12.036 (2)C12—C131.386 (3)
C4—H40.95C12—H120.95
C5—Fe12.037 (2)C13—C141.390 (3)
C5—H50.95C13—H130.95
C6—C101.431 (3)C14—O11.376 (2)
C6—C71.441 (3)C14—C151.392 (3)
C6—C111.480 (3)C15—C161.384 (3)
C6—Fe12.0550 (19)C15—H150.95
C7—C81.425 (3)C16—H160.95
C7—Fe12.041 (2)O1—H1A0.84
C5—C1—C2107.7 (2)C16—C11—C6121.30 (18)
C5—C1—Fe169.74 (13)C13—C12—C11121.55 (19)
C2—C1—Fe169.79 (12)C13—C12—H12119.2
C5—C1—H1126.1C11—C12—H12119.2
C2—C1—H1126.1C12—C13—C14119.9 (2)
Fe1—C1—H1125.9C12—C13—H13120
C3—C2—C1107.6 (2)C14—C13—H13120
C3—C2—Fe169.83 (12)O1—C14—C13123.0 (2)
C1—C2—Fe169.51 (12)O1—C14—C15117.5 (2)
C3—C2—H2126.2C13—C14—C15119.50 (19)
C1—C2—H2126.2C16—C15—C14120.2 (2)
Fe1—C2—H2126C16—C15—H15119.9
C4—C3—C2108.1 (2)C14—C15—H15119.9
C4—C3—Fe169.63 (12)C15—C16—C11121.37 (19)
C2—C3—Fe169.80 (12)C15—C16—H16119.3
C4—C3—H3126C11—C16—H16119.3
C2—C3—H3126C14—O1—H1A109.5
Fe1—C3—H3126.2C4—Fe1—C540.17 (10)
C5—C4—C3108.5 (2)C4—Fe1—C167.84 (10)
C5—C4—Fe169.96 (13)C5—Fe1—C140.45 (10)
C3—C4—Fe170.11 (13)C4—Fe1—C7163.72 (9)
C5—C4—H4125.8C5—Fe1—C7154.33 (10)
C3—C4—H4125.8C1—Fe1—C7119.58 (10)
Fe1—C4—H4125.7C4—Fe1—C267.88 (9)
C4—C5—C1108.1 (2)C5—Fe1—C268.10 (9)
C4—C5—Fe169.86 (13)C1—Fe1—C240.70 (9)
C1—C5—Fe169.81 (13)C7—Fe1—C2107.46 (9)
C4—C5—H5125.9C4—Fe1—C340.27 (9)
C1—C5—H5125.9C5—Fe1—C367.76 (10)
Fe1—C5—H5126C1—Fe1—C368.01 (9)
C10—C6—C7106.89 (17)C7—Fe1—C3126.24 (9)
C10—C6—C11126.23 (17)C2—Fe1—C340.37 (9)
C7—C6—C11126.81 (18)C4—Fe1—C8126.43 (10)
C10—C6—Fe169.26 (11)C5—Fe1—C8163.85 (10)
C7—C6—Fe168.89 (11)C1—Fe1—C8153.91 (10)
C11—C6—Fe1129.17 (13)C7—Fe1—C840.86 (8)
C8—C7—C6108.17 (18)C2—Fe1—C8119.13 (9)
C8—C7—Fe169.62 (11)C3—Fe1—C8107.58 (9)
C6—C7—Fe169.92 (11)C4—Fe1—C9108.10 (9)
C8—C7—H7125.9C5—Fe1—C9126.82 (10)
C6—C7—H7125.9C1—Fe1—C9164.34 (10)
Fe1—C7—H7126.1C7—Fe1—C968.65 (8)
C9—C8—C7108.17 (18)C2—Fe1—C9153.46 (9)
C9—C8—Fe169.80 (11)C3—Fe1—C9119.42 (9)
C7—C8—Fe169.52 (11)C8—Fe1—C940.65 (8)
C9—C8—H8125.9C4—Fe1—C10119.95 (9)
C7—C8—H8125.9C5—Fe1—C10108.43 (9)
Fe1—C8—H8126.3C1—Fe1—C10126.98 (9)
C8—C9—C10108.12 (17)C7—Fe1—C1068.71 (8)
C8—C9—Fe169.55 (12)C2—Fe1—C10164.51 (9)
C10—C9—Fe169.69 (11)C3—Fe1—C10153.85 (9)
C8—C9—H9125.9C8—Fe1—C1068.49 (8)
C10—C9—H9125.9C9—Fe1—C1040.66 (8)
Fe1—C9—H9126.4C4—Fe1—C6154.05 (9)
C9—C10—C6108.65 (17)C5—Fe1—C6119.77 (9)
C9—C10—Fe169.65 (11)C1—Fe1—C6107.79 (9)
C6—C10—Fe169.90 (11)C7—Fe1—C641.19 (8)
C9—C10—H10125.7C2—Fe1—C6126.55 (9)
C6—C10—H10125.7C3—Fe1—C6164.07 (9)
Fe1—C10—H10126.4C8—Fe1—C669.01 (8)
C12—C11—C16117.44 (18)C9—Fe1—C668.82 (8)
C12—C11—C6121.19 (17)C10—Fe1—C640.84 (8)
C5—C1—C2—C30.0 (2)C6—C7—Fe1—C981.82 (13)
Fe1—C1—C2—C359.70 (15)C8—C7—Fe1—C1081.31 (13)
C5—C1—C2—Fe159.65 (15)C6—C7—Fe1—C1038.02 (12)
C1—C2—C3—C40.2 (2)C8—C7—Fe1—C6119.33 (18)
Fe1—C2—C3—C459.31 (15)C3—C2—Fe1—C437.48 (14)
C1—C2—C3—Fe159.50 (15)C1—C2—Fe1—C481.26 (16)
C2—C3—C4—C50.3 (2)C3—C2—Fe1—C580.96 (15)
Fe1—C3—C4—C559.67 (15)C1—C2—Fe1—C537.78 (15)
C2—C3—C4—Fe159.42 (15)C3—C2—Fe1—C1118.7 (2)
C3—C4—C5—C10.2 (2)C3—C2—Fe1—C7125.93 (14)
Fe1—C4—C5—C159.54 (15)C1—C2—Fe1—C7115.34 (14)
C3—C4—C5—Fe159.76 (15)C1—C2—Fe1—C3118.7 (2)
C2—C1—C5—C40.1 (2)C3—C2—Fe1—C883.02 (15)
Fe1—C1—C5—C459.58 (15)C1—C2—Fe1—C8158.25 (14)
C2—C1—C5—Fe159.68 (15)C3—C2—Fe1—C948.9 (2)
C10—C6—C7—C80.3 (2)C1—C2—Fe1—C9167.63 (18)
C11—C6—C7—C8176.84 (18)C3—C2—Fe1—C10160.9 (3)
Fe1—C6—C7—C859.33 (14)C1—C2—Fe1—C1042.2 (4)
C10—C6—C7—Fe159.07 (13)C3—C2—Fe1—C6167.43 (13)
C11—C6—C7—Fe1123.83 (19)C1—C2—Fe1—C673.83 (16)
C6—C7—C8—C90.2 (2)C2—C3—Fe1—C4119.3 (2)
Fe1—C7—C8—C959.30 (14)C4—C3—Fe1—C537.40 (14)
C6—C7—C8—Fe159.52 (14)C2—C3—Fe1—C581.89 (15)
C7—C8—C9—C100.1 (2)C4—C3—Fe1—C181.22 (16)
Fe1—C8—C9—C1059.22 (14)C2—C3—Fe1—C138.08 (14)
C7—C8—C9—Fe159.13 (14)C4—C3—Fe1—C7167.43 (14)
C8—C9—C10—C60.1 (2)C2—C3—Fe1—C773.28 (16)
Fe1—C9—C10—C659.20 (13)C4—C3—Fe1—C2119.3 (2)
C8—C9—C10—Fe159.13 (14)C4—C3—Fe1—C8126.14 (14)
C7—C6—C10—C90.2 (2)C2—C3—Fe1—C8114.56 (14)
C11—C6—C10—C9176.92 (17)C4—C3—Fe1—C983.45 (16)
Fe1—C6—C10—C959.04 (13)C2—C3—Fe1—C9157.26 (13)
C7—C6—C10—Fe158.84 (13)C4—C3—Fe1—C1049.3 (3)
C11—C6—C10—Fe1124.04 (19)C2—C3—Fe1—C10168.58 (18)
C10—C6—C11—C12172.01 (19)C4—C3—Fe1—C6158.9 (3)
C7—C6—C11—C1211.4 (3)C2—C3—Fe1—C639.6 (4)
Fe1—C6—C11—C1280.3 (2)C9—C8—Fe1—C474.51 (15)
C10—C6—C11—C1611.2 (3)C7—C8—Fe1—C4166.01 (12)
C7—C6—C11—C16165.41 (19)C9—C8—Fe1—C544.4 (4)
Fe1—C6—C11—C16102.9 (2)C7—C8—Fe1—C5163.9 (3)
C16—C11—C12—C131.3 (3)C9—C8—Fe1—C1169.29 (18)
C6—C11—C12—C13175.68 (19)C7—C8—Fe1—C149.8 (2)
C11—C12—C13—C140.3 (3)C9—C8—Fe1—C7119.48 (17)
C12—C13—C14—O1178.6 (2)C9—C8—Fe1—C2157.37 (12)
C12—C13—C14—C151.1 (3)C7—C8—Fe1—C283.15 (14)
O1—C14—C15—C16178.4 (2)C9—C8—Fe1—C3114.96 (13)
C13—C14—C15—C161.3 (3)C7—C8—Fe1—C3125.56 (13)
C14—C15—C16—C110.3 (3)C7—C8—Fe1—C9119.48 (17)
C12—C11—C16—C151.0 (3)C9—C8—Fe1—C1037.57 (12)
C6—C11—C16—C15175.96 (19)C7—C8—Fe1—C1081.91 (13)
C3—C4—Fe1—C5119.37 (19)C9—C8—Fe1—C681.54 (12)
C5—C4—Fe1—C137.69 (14)C7—C8—Fe1—C637.94 (12)
C3—C4—Fe1—C181.68 (15)C8—C9—Fe1—C4125.35 (13)
C5—C4—Fe1—C7158.1 (3)C10—C9—Fe1—C4115.18 (13)
C3—C4—Fe1—C738.8 (4)C8—C9—Fe1—C5165.92 (13)
C5—C4—Fe1—C281.80 (15)C10—C9—Fe1—C574.61 (15)
C3—C4—Fe1—C237.57 (13)C8—C9—Fe1—C1162.4 (3)
C5—C4—Fe1—C3119.37 (19)C10—C9—Fe1—C142.9 (4)
C5—C4—Fe1—C8167.52 (13)C8—C9—Fe1—C737.69 (12)
C3—C4—Fe1—C873.11 (16)C10—C9—Fe1—C781.77 (12)
C5—C4—Fe1—C9126.18 (14)C8—C9—Fe1—C248.8 (2)
C3—C4—Fe1—C9114.44 (14)C10—C9—Fe1—C2168.24 (17)
C5—C4—Fe1—C1083.30 (15)C8—C9—Fe1—C382.85 (14)
C3—C4—Fe1—C10157.33 (13)C10—C9—Fe1—C3157.68 (12)
C5—C4—Fe1—C647.6 (3)C10—C9—Fe1—C8119.47 (16)
C3—C4—Fe1—C6166.92 (17)C8—C9—Fe1—C10119.47 (16)
C1—C5—Fe1—C4119.21 (19)C8—C9—Fe1—C682.04 (12)
C4—C5—Fe1—C1119.21 (19)C10—C9—Fe1—C637.43 (11)
C4—C5—Fe1—C7166.05 (18)C9—C10—Fe1—C483.08 (15)
C1—C5—Fe1—C746.8 (3)C6—C10—Fe1—C4156.99 (13)
C4—C5—Fe1—C281.20 (14)C9—C10—Fe1—C5125.56 (14)
C1—C5—Fe1—C238.01 (14)C6—C10—Fe1—C5114.51 (14)
C4—C5—Fe1—C337.48 (13)C9—C10—Fe1—C1166.69 (13)
C1—C5—Fe1—C381.73 (15)C6—C10—Fe1—C173.37 (15)
C4—C5—Fe1—C838.7 (4)C9—C10—Fe1—C781.60 (13)
C1—C5—Fe1—C8157.9 (3)C6—C10—Fe1—C738.34 (11)
C4—C5—Fe1—C973.42 (16)C9—C10—Fe1—C2160.1 (3)
C1—C5—Fe1—C9167.37 (13)C6—C10—Fe1—C240.1 (4)
C4—C5—Fe1—C10114.89 (14)C9—C10—Fe1—C348.6 (2)
C1—C5—Fe1—C10125.90 (14)C6—C10—Fe1—C3168.58 (18)
C4—C5—Fe1—C6158.16 (13)C9—C10—Fe1—C837.57 (12)
C1—C5—Fe1—C682.62 (15)C6—C10—Fe1—C882.37 (12)
C5—C1—Fe1—C437.44 (14)C6—C10—Fe1—C9119.93 (16)
C2—C1—Fe1—C481.38 (15)C9—C10—Fe1—C6119.93 (16)
C2—C1—Fe1—C5118.8 (2)C10—C6—Fe1—C450.7 (2)
C5—C1—Fe1—C7158.69 (14)C7—C6—Fe1—C4169.36 (19)
C2—C1—Fe1—C782.48 (15)C11—C6—Fe1—C469.7 (3)
C5—C1—Fe1—C2118.8 (2)C10—C6—Fe1—C583.99 (15)
C5—C1—Fe1—C381.05 (15)C7—C6—Fe1—C5157.38 (13)
C2—C1—Fe1—C337.77 (14)C11—C6—Fe1—C536.5 (2)
C5—C1—Fe1—C8166.23 (18)C10—C6—Fe1—C1126.50 (13)
C2—C1—Fe1—C847.4 (3)C7—C6—Fe1—C1114.87 (13)
C5—C1—Fe1—C940.4 (4)C11—C6—Fe1—C16.1 (2)
C2—C1—Fe1—C9159.2 (3)C10—C6—Fe1—C7118.63 (16)
C5—C1—Fe1—C1074.15 (17)C11—C6—Fe1—C7120.9 (2)
C2—C1—Fe1—C10167.03 (12)C10—C6—Fe1—C2167.63 (13)
C5—C1—Fe1—C6115.30 (14)C7—C6—Fe1—C273.74 (15)
C2—C1—Fe1—C6125.87 (14)C11—C6—Fe1—C247.2 (2)
C8—C7—Fe1—C443.9 (4)C10—C6—Fe1—C3161.5 (3)
C6—C7—Fe1—C4163.3 (3)C7—C6—Fe1—C342.8 (3)
C8—C7—Fe1—C5169.75 (19)C11—C6—Fe1—C378.1 (4)
C6—C7—Fe1—C550.4 (3)C10—C6—Fe1—C880.98 (13)
C8—C7—Fe1—C1157.28 (13)C7—C6—Fe1—C837.65 (12)
C6—C7—Fe1—C183.39 (14)C11—C6—Fe1—C8158.6 (2)
C8—C7—Fe1—C2114.61 (13)C10—C6—Fe1—C937.27 (12)
C6—C7—Fe1—C2126.06 (13)C7—C6—Fe1—C981.36 (13)
C8—C7—Fe1—C374.04 (15)C11—C6—Fe1—C9157.7 (2)
C6—C7—Fe1—C3166.62 (12)C7—C6—Fe1—C10118.63 (16)
C6—C7—Fe1—C8119.33 (18)C11—C6—Fe1—C10120.4 (2)
C8—C7—Fe1—C937.51 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.952.553.308 (3)137
O1—H1A···Cg3ii0.842.663.281 (2)141
C2—H2···Cg1iii0.952.903.766 (2)155
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x1, y1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C11H9O)]
Mr278.12
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)173
a, b, c (Å)9.950 (2), 7.9205 (17), 31.046 (6)
V3)2446.8 (9)
Z8
Radiation typeMo Kα
µ (mm1)1.22
Crystal size (mm)0.42 × 0.22 × 0.07
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionIntegration
(XPREP; Bruker, 2005)
Tmin, Tmax0.750, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
14324, 3039, 2214
Rint0.051
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.084, 1.02
No. of reflections3039
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.43

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.95002.55003.308 (3)137.00
O1—H1A···Cg3ii0.842.663.281 (2)141
C2—H2···Cg1iii0.952.903.766 (2)155
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x1, y1/2, z1/2.
 

Acknowledgements

We thank Dr Manuel Fernandez for data collection, and the University of KwaZulu-Natal and the NRF for financial support.

References

First citationBruker (2005). APEX2, SAINT-NT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFoxman, B. M. & Rosenblum, M. (1993). Organometallics, 12, 4805–4809.  CSD CrossRef CAS Web of Science Google Scholar
First citationGuillaneux, D. & Kagan, H. B. (1995). J. Org. Chem. 60, 2502–2505.  CrossRef CAS Web of Science Google Scholar
First citationImrie, C., Engelbrecht, P., Loubser, C., McCleland, C. W., Nyamori, V. O., Bogadi, R., Levendis, D. C., Tolom, N., Rooyen, J. & Williams, N. (2002). J. Organomet. Chem. 645, 65–81.  Web of Science CSD CrossRef CAS Google Scholar
First citationImrie, C., Loubser, C., Engelbrecht, P., McCleland, C. W. & Zheng, Y. (2003). J. Organomet. Chem. 665, 48–64.  Web of Science CSD CrossRef CAS Google Scholar
First citationKnapp, R. & Rehahn, M. (1993). J. Organomet. Chem. 452, 235–240.  CrossRef CAS Web of Science Google Scholar
First citationLin, J. T., Sun, S.-S., Wu, J. J., Lee, L., Lin, K.-J. & Huang, Y. F. (1995). Inorg. Chem. 34, 2323–2333.  CrossRef CAS Web of Science Google Scholar
First citationNyamori, V. O. & Bala, M. D. (2008a). Acta Cryst. E64, m1376.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNyamori, V. O. & Bala, M. D. (2008b). Acta Cryst. E64, m1451.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTogni, A. & Hayashi, T. (1995). Ferrocene, Homogeneous Catalysis, Organic Synthesis, Material Science. Weinheim: VCH.  Google Scholar
First citationTsukazaki, M., Tinkl, M., Roglans, A., Chapell, B. J., Taylor, N. J. & Snieckus, V. (1996). J. Am. Chem. Soc. 118, 685–686.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds