metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-N,N′-di-4-pyridylpyridine-2,6-di­amine)bis­[dimethacrylatocobalt(II)] dihydrate

aCollege of Chemistry and Life Science, Lishui University, 323000 Lishui, Zhejiang, People's Republic of China, and bDepartment of Biochemistry, Nan Yang Institute of Technology, Nan Yang City, He Nan Province, People's Republic of China
*Correspondence e-mail: zjlswgl@126.com

(Received 4 November 2008; accepted 14 November 2008; online 20 November 2008)

The CoII ion in the title complex, [Co2(C4H5O2)4(C15H13N5)2]·2H2O, has a distorted square-planar coordination formed by the bridging bidentate N,N′-di-4-pyridylpyrid­ine-2,6-diamine (dapmp) ligands and two monodentate carboxyl­ate groups from methacrylates. Two dapmp ligands bridge two Co atoms, forming a dinuclear complex arranged around an inversion centre. N—H⋯O and O—H⋯O hydrogen bonds involving the solvent water mol­ecule result in the formation of a three-dimensional network. The aliphatic moiety of one of the methacrylate groups is disordered over two positions with fixed occupancies of 0.67 and 0.33.

Related literature

For related literature, see: Liu et al. (2008[Liu, J. Q., Wang, Y. Y., Ma, L. F., Zhang, W. H., Zeng, X. R., Shi, Q. Z. & Peng, S. M. (2008). Inorg. Chim. Acta, 361, 2327-2334.]); Patra et al. (2004[Patra, A. K., Rose, M. J., Murphy, K. A., Olmstead, M. M. & Mascharak, P. K. (2004). Inorg. Chem. 43, 4487-4495.]); Thorsten et al. (2004[Thorsten, G., Thomas, L. & Roland, F. (2004). Eur. J. Inorg. Chem. pp. 394-400.]); Burchell et al. (2006[Burchell, T. J., Eisler, D. J. & Puddephatt, R. (2006). J. Mol. Struct. 796, 47-57.]).

[Scheme 1]

Experimental

Crystal data
  • [Co2(C4H5O2)4(C15H13N5)2]·2H2O2

  • Mr = 1020.82

  • Monoclinic, C 2/c

  • a = 16.852 (3) Å

  • b = 17.425 (3) Å

  • c = 16.206 (2) Å

  • β = 91.848 (2)°

  • V = 4756.6 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 298 (2) K

  • 0.28 × 0.20 × 0.16 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.814, Tmax = 0.887

  • 11993 measured reflections

  • 4289 independent reflections

  • 3333 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.113

  • S = 1.00

  • 4289 reflections

  • 319 parameters

  • 5 restraints

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4i 0.86 1.99 2.831 (4) 167
N4—H4⋯O5ii 0.86 1.98 2.840 (3) 174
O5—H5B⋯O2 0.86 1.89 2.737 (3) 170
O5—H5C⋯O2iii 0.86 2.10 2.917 (3) 158
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{5\over 2}}]; (iii) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.]); ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Bridging bis(amidopyridine) ligands have been widely explored in coordination chemistry for building various novel structural architectures and functional solid materials. Besides their diverse coordination modes, amide groups of ligands have proved to be useful in self-assembly, since they give predictable patterns of hydrogen bonding that can add extra dimensionality and helicity to the supramolecular structures (Burchell, et al., 2006; Patra et al., 2004). The 2,4-di(2-aminopyridine)-6-methypyrimidine (dapmp) ligand is a versatile ligand like but with more diversity than terpyridine (tpy). The modified title ligand and its complexes have been reported (Thorsten et al., 2004). In this paper, we report here the synthesis and crystal structure of the title compound (I).

The Co(II) atom in the title complex, has a square coordination formed by two N atoms of two bridging dapmp ligands and two O atoms of two monodentate carboxylate groups from methacrylates. The bridging dapmp ligands bridge two Co atoms forming a dinuclear complex arranged around inversion center (Fig.1). The average Co—N bond length of 2.006 Å is close to the values observed in related complexes (Liu et al., 2008).

The occurence of N-H···O and O-H···O hydrogen bondings involving the solvent water molecule results in the formation of a three dimensionnal network (Table 1).

Related literature top

For related literature, see: Liu et al. (2008); Patra et al. (2004); Thorsten et al. (2004); Burchell et al. (2006).

Experimental top

dapmp (0.05 g, 0.18 mmol), Co(CH3COO)2 (0.035 g, 0.16 mmol), methacrylic acid (0.032 g, 0.15 mmol) and NaOH (1M, 0.5 mL) were added distilled water(15 mL), the mixture was heated for fifty hours under reflux. during the process stirring and influx were required. The resultant was kept at room temperature, two weeks later some single crystals of the size suitable for X-Ray diffraction measurement.

Refinement top

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.98 Å (methyl) or 0.97 Å (methylene) and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C or N). H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H= 0.82 (1)Å and H···H= 1.38 (2)Å) with Uiso(H) = 1.5Ueq(O). In the last stage of refinement, they were treated as riding on their parent O atom.

The C atoms of one of the methacrylate group are disordered. The ratio of the occupancy factors of each component was determined to be 0.33/0.67. The two components were refined using the tools available in SHELXL-97 (PART and SAME instructions). Each corresponding C atoms were anisotropically refined using EADP restraints.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: APEX2 (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the dinuclear complex showing the atom-labeling scheme.Displacement ellipsoids are shown at the 30% probability level. H atoms and solvent water molecule have been omitted for clarity. Only one component of the disordered methacrylate is represented. [Symmetric codes: (i) 1/2-x, 1/2-y, 2-z].
Bis(µ-N,N'-di-4-pyridylpyridine-2,6-diamine)bis[dimethacrylatocobalt(II)] dihydrate top
Crystal data top
[Co2(C4H5O2)4(C15H13N5)2]·2H2OF(000) = 2120
Mr = 1020.82Dx = 1.425 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4289 reflections
a = 16.852 (3) Åθ = 1.7–25.2°
b = 17.425 (3) ŵ = 0.77 mm1
c = 16.206 (2) ÅT = 298 K
β = 91.848 (2)°Block, pink
V = 4756.6 (12) Å30.28 × 0.20 × 0.16 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
4289 independent reflections
Radiation source: fine-focus sealed tube3333 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scanθmax = 25.2°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2019
Tmin = 0.814, Tmax = 0.887k = 2013
11993 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.073P)2 + 1.1663P]
where P = (Fo2 + 2Fc2)/3
4289 reflections(Δ/σ)max = 0.003
319 parametersΔρmax = 0.67 e Å3
5 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Co2(C4H5O2)4(C15H13N5)2]·2H2OV = 4756.6 (12) Å3
Mr = 1020.82Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.852 (3) ŵ = 0.77 mm1
b = 17.425 (3) ÅT = 298 K
c = 16.206 (2) Å0.28 × 0.20 × 0.16 mm
β = 91.848 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
4289 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3333 reflections with I > 2σ(I)
Tmin = 0.814, Tmax = 0.887Rint = 0.021
11993 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0365 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.00Δρmax = 0.67 e Å3
4289 reflectionsΔρmin = 0.25 e Å3
319 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.235159 (18)0.431425 (16)0.937768 (18)0.05265 (14)
N10.20029 (13)0.45034 (12)1.05235 (13)0.0639 (5)
N20.10374 (13)0.46526 (12)1.28525 (13)0.0653 (5)
H20.09610.51131.30230.078*
N30.08770 (11)0.33476 (11)1.31525 (12)0.0558 (5)
N40.07043 (12)0.20360 (11)1.34321 (13)0.0643 (5)
H40.05040.17091.37640.077*
N50.19558 (12)0.10578 (11)1.15108 (12)0.0605 (5)
O10.25618 (10)0.53794 (9)0.91709 (11)0.0603 (4)
O20.37530 (12)0.52113 (10)0.97624 (14)0.0822 (6)
O30.18484 (15)0.32931 (12)0.93913 (15)0.0935 (7)
O40.1035 (2)0.38372 (17)0.8496 (2)0.1382 (11)
O50.50106 (12)0.59087 (12)1.05678 (14)0.0931 (7)
H5B0.46480.56371.03240.140*
H5C0.54230.56171.06000.140*
C10.16847 (16)0.51510 (13)1.08051 (16)0.0622 (6)
H10.16690.55781.04600.075*
C20.13828 (16)0.52194 (14)1.15691 (16)0.0637 (6)
H2A0.11650.56841.17320.076*
C30.13977 (14)0.45961 (14)1.21099 (15)0.0565 (6)
C40.17974 (16)0.39479 (15)1.18482 (17)0.0673 (7)
H4A0.18810.35361.22050.081*
C50.20654 (17)0.39206 (15)1.10674 (18)0.0745 (8)
H50.23080.34711.08970.089*
C60.07752 (14)0.40755 (14)1.33749 (15)0.0545 (5)
C70.03970 (16)0.42917 (15)1.40823 (16)0.0649 (7)
H70.03460.48061.42230.078*
C80.00997 (16)0.37248 (16)1.45714 (16)0.0690 (7)
H80.01630.38521.50490.083*
C90.01910 (15)0.29651 (15)1.43540 (16)0.0643 (6)
H90.00080.25731.46770.077*
C100.05876 (13)0.28040 (14)1.36400 (15)0.0554 (6)
C110.10900 (13)0.17245 (13)1.27789 (15)0.0550 (6)
C120.13584 (16)0.09731 (14)1.28272 (17)0.0652 (7)
H120.12520.06751.32860.078*
C130.17805 (16)0.06716 (13)1.21981 (17)0.0650 (7)
H130.19570.01681.22490.078*
C140.16509 (16)0.17700 (14)1.14514 (15)0.0643 (6)
H140.17370.20461.09710.077*
C150.12263 (15)0.21124 (14)1.20446 (15)0.0613 (6)
H150.10260.26051.19620.074*
C160.32418 (15)0.56277 (13)0.94107 (16)0.0592 (6)
C170.34147 (17)0.64439 (15)0.92618 (19)0.0729 (7)
H170.39160.66230.94250.087*
C180.29301 (18)0.69284 (16)0.8925 (2)0.0808 (8)
H180.24300.67470.87630.097*
C190.3099 (3)0.77605 (18)0.8772 (3)0.1243 (15)
H19A0.36290.78790.89660.186*
H19B0.27280.80710.90600.186*
H19C0.30490.78640.81900.186*
C200.1275 (2)0.32774 (18)0.8840 (2)0.0810 (9)
C21A0.1154 (8)0.2382 (5)0.8948 (7)0.0857 (13)0.33
H21A0.13290.21400.94320.103*0.33
C22A0.0812 (6)0.1992 (5)0.8364 (7)0.0802 (12)0.33
H22A0.06480.22090.78620.096*0.33
C23A0.070 (6)0.1110 (16)0.857 (5)0.134 (4)0.33
H23A0.11200.09400.89360.201*0.33
H23B0.07010.08160.80680.201*0.33
H23C0.01970.10380.88290.201*0.33
C21B0.0859 (3)0.2565 (2)0.8567 (3)0.0857 (13)0.67
H21B0.04530.26010.81660.103*0.67
C22B0.1039 (3)0.1905 (2)0.8862 (3)0.0802 (12)0.67
H22B0.13840.18700.93210.096*0.67
C23B0.069 (3)0.1154 (8)0.846 (2)0.134 (4)0.67
H23D0.01470.12430.82820.201*0.67
H23E0.07050.07480.88630.201*0.67
H23F0.09950.10120.79980.201*0.67
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0661 (2)0.03338 (19)0.0593 (2)0.00546 (13)0.01459 (15)0.00101 (13)
N10.0783 (14)0.0434 (11)0.0706 (13)0.0006 (10)0.0128 (11)0.0045 (10)
N20.0872 (15)0.0476 (11)0.0614 (13)0.0011 (11)0.0100 (11)0.0024 (10)
N30.0622 (11)0.0488 (11)0.0566 (11)0.0004 (9)0.0051 (9)0.0009 (9)
N40.0753 (13)0.0483 (11)0.0704 (13)0.0017 (10)0.0186 (11)0.0029 (10)
N50.0723 (13)0.0426 (11)0.0673 (13)0.0016 (10)0.0106 (10)0.0014 (9)
O10.0619 (9)0.0440 (9)0.0750 (11)0.0025 (8)0.0048 (8)0.0018 (8)
O20.0795 (12)0.0498 (10)0.1157 (16)0.0080 (9)0.0190 (11)0.0010 (10)
O30.1185 (18)0.0611 (12)0.1031 (16)0.0207 (12)0.0382 (14)0.0023 (11)
O40.167 (3)0.101 (2)0.147 (3)0.010 (2)0.012 (2)0.0440 (19)
O50.0819 (13)0.0755 (13)0.1209 (18)0.0158 (11)0.0102 (12)0.0395 (12)
C10.0803 (16)0.0408 (12)0.0657 (15)0.0017 (12)0.0067 (13)0.0037 (11)
C20.0817 (17)0.0406 (13)0.0691 (16)0.0003 (12)0.0066 (13)0.0038 (11)
C30.0655 (14)0.0438 (12)0.0603 (14)0.0024 (11)0.0003 (11)0.0003 (11)
C40.0770 (16)0.0540 (14)0.0719 (17)0.0105 (13)0.0158 (13)0.0161 (13)
C50.0934 (19)0.0492 (15)0.0823 (19)0.0154 (14)0.0272 (15)0.0130 (13)
C60.0586 (13)0.0484 (13)0.0563 (13)0.0010 (11)0.0003 (11)0.0022 (11)
C70.0734 (16)0.0564 (15)0.0652 (16)0.0010 (12)0.0090 (13)0.0109 (12)
C80.0767 (16)0.0668 (17)0.0643 (15)0.0012 (14)0.0155 (13)0.0107 (13)
C90.0698 (15)0.0609 (15)0.0630 (15)0.0033 (12)0.0121 (12)0.0024 (12)
C100.0543 (13)0.0509 (13)0.0609 (14)0.0012 (11)0.0034 (11)0.0013 (11)
C110.0554 (13)0.0474 (13)0.0623 (14)0.0022 (10)0.0048 (11)0.0044 (11)
C120.0809 (17)0.0457 (13)0.0701 (16)0.0002 (12)0.0180 (13)0.0065 (12)
C130.0754 (16)0.0425 (13)0.0778 (17)0.0025 (12)0.0124 (14)0.0043 (12)
C140.0870 (18)0.0494 (13)0.0566 (14)0.0046 (13)0.0055 (13)0.0022 (11)
C150.0759 (16)0.0484 (13)0.0594 (14)0.0088 (12)0.0011 (12)0.0004 (11)
C160.0629 (15)0.0444 (13)0.0707 (16)0.0016 (12)0.0080 (12)0.0010 (11)
C170.0677 (16)0.0481 (14)0.102 (2)0.0056 (13)0.0045 (15)0.0045 (14)
C180.0806 (18)0.0525 (16)0.108 (2)0.0039 (14)0.0137 (16)0.0082 (15)
C190.140 (3)0.0547 (18)0.176 (4)0.008 (2)0.038 (3)0.029 (2)
C200.103 (2)0.0555 (17)0.086 (2)0.0206 (17)0.0293 (19)0.0119 (16)
C21A0.115 (4)0.055 (3)0.085 (4)0.020 (3)0.010 (3)0.008 (2)
C22A0.101 (3)0.054 (2)0.086 (3)0.003 (2)0.001 (3)0.009 (3)
C23A0.163 (4)0.066 (3)0.173 (12)0.041 (3)0.025 (5)0.019 (4)
C21B0.115 (4)0.055 (3)0.085 (4)0.020 (3)0.010 (3)0.008 (2)
C22B0.101 (3)0.054 (2)0.086 (3)0.003 (2)0.001 (3)0.009 (3)
C23B0.163 (4)0.066 (3)0.173 (12)0.041 (3)0.025 (5)0.019 (4)
Geometric parameters (Å, º) top
Co1—O11.9210 (17)C8—H80.9300
Co1—O31.972 (2)C9—C101.383 (3)
Co1—N5i1.991 (2)C9—H90.9300
Co1—N11.993 (2)C11—C121.387 (3)
N1—C11.336 (3)C11—C151.394 (3)
N1—C51.347 (3)C12—C131.367 (4)
N2—C31.369 (3)C12—H120.9300
N2—C61.395 (3)C13—H130.9300
N2—H20.8600C14—C151.355 (3)
N3—C61.331 (3)C14—H140.9300
N3—C101.336 (3)C15—H150.9300
N4—C111.372 (3)C16—C171.473 (3)
N4—C101.395 (3)C17—C181.284 (4)
N4—H40.8600C17—H170.9300
N5—C131.342 (3)C18—C191.500 (4)
N5—C141.346 (3)C18—H180.9300
N5—Co1i1.991 (2)C19—H19A0.9600
O1—C161.274 (3)C19—H19B0.9600
O2—C161.250 (3)C19—H19C0.9600
O3—C201.295 (4)C20—C21B1.485 (5)
O4—C201.188 (4)C20—C21A1.583 (10)
O5—H5B0.8591C21A—C22A1.287 (12)
O5—H5C0.8618C21A—H21A0.9300
C1—C21.359 (4)C22A—C23A1.59 (2)
C1—H10.9300C22A—H22A0.9300
C2—C31.395 (3)C23A—H23A0.9600
C2—H2A0.9300C23A—H23B0.9600
C3—C41.388 (3)C23A—H23C0.9600
C4—C51.358 (4)C21B—C22B1.279 (6)
C4—H4A0.9300C21B—H21B0.9300
C5—H50.9300C22B—C23B1.568 (18)
C6—C71.382 (4)C22B—H22B0.9300
C7—C81.371 (4)C23B—H23D0.9600
C7—H70.9300C23B—H23E0.9600
C8—C91.380 (4)C23B—H23F0.9600
O1—Co1—O3162.90 (10)N4—C11—C15124.2 (2)
O1—Co1—N5i94.17 (8)C12—C11—C15116.3 (2)
O3—Co1—N5i88.66 (8)C13—C12—C11119.8 (2)
O1—Co1—N193.69 (8)C13—C12—H12120.1
O3—Co1—N189.94 (9)C11—C12—H12120.1
N5i—Co1—N1157.66 (9)N5—C13—C12124.1 (2)
C1—N1—C5115.9 (2)N5—C13—H13118.0
C1—N1—Co1126.27 (18)C12—C13—H13118.0
C5—N1—Co1117.78 (18)N5—C14—C15124.4 (2)
C3—N2—C6129.8 (2)N5—C14—H14117.8
C3—N2—H2115.1C15—C14—H14117.8
C6—N2—H2115.1C14—C15—C11119.8 (2)
C6—N3—C10117.6 (2)C14—C15—H15120.1
C11—N4—C10129.8 (2)C11—C15—H15120.1
C11—N4—H4115.1O2—C16—O1122.8 (2)
C10—N4—H4115.1O2—C16—C17119.9 (2)
C13—N5—C14115.4 (2)O1—C16—C17117.3 (2)
C13—N5—Co1i125.92 (17)C18—C17—C16125.3 (3)
C14—N5—Co1i118.68 (16)C18—C17—H17117.3
C16—O1—Co1116.37 (15)C16—C17—H17117.3
C20—O3—Co1108.8 (2)C17—C18—C19125.8 (3)
H5B—O5—H5C105.3C17—C18—H18117.1
N1—C1—C2123.5 (2)C19—C18—H18117.1
N1—C1—H1118.3C18—C19—H19A109.5
C2—C1—H1118.3C18—C19—H19B109.5
C1—C2—C3120.3 (2)H19A—C19—H19B109.5
C1—C2—H2A119.9C18—C19—H19C109.5
C3—C2—H2A119.9H19A—C19—H19C109.5
N2—C3—C4124.1 (2)H19B—C19—H19C109.5
N2—C3—C2119.8 (2)O4—C20—O3122.8 (3)
C4—C3—C2116.1 (2)O4—C20—C21B113.3 (4)
C5—C4—C3119.5 (2)O3—C20—C21B123.9 (4)
C5—C4—H4A120.3O4—C20—C21A144.8 (5)
C3—C4—H4A120.3O3—C20—C21A92.3 (5)
N1—C5—C4124.2 (2)C21B—C20—C21A31.7 (4)
N1—C5—H5117.9C22A—C21A—C20119.7 (9)
C4—C5—H5117.9C22A—C21A—H21A120.1
N3—C6—C7123.5 (2)C20—C21A—H21A120.1
N3—C6—N2118.4 (2)C21A—C22A—C23A114 (3)
C7—C6—N2118.1 (2)C21A—C22A—H22A122.8
C8—C7—C6118.0 (2)C23A—C22A—H22A122.8
C8—C7—H7121.0C22B—C21B—C20122.4 (5)
C6—C7—H7121.0C22B—C21B—H21B118.8
C7—C8—C9119.8 (2)C20—C21B—H21B118.8
C7—C8—H8120.1C21B—C22B—C23B121.0 (15)
C9—C8—H8120.1C21B—C22B—H22B119.5
C8—C9—C10118.0 (2)C23B—C22B—H22B119.5
C8—C9—H9121.0C22B—C23B—H23D109.5
C10—C9—H9121.0C22B—C23B—H23E109.5
N3—C10—C9123.1 (2)H23D—C23B—H23E109.5
N3—C10—N4118.7 (2)C22B—C23B—H23F109.5
C9—C10—N4118.2 (2)H23D—C23B—H23F109.5
N4—C11—C12119.5 (2)H23E—C23B—H23F109.5
Symmetry code: (i) x+1/2, y+1/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4ii0.861.992.831 (4)167
N4—H4···O5iii0.861.982.840 (3)174
O5—H5B···O20.861.892.737 (3)170
O5—H5C···O2iv0.862.102.917 (3)158
Symmetry codes: (ii) x, y+1, z+1/2; (iii) x+1/2, y1/2, z+5/2; (iv) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Co2(C4H5O2)4(C15H13N5)2]·2H2O
Mr1020.82
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)16.852 (3), 17.425 (3), 16.206 (2)
β (°) 91.848 (2)
V3)4756.6 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.28 × 0.20 × 0.16
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.814, 0.887
No. of measured, independent and
observed [I > 2σ(I)] reflections
11993, 4289, 3333
Rint0.021
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.113, 1.00
No. of reflections4289
No. of parameters319
No. of restraints5
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.25

Computer programs: APEX2 (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996); ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.861.992.831 (4)167.4
N4—H4···O5ii0.861.982.840 (3)174.4
O5—H5B···O20.861.892.737 (3)169.6
O5—H5C···O2iii0.862.102.917 (3)158.2
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1/2, y1/2, z+5/2; (iii) x+1, y+1, z+2.
 

Acknowledgements

The author is grateful to the Research Foundation of Lishui University (grant No. KZ08005) for financial support.

References

First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurchell, T. J., Eisler, D. J. & Puddephatt, R. (2006). J. Mol. Struct. 796, 47–57.  Web of Science CSD CrossRef CAS Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLiu, J. Q., Wang, Y. Y., Ma, L. F., Zhang, W. H., Zeng, X. R., Shi, Q. Z. & Peng, S. M. (2008). Inorg. Chim. Acta, 361, 2327–2334.  Web of Science CSD CrossRef CAS Google Scholar
First citationPatra, A. K., Rose, M. J., Murphy, K. A., Olmstead, M. M. & Mascharak, P. K. (2004). Inorg. Chem. 43, 4487–4495.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThorsten, G., Thomas, L. & Roland, F. (2004). Eur. J. Inorg. Chem. pp. 394–400.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds