metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[μ-azido-(μ3-nicotinato N-oxide)zinc(II)]

aSchool of Chemistry and Chemical, Engineering, Tianjin University of Technology, Tianjin 300191, People's Republic of China
*Correspondence e-mail: fuchenliutj@yahoo.com

(Received 16 November 2008; accepted 22 November 2008; online 29 November 2008)

The title compound, [Zn(C6H4NO3)(N3)], has been prepared by the reaction of nicotinate N-oxide acid, zinc(II) nitrate and sodium azide. The Zn atom is five coordinated by two azide anions and three nicotinate N-oxide ligands. Each nicotinate N-oxide bridges three Zn atoms, whereas the azide bridges two Zn atoms, resulting in the formation of a two-dimensional metal–organic polymer developing parallel to (100).

Related literature

For background to metal–azide complexes, see: Escuer et al. (1997[Escuer, A., Vicente, R., Mautner, F. A. & Goher, M. A. S. (1997). Inorg. Chem. 36, 1233-1236.]); Liu et al. (2005[Liu, F.-C., Zeng, Y.-F., Li, J.-R., Bu, X.-H., Zhang, H.-J. & Ribas, J. (2005). Inorg. Chem. 44, 7298-7300.]); Monfort et al. (2000[Monfort, M., Resino, I., Ribas, J. & Stoeckli-Evans, H. (2000). Angew. Chem. Int. Ed. 39, 191-193.]); Shen et al. (2000[Shen, Z., Zuo, J.-L., Gao, S., Song, Y., Che, C.-M., Fun, H.-K. & You, X.-Z. (2000). Angew. Chem. Int. Ed. 39, 3633-3635.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C6H4NO3)(N3)]

  • Mr = 245.50

  • Monoclinic, P 21 /c

  • a = 8.1132 (16) Å

  • b = 6.1342 (12) Å

  • c = 15.786 (3) Å

  • β = 101.19 (3)°

  • V = 770.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.17 mm−1

  • T = 293 (2) K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.786, Tmax = 1.000 (expected range = 0.489–0.622)

  • 7629 measured reflections

  • 1761 independent reflections

  • 1293 reflections with I > 2σ(I)

  • Rint = 0.091

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.122

  • S = 1.12

  • 1761 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.52 e Å−3

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Metal azide complexes have attracted great attention in recent years. The azide anion have rich coordinated mode. (Shen, et al., 2000). In this sense, several 1-D,2-D, and 3-D metal-azide complexes have been reported.(Monfort, et al., 2000). In most of the compounds reported to date, the coligands are neutral organic ligands, while charged ligands are very scarce (Escuer et al., 1997). Synthesizing high-dimensional compounds with azide and negatively charged ligands represents then a challenge for researchers working in this field.(Liu, et al., 2005)

In the title compound, the zinc atom is five coordinated by two azide anions and three nicotinate N-oxide ligands (Fig. 1). Each nicotinate N-oxide bridges three zinc atoms whereas the azide is bridging two zinc atoms resulting in the formation of a two dimensional metal organic polymer developping parallel to the (1 0 0) plane.

Related literature top

For background to metal–azide complexes, see: Escuer et al. (1997); Liu et al. (2005); Monfort et al. (2000); Shen et al. (2000).

Experimental top

A mixture of zinc(II)nitrate and sodium azide (1 mmol), nicotinate N-oxide acid(0.5 mmol), in 10 ml of water was sealed in a Teflon-lined stainless-steel Parr bomb that was heated at 363 K for 48 h. Pink crystals of the title complex were collected after the bomb was allowed to cool to room temperature.Yield 30% based on zinc(II). Caution:Metal azides may be explosive. Although we have met no problems in this work, only a small amount of them should be prepared and handled with great caution.

Refinement top

Hydrogen atoms were included in calculated positions and treated as riding on their parent C atoms with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A partial view of the title compound showing the coordination of Zn atom with the atom-labelling scheme. Ellipsoids are drawn at the 30% probability level. H atom have been omitted for clarity. [ Symmetry codes: (i) -x+2, y+1/2, -z+3/2; (ii) -x+2, -y+2, -z+2; (iii) x, -y+3/2, z-1/2; (iv) x, -y+3/2, z+1/2]
Poly[µ-azido-(µ3-nicotinato N-oxide)zinc(II)] top
Crystal data top
[Zn(C6H4NO3)(N3)]F(000) = 488
Mr = 245.50Dx = 2.116 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6677 reflections
a = 8.1132 (16) Åθ = 3.1–27.6°
b = 6.1342 (12) ŵ = 3.17 mm1
c = 15.786 (3) ÅT = 293 K
β = 101.19 (3)°Block, pink
V = 770.7 (3) Å30.20 × 0.18 × 0.15 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
1761 independent reflections
Radiation source: fine-focus sealed tube1293 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.091
ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1010
Tmin = 0.786, Tmax = 1.000k = 77
7629 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0419P)2 + 1.4372P]
where P = (Fo2 + 2Fc2)/3
1761 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
[Zn(C6H4NO3)(N3)]V = 770.7 (3) Å3
Mr = 245.50Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1132 (16) ŵ = 3.17 mm1
b = 6.1342 (12) ÅT = 293 K
c = 15.786 (3) Å0.20 × 0.18 × 0.15 mm
β = 101.19 (3)°
Data collection top
Rigaku SCXmini
diffractometer
1761 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1293 reflections with I > 2σ(I)
Tmin = 0.786, Tmax = 1.000Rint = 0.091
7629 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.12Δρmax = 0.50 e Å3
1761 reflectionsΔρmin = 0.52 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.92049 (8)1.07685 (11)0.77114 (4)0.0250 (2)
N21.2498 (6)0.9185 (8)0.8332 (3)0.0259 (10)
O30.9850 (5)0.8093 (6)1.1049 (2)0.0246 (9)
O20.8412 (5)0.5276 (7)1.1413 (3)0.0396 (11)
O10.7173 (5)0.9338 (8)0.7978 (2)0.0395 (11)
N40.7150 (5)0.7746 (8)0.8558 (3)0.0261 (11)
C60.8023 (7)0.7911 (9)0.9367 (3)0.0229 (12)
H6A0.87160.91100.95260.028*
N11.1263 (6)0.8822 (7)0.7773 (3)0.0268 (11)
C50.6141 (6)0.6031 (10)0.8310 (3)0.0263 (13)
H5A0.55430.59530.77450.032*
C40.5987 (7)0.4421 (10)0.8872 (4)0.0308 (14)
H4A0.52760.32470.87000.037*
C20.7901 (7)0.6329 (9)0.9958 (3)0.0208 (12)
N31.3654 (6)0.9564 (8)0.8842 (3)0.0361 (13)
C30.6906 (7)0.4538 (10)0.9712 (4)0.0299 (14)
H3A0.68470.34181.01030.036*
C10.8807 (7)0.6564 (9)1.0894 (4)0.0232 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0290 (4)0.0231 (4)0.0213 (3)0.0007 (3)0.0006 (2)0.0007 (3)
N20.030 (3)0.019 (2)0.030 (3)0.001 (2)0.008 (2)0.000 (2)
O30.028 (2)0.024 (2)0.021 (2)0.0054 (17)0.0008 (16)0.0007 (17)
O20.047 (3)0.046 (3)0.021 (2)0.024 (2)0.0064 (18)0.011 (2)
O10.032 (2)0.055 (3)0.027 (2)0.014 (2)0.0085 (17)0.025 (2)
N40.024 (3)0.033 (3)0.021 (2)0.002 (2)0.002 (2)0.005 (2)
C60.026 (3)0.023 (3)0.019 (3)0.006 (2)0.000 (2)0.002 (2)
N10.025 (3)0.025 (3)0.026 (3)0.004 (2)0.006 (2)0.007 (2)
C50.022 (3)0.035 (4)0.020 (3)0.007 (3)0.002 (2)0.004 (3)
C40.035 (3)0.027 (3)0.027 (3)0.012 (3)0.001 (2)0.008 (3)
C20.023 (3)0.023 (3)0.018 (3)0.001 (2)0.004 (2)0.002 (2)
N30.029 (3)0.036 (3)0.039 (3)0.006 (2)0.004 (2)0.004 (3)
C30.039 (4)0.026 (3)0.024 (3)0.010 (3)0.004 (3)0.002 (3)
C10.025 (3)0.024 (3)0.020 (3)0.002 (2)0.002 (2)0.003 (2)
Geometric parameters (Å, º) top
Zn1—O11.983 (4)N4—C51.344 (7)
Zn1—N1i2.031 (5)C6—C21.363 (7)
Zn1—N12.040 (4)C6—H6A0.9300
Zn1—O3ii2.079 (4)C5—C41.349 (8)
Zn1—O2iii2.125 (4)C5—H5A0.9300
N2—N31.134 (6)C4—C31.392 (7)
N2—N11.220 (6)C4—H4A0.9300
O3—C11.255 (6)C2—C31.374 (8)
O2—C11.225 (7)C2—C11.523 (7)
O1—N41.342 (6)C3—H3A0.9300
N4—C61.338 (6)
O1—Zn1—N1i112.69 (19)C2—C6—H6A119.9
O1—Zn1—N1115.93 (19)N2—N1—Zn1v120.5 (4)
N1i—Zn1—N1130.49 (12)N2—N1—Zn1118.5 (4)
O1—Zn1—O3ii96.82 (16)Zn1v—N1—Zn1115.5 (2)
N1i—Zn1—O3ii93.02 (17)N4—C5—C4120.7 (5)
N1—Zn1—O3ii90.14 (16)N4—C5—H5A119.7
O1—Zn1—O2iii87.86 (18)C4—C5—H5A119.7
N1i—Zn1—O2iii85.13 (18)C5—C4—C3119.2 (5)
N1—Zn1—O2iii87.80 (17)C5—C4—H4A120.4
O3ii—Zn1—O2iii175.31 (17)C3—C4—H4A120.4
N3—N2—N1178.4 (6)C6—C2—C3119.5 (5)
C1—O3—Zn1ii123.1 (4)C6—C2—C1120.7 (5)
C1—O2—Zn1iv140.4 (4)C3—C2—C1119.7 (5)
N4—O1—Zn1126.1 (3)C2—C3—C4119.1 (5)
C6—N4—O1121.4 (5)C2—C3—H3A120.4
C6—N4—C5121.1 (5)C4—C3—H3A120.4
O1—N4—C5117.3 (4)O2—C1—O3127.3 (5)
N4—C6—C2120.3 (5)O2—C1—C2116.6 (5)
N4—C6—H6A119.9O3—C1—C2116.1 (5)
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x+2, y+2, z+2; (iii) x, y+3/2, z1/2; (iv) x, y+3/2, z+1/2; (v) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Zn(C6H4NO3)(N3)]
Mr245.50
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.1132 (16), 6.1342 (12), 15.786 (3)
β (°) 101.19 (3)
V3)770.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)3.17
Crystal size (mm)0.20 × 0.18 × 0.15
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.786, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7629, 1761, 1293
Rint0.091
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.122, 1.12
No. of reflections1761
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.52

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2003), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors acknowledge financial support from Tianjin Municipal Education Commission (No. 20060503)

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationEscuer, A., Vicente, R., Mautner, F. A. & Goher, M. A. S. (1997). Inorg. Chem. 36, 1233–1236.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLiu, F.-C., Zeng, Y.-F., Li, J.-R., Bu, X.-H., Zhang, H.-J. & Ribas, J. (2005). Inorg. Chem. 44, 7298–7300.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMonfort, M., Resino, I., Ribas, J. & Stoeckli-Evans, H. (2000). Angew. Chem. Int. Ed. 39, 191–193.  CrossRef CAS Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, Z., Zuo, J.-L., Gao, S., Song, Y., Che, C.-M., Fun, H.-K. & You, X.-Z. (2000). Angew. Chem. Int. Ed. 39, 3633–3635.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds