organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,5-Bis(9H-carbazol-9-yl)thio­phene

aSchool of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China, and bCollege of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
*Correspondence e-mail: rgw@zjut.edu.cn

(Received 21 November 2008; accepted 25 November 2008; online 29 November 2008)

The mol­ecules of the title compound, C28H18N2S, are built up from two triply-fused rings and one five-membered ring, with dihedral angles of 66.12 (8) and 70.96 (7)° between the central thio­phene ring and the two triply-fused rings.

Related literature

For dicarbazolyl derivatives as potential blue-emitting hole-transporting materials, see: Wu et al. (2000[Wu, I. Y., Lin, J. T., Tao, Y. T. & Balasubramaniam, E. (2000). Adv. Mater. 12, 668-669.], 2001[Wu, I.-Y., Lin, J. T., Tao, Y.-T., Balasubramaniam, E., Su, Y. Z. & Ko, C.-W. (2001). Chem. Mater. 13, 2626-2631.]).

[Scheme 1]

Experimental

Crystal data
  • C28H18N2S

  • Mr = 414.50

  • Orthorhombic, P b c a

  • a = 7.8760 (16) Å

  • b = 16.098 (3) Å

  • c = 33.986 (7) Å

  • V = 4309.1 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 298 (2) K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Rigaku R-AXIS-IV diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.963, Tmax = 0.977

  • 12051 measured reflections

  • 3931 independent reflections

  • 3230 reflections with I > 2σ(I)

  • Rint = 0.091

  • 3 standard reflections frequency: 60 min intensity decay: 0.3%

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.152

  • S = 1.13

  • 3931 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: R-AXIS (Rigaku, 1996[Rigaku (1996). R-AXIS. Rigaku Corporation, Tokyo, Japan.]); cell refinement: R-AXIS; data reduction: R-AXIS program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Due to the great potential in flat-panel displays, organic light-emitting diodes (OLEDs) have been received continuous attention for years. Dicarbazolyl derivatives bridged by various aromatic spacers could emit blue light in solution, and could be used as excellent blue-emitting hole-transporting materials (Wu et al., 2000, 2001). As dicarbazolyl derivatives are of great importance in electroluminescent devices, we have undertaken the crystal structure determination of the title compound.

The molecular (I) is built up from two three-fused rings and one five-membered ring. (Fig. 1). The three fused rings are coplanar within 0.0306 (27) and 0.0288 (26) Å, respectively. The five-membered ring is coplanar within 0.0027 (18) Å. The dihedral angles between the thiophene ring and the three-fused rings are 66.12 (8) and 70.96 (7)°, respectively.

Related literature top

For dicarbazolyl derivatives as potential blue-emitting hole-transporting materials, see: Wu et al. (2000, 2001).

Experimental top

2,5-dibromothiophene (4.84 g, 20.0 mmol), 9H-carbazole (6.69 g, 40.0 mmol), sodium tert-butoxide (4.61 g, 48.0 mmol), Pd(OAc)2 (90 mg, 0.4 mmol), P(t—Bu)3 (0.4 ml, 1.6 mmol, 0.81 M in o-xylene) and dry o-xylene (60 ml) were placed in a round-bottomed flask, and the solution was stirred at reflux for 72 h. After cooling, 2 ml of water was added, and the solution was then pumped dry, and the residue was extracted with dichloromethane/water, filtered and dried over magnesium sulfate. The pure product (m. p. 250–252°C) was obtained through silica gel chromatography (eluant: petroleum ether). A solution of the compound in n-hexane/dichloromethane (v/v=5/1) was concentrated gradually at room temperature to afford colorless prisms.

Refinement top

H atoms were included in calculated positions and refined using a riding model. H atoms were given isotropic displacement parameters equal to 1.2 times the equivalent isotropic displacement parameters of their parent atoms and C—H distances were restrained to 0.93 Å.

Computing details top

Data collection: R-AXIS (Rigaku, 1996); cell refinement: R-AXIS (Rigaku, 1996); data reduction: R-AXIS (Rigaku, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-labelling scheme. Ellipsoids are drawn at the 30% probability level.
2,5-Bis(9H-carbazol-9-yl)thiophene top
Crystal data top
C28H18N2SF(000) = 1728
Mr = 414.50Dx = 1.278 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 398 reflections
a = 7.8760 (16) Åθ = 2–25.1°
b = 16.098 (3) ŵ = 0.17 mm1
c = 33.986 (7) ÅT = 298 K
V = 4309.1 (15) Å3Prismatic, colorless
Z = 80.20 × 0.18 × 0.16 mm
Data collection top
Rigaku R-AXIS-IV
diffractometer
3230 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.091
Graphite monochromatorθmax = 25.5°, θmin = 1.2°
Oscillation frames scansh = 99
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 190
Tmin = 0.963, Tmax = 0.977l = 4141
12051 measured reflections3 standard reflections every 60 min
3931 independent reflections intensity decay: 0.3%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.0561P)2 + 1.4309P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.005
3931 reflectionsΔρmax = 0.22 e Å3
281 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0075 (8)
Crystal data top
C28H18N2SV = 4309.1 (15) Å3
Mr = 414.50Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.8760 (16) ŵ = 0.17 mm1
b = 16.098 (3) ÅT = 298 K
c = 33.986 (7) Å0.20 × 0.18 × 0.16 mm
Data collection top
Rigaku R-AXIS-IV
diffractometer
3230 reflections with I > 2σ(I)
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
Rint = 0.091
Tmin = 0.963, Tmax = 0.9773 standard reflections every 60 min
12051 measured reflections intensity decay: 0.3%
3931 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.13Δρmax = 0.22 e Å3
3931 reflectionsΔρmin = 0.24 e Å3
281 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.42510 (9)0.38837 (4)0.134571 (19)0.0563 (2)
N10.1144 (3)0.45028 (13)0.15532 (6)0.0547 (5)
N20.5972 (3)0.31480 (13)0.07385 (6)0.0528 (5)
C10.1385 (3)0.52907 (16)0.17188 (8)0.0549 (6)
C20.2565 (4)0.5891 (2)0.16243 (11)0.0778 (9)
H2A0.33750.58040.14290.093*
C30.2491 (5)0.6626 (2)0.18321 (12)0.0908 (11)
H3A0.32710.70430.17760.109*
C40.1297 (6)0.6760 (2)0.21206 (12)0.0935 (12)
H4A0.12850.72640.22540.112*
C50.0140 (5)0.6171 (2)0.22129 (9)0.0756 (9)
H5A0.06660.62700.24070.091*
C60.0166 (3)0.54065 (17)0.20123 (7)0.0552 (6)
C70.0844 (3)0.46647 (17)0.20323 (7)0.0536 (6)
C80.2183 (4)0.4410 (2)0.22699 (8)0.0706 (8)
H8A0.26200.47640.24610.085*
C90.2852 (4)0.3632 (2)0.22198 (9)0.0797 (9)
H9A0.37360.34540.23810.096*
C100.2226 (4)0.3107 (2)0.19319 (9)0.0717 (8)
H10A0.27050.25820.19020.086*
C110.0908 (4)0.33396 (17)0.16874 (8)0.0595 (7)
H11A0.05080.29880.14910.071*
C120.0208 (3)0.41184 (15)0.17466 (7)0.0484 (6)
C130.2153 (3)0.41352 (16)0.12579 (7)0.0518 (6)
C140.1618 (4)0.3893 (2)0.08962 (8)0.0721 (9)
H14A0.05250.39780.08010.087*
C150.2932 (4)0.3495 (2)0.06807 (8)0.0737 (9)
H15A0.27910.32870.04270.088*
C160.4400 (3)0.34488 (16)0.08817 (7)0.0517 (6)
C170.6898 (3)0.35122 (15)0.04319 (7)0.0484 (6)
C180.6625 (4)0.42622 (17)0.02422 (8)0.0626 (7)
H18A0.57280.46080.03120.075*
C190.7746 (4)0.44742 (19)0.00553 (9)0.0710 (8)
H19A0.75990.49750.01870.085*
C200.9084 (4)0.3958 (2)0.01618 (9)0.0715 (8)
H20A0.98060.41140.03650.086*
C210.9348 (3)0.32234 (19)0.00301 (8)0.0625 (7)
H21A1.02440.28790.00420.075*
C220.8259 (3)0.29954 (16)0.03348 (7)0.0511 (6)
C230.8173 (3)0.22830 (16)0.05942 (7)0.0520 (6)
C240.9152 (4)0.1575 (2)0.06395 (9)0.0711 (8)
H24A1.01130.14930.04860.085*
C250.8682 (5)0.0997 (2)0.09146 (10)0.0838 (10)
H25A0.93300.05180.09450.101*
C260.7258 (5)0.1112 (2)0.11483 (9)0.0814 (9)
H26A0.69740.07100.13330.098*
C270.6255 (4)0.18089 (18)0.11129 (8)0.0673 (8)
H27A0.52970.18840.12690.081*
C280.6737 (3)0.23931 (16)0.08351 (7)0.0518 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0515 (4)0.0642 (4)0.0531 (4)0.0098 (3)0.0019 (3)0.0067 (3)
N10.0541 (12)0.0513 (12)0.0586 (12)0.0035 (10)0.0152 (10)0.0071 (10)
N20.0474 (11)0.0548 (12)0.0564 (12)0.0049 (10)0.0114 (9)0.0021 (10)
C10.0545 (15)0.0498 (15)0.0604 (15)0.0060 (12)0.0023 (12)0.0032 (12)
C20.068 (2)0.0620 (19)0.103 (2)0.0023 (16)0.0013 (17)0.0029 (17)
C30.083 (3)0.0552 (19)0.134 (3)0.0055 (17)0.020 (2)0.005 (2)
C40.098 (3)0.064 (2)0.119 (3)0.017 (2)0.036 (2)0.027 (2)
C50.080 (2)0.073 (2)0.074 (2)0.0289 (18)0.0145 (16)0.0226 (16)
C60.0568 (15)0.0560 (15)0.0529 (14)0.0156 (13)0.0088 (12)0.0073 (12)
C70.0528 (15)0.0630 (16)0.0451 (13)0.0201 (13)0.0010 (11)0.0001 (11)
C80.0618 (18)0.096 (2)0.0544 (16)0.0204 (17)0.0139 (13)0.0022 (15)
C90.0617 (19)0.106 (3)0.071 (2)0.0008 (19)0.0196 (15)0.0159 (19)
C100.0631 (18)0.0702 (19)0.082 (2)0.0038 (15)0.0063 (15)0.0152 (16)
C110.0583 (16)0.0564 (16)0.0638 (16)0.0087 (13)0.0070 (12)0.0001 (12)
C120.0459 (13)0.0514 (14)0.0481 (13)0.0100 (11)0.0048 (10)0.0005 (11)
C130.0488 (14)0.0532 (14)0.0533 (14)0.0030 (12)0.0089 (11)0.0029 (11)
C140.0489 (15)0.107 (2)0.0605 (17)0.0097 (16)0.0022 (12)0.0179 (16)
C150.0494 (16)0.112 (3)0.0594 (17)0.0088 (17)0.0050 (13)0.0236 (17)
C160.0455 (14)0.0553 (15)0.0542 (14)0.0021 (11)0.0094 (11)0.0036 (11)
C170.0457 (13)0.0510 (14)0.0486 (13)0.0043 (11)0.0042 (10)0.0095 (11)
C180.0665 (18)0.0560 (16)0.0652 (17)0.0013 (14)0.0058 (13)0.0043 (13)
C190.077 (2)0.0639 (18)0.0724 (18)0.0182 (16)0.0076 (16)0.0036 (15)
C200.0661 (19)0.084 (2)0.0645 (17)0.0250 (17)0.0170 (14)0.0064 (16)
C210.0470 (15)0.0776 (19)0.0629 (16)0.0076 (14)0.0120 (12)0.0205 (15)
C220.0447 (13)0.0586 (15)0.0501 (13)0.0056 (11)0.0025 (10)0.0168 (12)
C230.0495 (14)0.0572 (15)0.0494 (13)0.0041 (12)0.0014 (11)0.0134 (12)
C240.0687 (19)0.077 (2)0.0676 (18)0.0213 (16)0.0006 (14)0.0157 (16)
C250.105 (3)0.071 (2)0.076 (2)0.0317 (19)0.0114 (19)0.0026 (17)
C260.109 (3)0.069 (2)0.0669 (19)0.0126 (19)0.0003 (19)0.0067 (16)
C270.0769 (19)0.0672 (18)0.0579 (16)0.0052 (15)0.0090 (14)0.0010 (14)
C280.0528 (14)0.0536 (15)0.0490 (14)0.0038 (12)0.0012 (11)0.0067 (11)
Geometric parameters (Å, º) top
S1—C131.727 (3)C11—H11A0.9300
S1—C161.729 (3)C13—C141.356 (4)
N1—C121.396 (3)C14—C151.421 (4)
N1—C11.401 (3)C14—H14A0.9300
N1—C131.410 (3)C15—C161.345 (4)
N2—C281.396 (3)C15—H15A0.9300
N2—C171.401 (3)C17—C181.385 (4)
N2—C161.415 (3)C17—C221.396 (3)
C1—C21.379 (4)C18—C191.385 (4)
C1—C61.397 (4)C18—H18A0.9300
C2—C31.379 (5)C19—C201.390 (4)
C2—H2A0.9300C19—H19A0.9300
C3—C41.376 (6)C20—C211.366 (4)
C3—H3A0.9300C20—H20A0.9300
C4—C51.352 (5)C21—C221.394 (4)
C4—H4A0.9300C21—H21A0.9300
C5—C61.407 (4)C22—C231.448 (4)
C5—H5A0.9300C23—C241.385 (4)
C6—C71.437 (4)C23—C281.408 (3)
C7—C81.390 (4)C24—C251.370 (5)
C7—C121.403 (3)C24—H24A0.9300
C8—C91.370 (5)C25—C261.387 (5)
C8—H8A0.9300C25—H25A0.9300
C9—C101.384 (4)C26—C271.377 (4)
C9—H9A0.9300C26—H26A0.9300
C10—C111.381 (4)C27—C281.386 (4)
C10—H10A0.9300C27—H27A0.9300
C11—C121.384 (4)
C13—S1—C1690.13 (12)C13—C14—C15111.8 (3)
C12—N1—C1108.4 (2)C13—C14—H14A124.1
C12—N1—C13125.4 (2)C15—C14—H14A124.1
C1—N1—C13126.1 (2)C16—C15—C14112.9 (3)
C28—N2—C17108.34 (19)C16—C15—H15A123.6
C28—N2—C16126.5 (2)C14—C15—H15A123.6
C17—N2—C16124.6 (2)C15—C16—N2126.6 (2)
C2—C1—C6122.4 (3)C15—C16—S1112.49 (19)
C2—C1—N1129.2 (3)N2—C16—S1120.76 (18)
C6—C1—N1108.3 (2)C18—C17—C22121.9 (2)
C3—C2—C1117.0 (3)C18—C17—N2129.1 (2)
C3—C2—H2A121.5C22—C17—N2109.0 (2)
C1—C2—H2A121.5C19—C18—C17117.1 (3)
C4—C3—C2121.9 (4)C19—C18—H18A121.5
C4—C3—H3A119.0C17—C18—H18A121.5
C2—C3—H3A119.0C18—C19—C20121.7 (3)
C5—C4—C3121.1 (3)C18—C19—H19A119.1
C5—C4—H4A119.5C20—C19—H19A119.1
C3—C4—H4A119.5C21—C20—C19120.5 (3)
C4—C5—C6119.4 (3)C21—C20—H20A119.7
C4—C5—H5A120.3C19—C20—H20A119.7
C6—C5—H5A120.3C20—C21—C22119.3 (3)
C1—C6—C5118.2 (3)C20—C21—H21A120.4
C1—C6—C7107.7 (2)C22—C21—H21A120.4
C5—C6—C7134.1 (3)C21—C22—C17119.4 (3)
C8—C7—C12119.2 (3)C21—C22—C23133.6 (2)
C8—C7—C6133.8 (3)C17—C22—C23107.0 (2)
C12—C7—C6106.9 (2)C24—C23—C28119.1 (3)
C9—C8—C7119.3 (3)C24—C23—C22133.9 (2)
C9—C8—H8A120.4C28—C23—C22107.0 (2)
C7—C8—H8A120.4C25—C24—C23119.0 (3)
C8—C9—C10120.6 (3)C25—C24—H24A120.5
C8—C9—H9A119.7C23—C24—H24A120.5
C10—C9—H9A119.7C24—C25—C26121.2 (3)
C11—C10—C9121.8 (3)C24—C25—H25A119.4
C11—C10—H10A119.1C26—C25—H25A119.4
C9—C10—H10A119.1C27—C26—C25121.5 (3)
C10—C11—C12117.2 (3)C27—C26—H26A119.2
C10—C11—H11A121.4C25—C26—H26A119.2
C12—C11—H11A121.4C26—C27—C28117.1 (3)
C11—C12—N1129.6 (2)C26—C27—H27A121.5
C11—C12—C7121.7 (2)C28—C27—H27A121.5
N1—C12—C7108.7 (2)C27—C28—N2129.3 (2)
C14—C13—N1126.2 (2)C27—C28—C23122.1 (2)
C14—C13—S1112.72 (19)N2—C28—C23108.6 (2)
N1—C13—S1120.95 (19)
C12—N1—C1—C2179.9 (3)C14—C15—C16—N2174.8 (3)
C13—N1—C1—C23.4 (5)C14—C15—C16—S10.4 (4)
C12—N1—C1—C60.9 (3)C28—N2—C16—C15106.6 (4)
C13—N1—C1—C6177.4 (2)C17—N2—C16—C1563.8 (4)
C6—C1—C2—C30.4 (5)C28—N2—C16—S178.6 (3)
N1—C1—C2—C3178.6 (3)C17—N2—C16—S1111.0 (2)
C1—C2—C3—C40.1 (5)C13—S1—C16—C150.4 (3)
C2—C3—C4—C50.1 (6)C13—S1—C16—N2175.1 (2)
C3—C4—C5—C60.4 (5)C28—N2—C17—C18179.5 (3)
C2—C1—C6—C50.9 (4)C16—N2—C17—C188.6 (4)
N1—C1—C6—C5178.3 (2)C28—N2—C17—C220.5 (3)
C2—C1—C6—C7180.0 (3)C16—N2—C17—C22172.3 (2)
N1—C1—C6—C70.8 (3)C22—C17—C18—C191.2 (4)
C4—C5—C6—C10.9 (4)N2—C17—C18—C19179.9 (3)
C4—C5—C6—C7179.6 (3)C17—C18—C19—C200.3 (4)
C1—C6—C7—C8177.8 (3)C18—C19—C20—C210.9 (5)
C5—C6—C7—C83.4 (5)C19—C20—C21—C220.0 (4)
C1—C6—C7—C120.3 (3)C20—C21—C22—C171.4 (4)
C5—C6—C7—C12178.6 (3)C20—C21—C22—C23179.8 (3)
C12—C7—C8—C90.0 (4)C18—C17—C22—C212.1 (4)
C6—C7—C8—C9177.9 (3)N2—C17—C22—C21178.8 (2)
C7—C8—C9—C101.0 (5)C18—C17—C22—C23178.8 (2)
C8—C9—C10—C110.4 (5)N2—C17—C22—C230.3 (3)
C9—C10—C11—C121.3 (4)C21—C22—C23—C241.2 (5)
C10—C11—C12—N1178.2 (3)C17—C22—C23—C24179.9 (3)
C10—C11—C12—C72.4 (4)C21—C22—C23—C28178.0 (3)
C1—N1—C12—C11179.8 (3)C17—C22—C23—C280.9 (3)
C13—N1—C12—C113.2 (4)C28—C23—C24—C250.8 (4)
C1—N1—C12—C70.7 (3)C22—C23—C24—C25178.3 (3)
C13—N1—C12—C7177.2 (2)C23—C24—C25—C260.4 (5)
C8—C7—C12—C111.8 (4)C24—C25—C26—C270.3 (6)
C6—C7—C12—C11179.8 (2)C25—C26—C27—C280.4 (5)
C8—C7—C12—N1178.7 (2)C26—C27—C28—N2179.7 (3)
C6—C7—C12—N10.3 (3)C26—C27—C28—C230.8 (4)
C12—N1—C13—C1464.9 (4)C17—N2—C28—C27178.5 (3)
C1—N1—C13—C14119.2 (3)C16—N2—C28—C276.8 (4)
C12—N1—C13—S1110.7 (3)C17—N2—C28—C231.1 (3)
C1—N1—C13—S165.2 (3)C16—N2—C28—C23172.7 (2)
C16—S1—C13—C140.3 (2)C24—C23—C28—C270.9 (4)
C16—S1—C13—N1176.5 (2)C22—C23—C28—C27178.4 (2)
N1—C13—C14—C15176.0 (3)C24—C23—C28—N2179.4 (2)
S1—C13—C14—C150.1 (4)C22—C23—C28—N21.2 (3)
C13—C14—C15—C160.2 (4)

Experimental details

Crystal data
Chemical formulaC28H18N2S
Mr414.50
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)7.8760 (16), 16.098 (3), 33.986 (7)
V3)4309.1 (15)
Z8
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerRigaku R-AXIS-IV
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.963, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
12051, 3931, 3230
Rint0.091
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.152, 1.13
No. of reflections3931
No. of parameters281
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.24

Computer programs: R-AXIS (Rigaku, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

We are grateful to the Top Key Discipline of Pharmaceutics in Zhejiang Provincial Colleges (grant No. 20060611), the Department of Education of Zhejiang Province of China (grant No. 20060806) and the Creative High Level Personal Project of Zhejiang University of Technology (grant No. 071058) for financial support.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1996). R-AXIS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, I. Y., Lin, J. T., Tao, Y. T. & Balasubramaniam, E. (2000). Adv. Mater. 12, 668–669.  CrossRef CAS Google Scholar
First citationWu, I.-Y., Lin, J. T., Tao, Y.-T., Balasubramaniam, E., Su, Y. Z. & Ko, C.-W. (2001). Chem. Mater. 13, 2626–2631.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds